1. Greater knowledge allows us to alter environment, nutrition, milking procedures, or general management to maximize production

- 2. Understanding function aids in the control of some diseases
 - e.g. mastitis or cancer, or conditions such as edema

- 3. Mammary tissue is ideal for studying physiological functions of cells or organ systems
 - Growth occurs after animal reaches maturity
 - Under hormonal control
 - Can study function in tissue culture

- 4. Can study cell differentiation
 - i.e. to develop into specialized organs or develop differences in function by alteration or modification

5. Study protective mechanisms and disease process

- 6. Study process of synthesis and secretion
- Mammary gland has high metabolic activity and responds to hormonal and neural stimuli
 - Thus it is an ideal "model" system to study mechanisms of biochemical control

INTRODUCTION TO LACTATIONAL PHYSIOLOGY

- Class Mammalia Animals having hair and mammary glands
- <u>Mammal</u>
 - Comes from Latin *mamma*: breast milk or milk gland.
 - Present in male but usually rudimentary and nonfunctional
 - > 4200 species

INTRODUCTION TO PHYSIOLOGY OF LACTATION

- a. Importance of Milk
- b. Variation in composition and Yield
- c. Ontogeny and Phylogeny

INTRODUCTION TO PHYSIOLOGY OF LACTATION

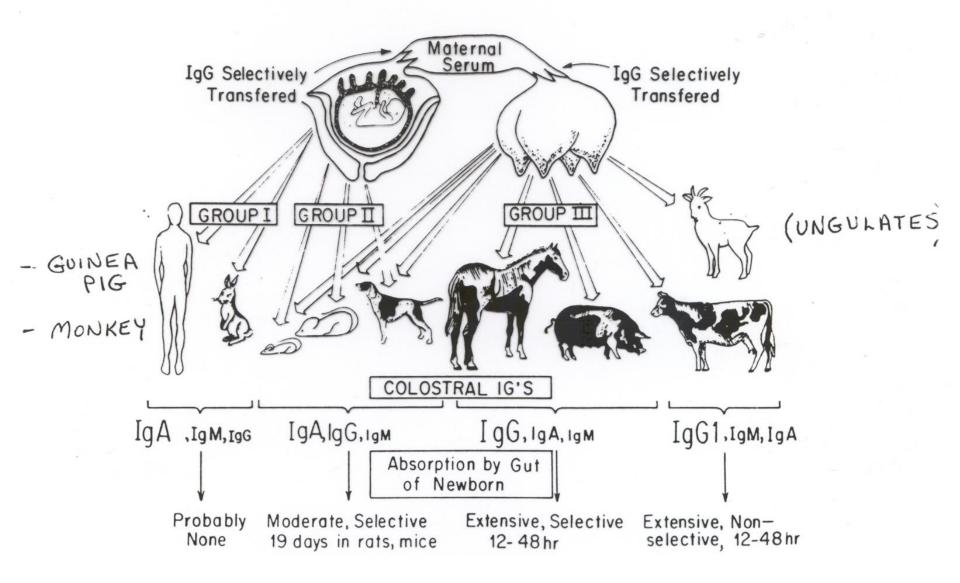
Importance of Milk (Chapter 1)

IMPORTANCE OF MILK

- 1. Provide nourishment for young
 - Milk is described as nature's most nearly perfect food
 - Rather high caloric value (70-75 kcal/100g), balance of nutrients, easily digested
 - Satisfies nutritional needs of the young during early critical period of development
 - Provides adequate growth until newborn can consume solid food

IMPORTANCE OF MILK

- 2. Provide protection for neonate against disease
 - Primarily in the form of immunoglobulins


•Especially important in <u>ungulates</u> (hoofed animals)

