

Levels of Muscle Structure

Muscle
Muscle Bundle
Muscle Fiber (myofiber)
Myofibrils
Myofilaments

Muscle

(c)www.horse-diseases.com

Muscle Bundle

Contains 10-20 myofibers
Encased by perimysium
Can see with the naked eye

Myofiber (Muscle fiber)

- Individual muscle cell
 Multinucleated
- Encased by endomysium
 Cell wall: sarcolemma

FIGURE 3-4

Drawing of skeletal muscle fibers showing structural features, and their longitudinal orientation. [After M. Brödel, Johns Hopkins Hosp. Bull. 61:295, 1937; © The Johns Hopkins University Press.]

Myofibrils

 Embedded in sarcoplasm
 Mitochondria located between myofibrils

FIG. 2.9. DIAGRAMMATIC SKETCH OF A MUSCLE FIBER

Myofibrils

 Comprised of repeating units: <u>sarcomeres</u>

A band
I band
Z disk
H zone
Pseudo-H zone

Sarcomere

Sarcomere

Myofilaments

- Contractile Proteins
 - Myosin
 - Actin
- **Regulatory Proteins**
 - Tropomyosin
 - Troponin
- **Structural Proteins**
 - Z Line Proteins

Contractile Proteins

Myosin
70 – 80% of the total protein
Thick filament
Burns the ATP for muscle contraction
Myosin head moves back and forth to perform a muscle contraction

Contractile Proteins

Actin

- 20% of the myofibrillar protein
- Thin Filament
- Globular protein (Gprotein)
- Arranged like a twisted pearl necklace (F-protein)
 Myosin head attaches to the Actin

Regulatory Proteins

- Regulate contraction and the speed of contraction
- Tropomyosin
- Troponin

Fig. 2. Schematic diagram of thick and thin filaments drawn approximately to scale. A, Actin; Tm, tropomyosin; Tn, troponin; LC, light chain (LC_2 is also called the 20 kDa LC, the P-light chain, regulatory LC, or DTNB LC; the alkali LCs are also called "essential" LCs). C-protein is drawn in two different configurations since its position in the thick filament is not known (see Solaro 1986)

Regulatory Proteins

Tropomyosin Thin protein that lays around the Actin proteins

Regulatory Proteins

 Troponin TnC Tnl TnT Z-line→ • 3 Subunits T 1 inter T 2 **TnT** cys 190 Binds troponi, Tropomyosin TnI Inhibitory subunit TnC Ca²⁺ binding subunit

3 Dimensional

How does all this fit together?

with surforming in both the situated at the junction between an A and an I band, where it is associated with two terminal cisternae of sarcoplasmic reticulum. Terminal cisternae connect with sarcotubules located around the A band, and these anastomose to form a network in the central region of the A band. The triple structure seen in cross section where terminal cisternae from adjacent sarcomeres flank a transverse tubule is called a triad. (Courtesy of C. P. Leblond)

More Structural Stuff

- Sarcolemma membrane around the myofibril; sits just under the endomysium
- Sarcoplasmic Reticulum
- T tubules or Transverse Tubules
- Terminal Cisternae

More Structural Stuff

Sarcoplasmic Reticulum
Surrounds each myofibril
Stores Calcium, needed for contraction
T – tubules and Terminal Cisternae transport Ca to cytosol & transmit nerve impulse

We've laid the ground work, let's talk about muscle contraction

"Sliding Rod Theory" Hanson and Huxley 1955; Huxley 1965, 1972; Huxley and Hanson, 1960

Muscle Contraction

- A signal travels down a nerve
 Attached to individual muscle cells
- The signal is passed on to the Sarcolemma
- The Sarcolemma depolarizes

Fig. 15-12. Photomicrograph showing the motor end plates on skeletal muscle fibers (stained with gold chloride).

Muscle Contraction

- The depolarization causes the SR to release Ca into the cytosol
- The Ca will bind with troponin (Tn)
- This causes a shift in the troponin tropomyosin (Tm) complex

The ATPase activity of Myosin ATP (Adenosine Triphosphate) bind to the Myosin head ATP hydrolysis to ADP + Pi "cocks" the Myosin head

The ATPase activity of Myosin

• The Myosin head attaches to the exposed binding site on Actin Weak bond • Pi leaves the Myosin head causing the "Power Stroke" ADP is released causing a strong Myosin – Actin bond

The ATPase activity of Myosin

 ATP re-attaches to the Myosin head causing the head to release from the Myosin – Actin binding site

Let's put it all together

- 1.) An impulse travels down a nerve to a muscle cell
- 2.) The nerve impulse is transferred to the Sarcolemma of a muscle cell
- 3.) The Sarcolemma depolarized causing the Sarcoplasmic Reticulum to release Ca into the cytosol of the cell

Let's put it all together

- 4.) The Ca binds to Troponin on the Troponin Tropomyosin complex
- 5.) The Tn Tm complex shifts to the grove of the Actin exposing the Actin – Myosin binding site
- 6.) ATP has bound with the Myosin head releasing it from the previous contraction

Let's put it all together

- 7.) Myosin hydrolyzes the ATP to ADP + Pi, "cocking" the Myosin head
- 8.) Myosin attaches to Actin forming a weak bond
 9.) Pi is released causing the "power stroke"
 10.) ADP is released forming a tight rigor bond of Actin and Myosin

http://www.tvermilye.com/pmwiki/pmwiki/imwiki/pmwik

What makes these guys so strong?

What makes those guys strong is the same that makes him strong!

Or, Who's Stronger??

See ya this afternoon