Summer Squash

Introduction
Summer squashes (Curcurbita pepo) are warm-season cucurbits that are harvested when the fruits are immature. The most common summer squash types include yellow (crookneck and straightneck) and zucchini. Also included in the summer squash group are scallop squashes and cocozelle. Summer squashes grow on plants with a bush growth habit, rather than vining.

Marketing and Market Outlook
Fresh market options for Kentucky-grown summer squash include wholesale markets, farmers markets, community supported agriculture (CSA) subscriptions, and roadside stands. Squash is also a mainstay at Kentucky’s produce auctions. Sales to local retail markets, such as supermarkets, are also an option. Wholesale production is also possible, more profitable when producers are able to use season extension techniques to capture early or late markets. Although not as profitable as other summer produce, summer squash is an essential crop in a farmers market or roadside stand fresh vegetable mix. Some producers have discovered profitable niche markets selling edible squash blossoms to restaurants. Summer squash can also be utilized in value-added products such as breads and relishes. To see homebased processing and microprocessing information for Kentucky, go to http://www2.ca.uky.edu/agcomm/micro/.

Production considerations
Cultivar selection
Summer squash cultivars differ in fruit characteristics (shape and color), growth habit (open or compact bush), earliness, and disease resistance. Crookneck squash typically have yellow skin with a crook or bend at the stem end, while straightneck are yellow squash that taper to the stem end but lack the crook. Zucchini squash usually are long and cylindrical, though there are some that tend more toward round, with skin that can be various shades of dark green. The cocozelle squash, often referred to as Italian zucchini, are green with lighter stripes. Scallop squash types, such as Patty Pan, are circular and flattened with scalloped edges; the skin may be green, white, or yellow. Because of this diversity among summer squashes, it is important to select those varieties with the qualities in demand by the intended market. In addition, growers should select well-adapted cultivars with disease resistance whenever possible.

Site selection and planting
Summer squash produces best in well-drained soils. This crop is usually grown for an early summer market (harvested in mid- to late-
June) or for an early fall market (harvested when prices begin to rise in September).

Squash is a warm-season crop that should not be seeded until all danger of frost has passed. Black plastic on raised beds with trickle irrigation will speed soil warming and can dramatically increase early and total summer squash yields. Seed or transplants can be planted directly through the plastic either by hand, with a waterwheel setter, or with machinery designed for direct seeding through plastic. White-on-black plastic mulch can be used for July plantings if squash is grown for fall markets. Growers producing squash for the late summer/early fall market usually encounter serious virus disease problems and should plant either a variety with the precocious yellow trait that masks virus symptoms or one with virus resistance.

If bees are not abundant in the field at flowering time, hives should be placed next to the field, with at least one hive per acre.

Pest management
Potential disease problems include Choanephora fruit rot, scab, and Phytophthora blight. Viruses, downy mildew, and powdery mildew mainly cause losses in late summer and fall plantings. Diseases are managed with sequential planting, crop rotation, resistant varieties, sanitation, and fungicides. Cucumber beetles (striped and spotted), squash vine borer, spider mites, and squash bugs can become serious pests if not controlled. Scouting to monitor populations can help the grower determine when and how often insecticides should be applied. Special precautions should be taken with insecticide treatments during bloom to avoid damaging bee populations. Weed management options include herbicides, shallow cultivation, and/or the use of plastic mulch. Avoid planting in sites with a serious noxious perennial weed problem.

Harvest and storage
Harvest summer squash at the proper size for your market and before the skin becomes tough and hard. The skin should still have a glossy appearance. Fruit will be ready for harvest two to five days after flowers have fully opened. Squash should be cut from the plant leaving a portion of the stem attached to the fruit. Fruit must be handled very gently to avoid scarring. Harvests may be required every other day or even daily.

This crop is normally sold on the fresh, wholesale market in ½-bushel waxed cardboard cartons or 1½-bushel carton or wire bound crates. Squash in each crate or carton should be uniform in size to meet the produce buyer’s count and weight requirements. Whenever possible, summer squash should be marketed quickly and not stored.

Labor requirements
Labor needs per acre for summer squash grown on black plastic mulch with drip irrigation are approximately 25 hours for production, 130 hours for harvest, and 100 hours for packing/grading. An additional minimum of 10 hours per acre is needed for plastic removal following harvest. Currently there are no options for recycling black plastic so it will need to be disposed of; a plastic roller that reals up the plastic and drip tape will speed the process and reduce the volume of material that needs disposal.

Economic considerations
Initial investments include land preparation and the purchase of seed or transplants. Additional start-up costs can include the installation of an irrigation system and plastic mulch.

Production costs for plasticulture yellow crookneck summer squash are estimated at $1,590 per acre, with harvest and marketing costs at $4,250 per acre. Total expenses per acre, including both variable and fixed costs, can exceed $6,000 per acre.

Since returns vary depending on actual yields and market prices, the following per acre returns to land and management estimates are based on three different scenarios. Conservative estimates
represent the University of Kentucky’s statewide average cost and return estimates for 2014.

<table>
<thead>
<tr>
<th>Pessimistic</th>
<th>Conservative</th>
<th>Optimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(985)*</td>
<td>$(150)</td>
<td>$575</td>
</tr>
</tbody>
</table>

* Parentheses indicate a negative number, i.e. a net loss

Selected Resources
- Vegetable and Melon Budgets (University of Kentucky, 2013) http://www.uky.edu/Ag/CCD/vegbudgets13.html
- Vegetable Production Guide for Commercial Growers ID-36 (University of Kentucky) http://www.ca.uky.edu/agc/pubs/id/id36/id36.htm
- Commercial Production and Management of Squash and Cucumbers, Bulletin 1178 (University of Georgia, 2009) http://www.caes.uga.edu/Publications/displayHTML.cfm?pk_id=6277
- Summer Squash for Fresh Market budget (North Carolina State University, 2002) http://legacy.ncsu.edu/classes/are201005/budgets/pdf02/sqsh961a.pdf

Reviewed by Brent Rowell, Extension Specialist (Issued 2002, Revised 2006)
Reviewed by Shawn Wright, Extension Specialist (Revised 2010, Revised 2014)
Photo by Steve Patton, UK Ag Communications Services

For additional information, contact your local County Extension agent
Educational programs of the Kentucky Cooperative Extension Service serve all people regardless of race, color, age, sex, religion, disability, or national origin.
The Center for Crop Diversification is supported by a grant from the Kentucky Agricultural Development Fund