•Maternal Ig is the universal carrier of passive immunity in all species

Ig TYPES

Antibody Type	Found	Purpose
IgG	All body fluids Universal in passive transfer	Very important in fighting bacterial and viral infections
IgA	Nose, breathing passages, digestive tract, ears, eyes, vagina, saliva, tears, blood	Protect body surfaces that are exposed to outside foreign substances
IgM	Blood and lymph fluid	First type of antibody made in response to an infection; also cause other immune system cells to destroy foreign substances

TRANSFER OF Ig TO FETUS OR NEONATE

IMPORTANCE OF MILK

2. Con't

Groups of mammals by maternal IG transfer

- I. Transplacental transfer, no gut absorption - human, monkey, guinea pig, rabbit
 - In humans, colostral protection may be mainly in the gut lumen

II. Both transplacental transfer and gut absorption

- rat, mouse, dog

IMPORTANCE OF MILK

- 2. Con't.
- **Groups of mammals by maternal IG transfer**
- **III.** No transplacental, all gut absorption
- critical in ungulates
- cattle, goats, sheep, horses, pigs

**Likely that local protection by colostral Ig plays a role in all species

Concentration and relative percentage of immunoglobulins in the serum and mammary secretions of three representative species.

	Immuno-	% Total Immunoglobulins		
Species	Globulin	Serum	Colostrum	Milk
Human	IgG	78	2	3
	IgA	16	90	87
	IgM	6	8	10
Porcine	IgG	89	80	29
	IgA	7	14	70
	IgM	4	6	1
Bovine	IgG ₁	50	81	73
	IgG ₂	36	5	2.5
	IgA	2	7	18
	IgM	12	7	6.5

Source: Butler 1973

IMPORTANCE OF MILK

- 3. Provide human food dairy cow, goat, sheep, buffalo, etc.
 - Man has domesticated certain mammals, selected and bred them for milk production far in excess of that needed to nourish their young
 - This is the basis for dairy industry

WHAT ARE THE MAJOR COMPONENTS OF MILK?

WHAT ARE THE MAJOR COMPONENTS OF MILK?

WHAT ARE THE MAJOR COMPONENTS OF MILK?

CLASSES OF MILK COMPONENTS

- 1. Organ and species specific
 - e.g. caseins, α-lactalbumin, β -lactoglobulin
- 2. Organ specific, not species specific
 - e.g. lactose
- 3. Species specific, not organ specific

3. e.g. serum albumin and immunoglobulins

- 4. Neither organ nor species specific
 - 4. e.g. water, carotenoids, cholesterol, vitamins, salts

FACTORS AFFECTING MILK COMPOSITION AND YIELD

- 1. Species
 - * requirements of neonate [growth
 rate, maintenance req.
 (environment)]
 - * availability of other nutrients (H₂O)
- 2. Breed and individuals within breed
- 3. Stage of lactation

COMPOSITIONAL VARIATION OF MILK FROM VARIOUS SPECIES

SPECIES	TOTAL	FAT	PROTEIN	LACTOSE	ASH	WATER
	SOLIDS					
Cow	12.6	3.7	3.4	4.8	0.7	87.4
Human	12.6	4.5	1.1	6.8	0.2	87.4
Zebra &	8.1					91.9
rhino						
Gray seal	67.7	53.3				32.3
Polar bear		31.0				
Whale		34.8				
Zebra		0.8	1.1	5.8	0.4	
Human &						
Chimp			1.0-1.1			
Jackrabbit			23.7	1.7	1.5	
Mouse						
(Minnie)			13-14.0			

Milk Composition and Growth Rates of Selected Mammals

	Time, in days, for the newborn to					
Mammal	Protein	Lactose	Fat	Ash	Solids	double its weight
Woman	1.6	7.0	3.7	0.2	12.5	180
Mare	2.2	5.9	1.3	0.4	9.8	60
Cow	3.3	5.0	4.0	0.7	13.0	47
Goat	3.7	4.2	4.1	0.8	12.8	19
Sow	4.9	5.3	5.3	0.9	16.4	18
Dog	7.1	3.7	8.3	1.3	20.4	8

Source: J. R. Campbell and J. F. Lasley, *The Science of Animals That Serve Mankind*, McGraw-Hill, New York, 1969, pp. 38, 288.

Composition of Milk From Different Species

Species	Fat %	Protein %	Lactose %	Ash %	Total Solids %
Antelope	13.0	6.9	4.0	1.30	25.2
Ass (donkey)	1.2	1.7	6.9	0.45	10.2
Bear, polar	31.0	10.2	0.5	1.2	42.9
Bison	1.7	4.8	5.7	0.96	13.2
Buffalo, Philippine	10.4	5.9	4.3	0.8	21.5
Camel	4.9	3.7	5.1	0.7	14.4
Cat	10.9	11.1	3.4		

Composition of Milk From Different Species (con't)

Species	Fat %	Protein %	Lactose %	Ash %	Total Solids %
Deer	19.7	10.4	2.6	1.4	34.1
Dog	8.3	9.5	3.7	1.20	20.7
Dolphin	14.1	10.4	5.9		
Elephant	15.1	4.9	3.4	0.76	26.9
Goat	3.5	3.1	4.6	0.79	12.0
Guinea Pig	3.9	8.1	3.0	0.82	15.8
Horse	1.6	2.7	6.1	0.51	11.0

Composition of Milk From Different Species (con't)

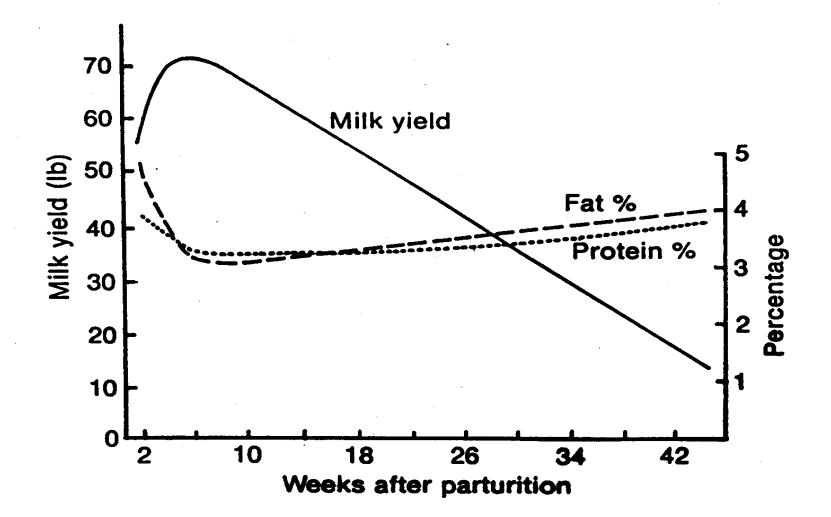
Species	Fat %	Protein %	Lactose %	Ash %	Total Solids %
Human	4.5	1.1	6.8	0.20	12.5
Kangaroo	2.1	6.2	Trace	1.20	9.5
Mink	8.0	7.0	6.9	0.7	22.6
Monkey	3.9	2.1	5.9	2.60	14.5
Opossum	6.1	9.2	3.2	1.60	24.5
Pig	8.2	5.8	4.8	0.63	19.9
Rabbit	12.2	10.4	1.8	2.0	26.4

Composition of Milk From Different Species (con't)

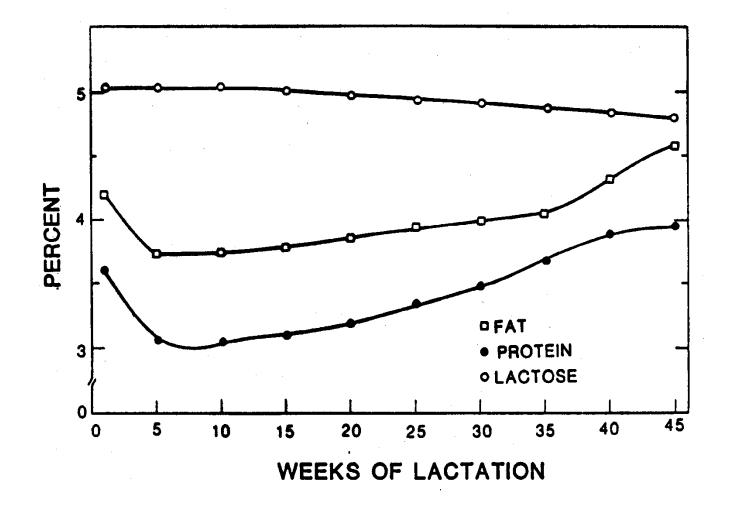
Species	Fat %	Protein %	Lactose %	Ash %	Total Solids %
Rat	14.8	11.3	2.9	1.5	31.7
Reindeer	22.5	10.3	2.5	1.40	36.7
Seal, grey	53.2	11.2	2.6	0.70	67.7
Sheep	5.3	5.5	4.6	1.90	16.3
Whale	34.8	13.6	1.8	1.60	51.2

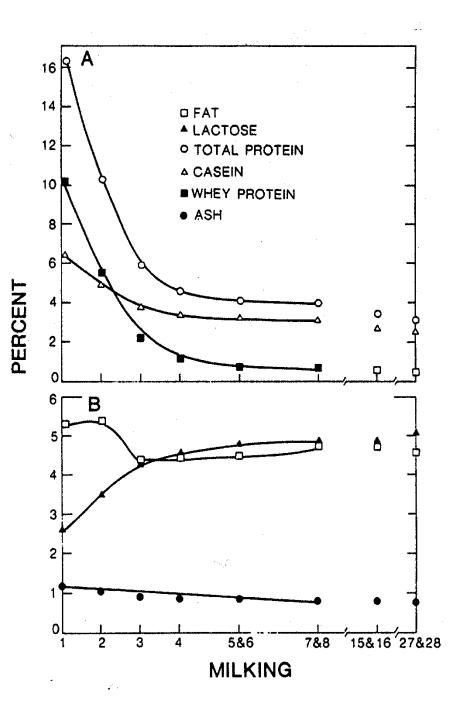
FACTORS AFFECTING MILK COMPOSITION AND YIELD

- 1. Species
- 2. Breed and individuals within breed
- 3. Stage of lactation


Composition of Milk From Different Breeds

Species	Fat %	Protein %	Lactose %	Ash %	Total Solids %
Cow					
Ayrshire	4.1	3.6	4.7	0.7	13.1
Brown Swiss	4.0	3.6	5.0	0.7	13.3
Guernsey	5.0	3.8	4.9	0.7	14.4
Holstein	3.5	3.1	4.9	0.7	12.2
Jersey	5.5	3.9	4.9	0.7	15.0
Zebu	4.9	3.9	5.1	0.8	14.7

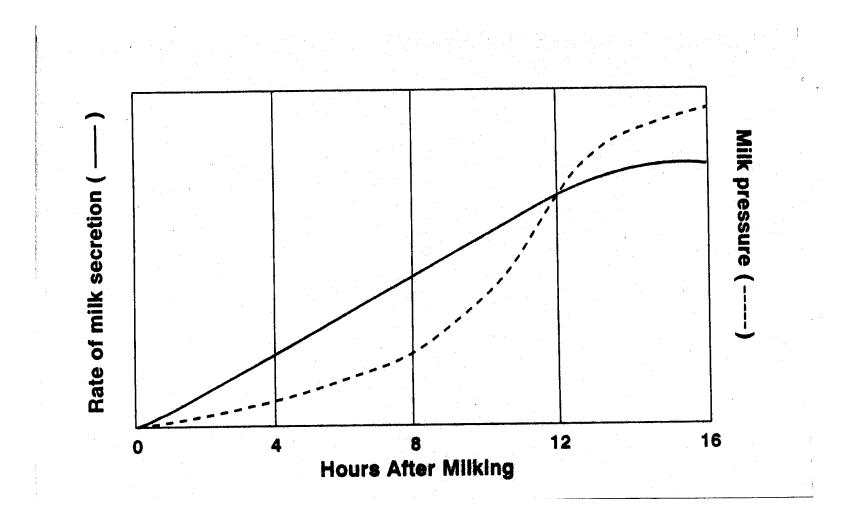

FACTORS AFFECTING MILK COMPOSITION AND YIELD


- 1. Species
- 2. Breed and individuals within breed
- 3. Stage of lactation

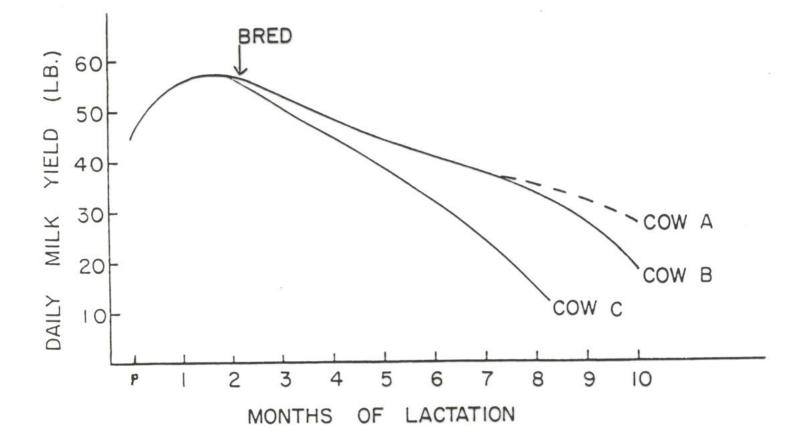
Lactation Curves of Milk Yield and Milk Fat & Protein Percentages of Holstein Cows

STAGE OF LACTATION EFFECTS ON MILK COMPOSITION

STAGE OF LACTATION EFFECTS ON COMPOSITION


**

EARLY LACTATION


FACTORS AFFECTING MILK COMPOSITION AND YIELD

- 4. Milk removal
 - * frequency & persistency
 - * interval
 - * milk fraction
- 5. Nutrition
- 6. Udder health mastitis
- 7. Environmental

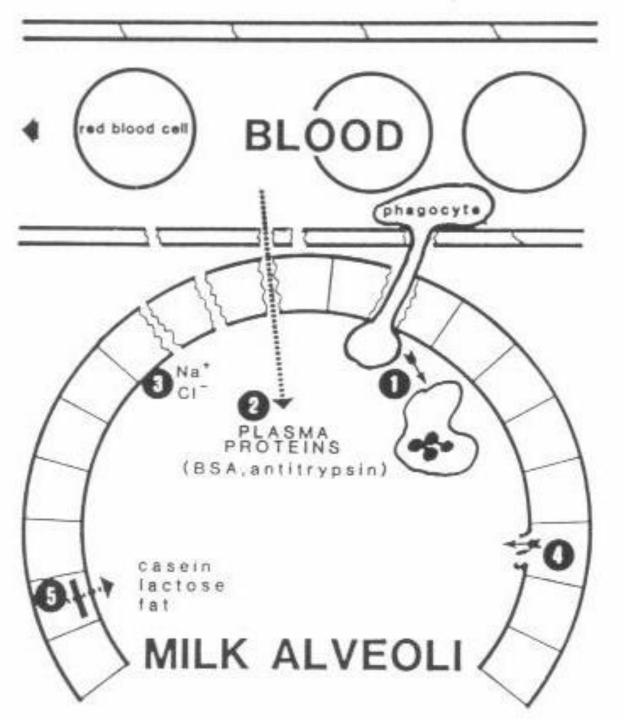
Relationship Between Rate of Milk Secretion and Milk Pressure Within the Udder

Diagram of the lactation curve of a dairy cow

Effect of Persistency on Lactation Production

	-	persistency Production	-	persistency Production	-	persistency Produciton
Month	Daily	Monthly	Dialy	Monthly	Daily	Monthly
1	60.0	1,800	60.0	1,800	60.0	1,800
2	70.0	2,100	70.0	2,100	70.0	2,100
3	63.0	1,890	59.5	1,785	56.0	1,680
4	56.7	1,701	50.6	1,518	44.8	1,344
5	51.0	1,530	43.0	1,290	35.8	1,074
6	45.9	1,377	36.5	1,095	28.6	858
7	41.3	1,239	31.0	930	22.9	687
8	37.2	1,116	26.4	792	18.3	549
9	33.5	1,005	22.4	672	14.6	438
10	30.1	<u>903</u>	19.0	<u>570</u>	11.7	<u>351</u>
10-mo	nth total	14,661		12,552		10,881
		14	.4% Less M	lilk 1	3.3% Less N	Ailk

Composition Varies With Fraction


Fraction	Fat	<u>SCC</u>
Foremilk	low (2.0%)	true (150,000)
Composite or bucket	true (3.5%)	true (150,000)
Strippings or residual	hi (7-9%)	hi (450,000)
UI ICSIQUAI	111 (7-970)	(3-5X higher)

FACTORS AFFECTING MILK COMPOSITION AND YIELD

- 4. Milk removal
- 5. Nutrition
- 6. Udder health mastitis
- 7. Environmental

FACTORS AFFECTING MILK COMPOSITION AND YIELD

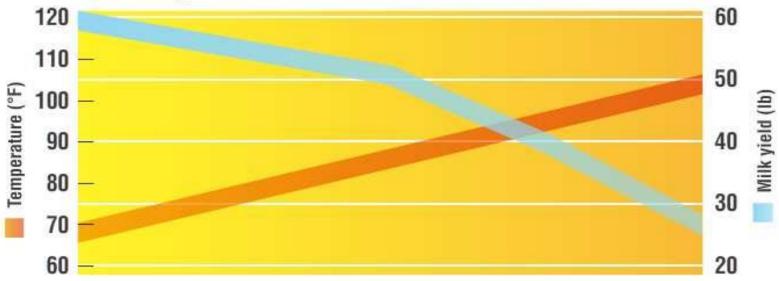
- 4. Milk removal
- 5. Nutrition
- 6. Udder health mastitis
- 7. Environmental

Chemotactic agents: *attract* PMN into tissues & milk!

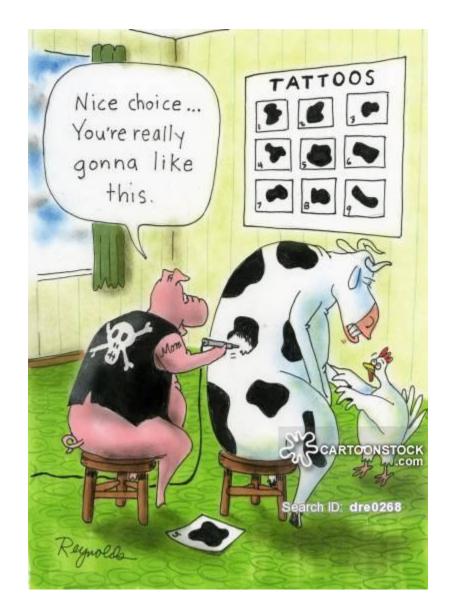
Altered Composition During Mastitis

Somatic cell counts (SCC)

Na, Cl, whey protein (e.g., serum albumin, Ig)


lactose, casein, K, α-lactalbumin

FACTORS AFFECTING MILK COMPOSITION AND YIELD


- 4. Milk removal
 - * frequency & persistency
 - * interval
 - * milk fraction
- 5. Nutrition
- 6. Udder health mastitis

7. Environmental

When heat and humidity rise, milk production falls

ANY QUESTIONS?

