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Summary:  
 From 2002 to 2012, Kentucky winter wheat ranged in value from $52 million to $209 

million.  

 Climate change and variability have the potential to significantly impact this important 
economic enterprise within our state. 

 This report summarizes the current state of knowledge of the potential of climate 
change to impact wheat production in Kentucky and surrounding states.   
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Soft red winter wheat is one of the major row crops in Kentucky, along with corn and soybean.  

Together these crops are valued at about $1.4 billion, or 35% of all agricultural receipts in the 

Commonwealth.  In Kentucky, from 2002 to 2012, winter wheat ranged in value from $52 million to $209 

million.  Revenue differences largely reflect fluctuations in wheat yield, both within the state and around 

the country.  Wheat yields in Kentucky over this same period ranged from state averages of 48 to 71 

bushels per acre.  Wheat acres harvested in Kentucky in any given year fluctuated by 30% above and 

below the average acreage planted for that decade. In addition, over that decade, about 29% of the acres 

planted to wheat were not harvested for grain, with a range from 19 to 43%. In a normal year, about 10% 

of the crop is harvested for silage, which means a range from 9 to 33% was abandoned annually because of 

economically significant damage to the crop.  

Climate change and variability have the potential to significantly impact this important economic 

enterprise within our state.  Perhaps no year in recent history has seen as dramatic a negative impact of 

weather on annual crop yields as 2012.  Kentucky experienced above normal temperatures during late 

winter and early spring that advanced wheat growth beyond normal levels.  The warm weather was 

followed by a late spring freeze that severely damaged wheat yields.  Following the late freeze, above 

normal spring temperatures encouraged farmers to plant corn early and most of the crop had an excellent 

start to the season.  However, spring was followed by some of the hottest and driest weather in 50 to 70 

years, depending on the location in Kentucky, and corn yields were devastated.  Conversely, 2013 was 

relatively wet and cooler for most of the wheat, corn and soybean growing season, resulting in excellent 

yields of all three crops.  

As scientists attempt to predict when and how climate will change in this region of the country, 

producers need to be aware of the ways in which those changes could impact crop production in Kentucky.  

Of the annual crops grown in the Commonwealth, wheat may be the most sensitive to changes in weather.  

Late spring frosts can dramatically reduce yields (resulting in up to 33% of the acres being abandoned), 

while warm and wet weather during seed fill can encourage disease development that diminishes yield and 

elevates toxin levels in the grain, in the case of Fusarium head blight.  

This report summarizes the current state of knowledge of the potential of climate change to impact 

wheat production in Kentucky and surrounding states.  Agricultural stakeholders within the state initiated 

this report by communicating their interest in understanding and planning for likely future changes in 

climate to faculty and administrators within the University of Kentucky College of Agriculture.  A 

subsequent grant from the Kentucky Small Grain Growers Association, matched by the College of 

Agriculture’s Research Office, supported the creation of this report, as well as a spring 2012 Symposium 



 3

on the topic.  Efforts continue throughout the state to harness real-time weather data collection efforts (e.g., 

the Kentucky Mesonet) with agricultural decision support tools to enable farmers in the region to make 

sustainable, well-informed production decisions.  Accurate weather data combined with historical trends 

will give a better understanding of how the regional climate will affect wheat crop yields throughout 

Kentucky.  

Background on Climate Change Research 

 

 

  

 

 

  

 

 

 

 Our knowledge of climate change and its potential impacts has grown in recent decades due to 

voluminous research, however there is much yet to learn.  Recent reports have focused on a variety of 

issues that pose potential threats to crop yields and economic returns including: changes in temperature 

and precipitation within and among growing seasons, atmospheric gas concentrations and severe weather 

events (Hatfield et al., 2011, Hatfield 2012, IPCC 2007).  Projections of climate effects on future crop 

productivity are based largely on the use of models.  A climate model is a series of equations describing 

the energy exchanges among components of the climate system.  Temperature and precipitation 

projections are numerical results of a climate model.  Results come from projections of atmospheric 

concentrations of greenhouse gases and social conditions based on populations, land use, and economic 

development for a particular timeframe.  For example, urbanization and increasing populations result in 

increased fossil fuel consumption, while globalization and industrialization result in intensification of 

agriculture and transportation.  These sectors contribute heavily to carbon emissions and resulting 

atmospheric changes.  Model projections are then downscaled to provide a more detailed spatial resolution 

from the global climate model results to increase relevance to regionally specific forecasts.    

 In 1988, the scientific community began an organized international effort to assess global climate 

change.  The Intergovernmental Panel on Climate Change (IPCC) was created by the United Nations 

Environment Program and the World Meteorological Organization, and it serves as the leading 

international body for the assessment of climate change.  The IPCC was established to produce 

Summary:  
 CO2 in Earth’s atmosphere has increased from about 280 to 390 µmol CO2 per mol of atmosphere 

(0.039% CO2) since 1800. 

 Global temperatures are expected to warm 3 to 7°F over the next century. 

 Annual global precipitation is expected to increase by 5-25% as a result of a warmer atmosphere 
due to increases in atmospheric greenhouse gas concentrations. 
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assessments of the Earth’s climate system and uses global climate models and emission scenarios to 

project future climate patterns providing a scientific view on the current state of knowledge in climate 

change and its potential environmental and socio-economic impacts.  A recent report from IPCC states 

that, “warming of the climate system is unequivocal, as is now evident from observations of increases in 

global average air and ocean temperatures, widespread melting of snow and ice and rising global sea level” 

(IPCC 2007). 

 Atmospheric Concentrations of Greenhouse Gases  

Since 1800 the concentration of CO2 in Earth’s atmosphere has increased from about 280 to 390 

µmol CO2 per mol of atmosphere (0.039% CO2) (Bloom et al., 2010).  Future projections indicate the CO2 

concentrations for North America will likely reach 550 µmol by 2050 and possibly 700 µmol by 2100.  In 

addition, levels of nitrous oxide (N2O) and methane (CH4) have reached levels beyond the values observed 

in the history of cultivated agriculture (Hatfield, 2012).  According to the United States Global Change 

Research Program, the agricultural sector in the United States represents 8.6% of the nation’s total 

greenhouse gas emissions, including 80% of the nitrous oxide emissions and 31% of the methane 

emissions.  Globally, 13.5% of all human-induced greenhouse gas emissions are contributed from 

agriculture (Karl et al., 2009). 

Temperature 
 The IPCC SRES projections estimate that global temperatures are expected to warm 3 to 7° F over 

the next century.  From the 1970’s to present day, all decades have been warmer than the average of the 

previous 100 years.  The average global surface air temperature has increased by 1.08° F (±0.36°F) with the 

warmest five years on record in the previous 100 years occurring in the last decade (IPCC, 2007).  The 

occurrence and duration of extreme heat events is likely to increase throughout the United States if 

greenhouse gas concentrations continue to rise.   

 The IPCC  projects temperatures in the major grain growing regions of North America will 

increase  5 to 7 °F by 2100 (Olmstead and Rhode, 2011).  Future temperatures in the Southeast United 

States have been projected using two regional climate models.  Temperatures are projected to increase 

from 5 to 9°F in the CSIRO1 model with higher temperatures dominating in winter and spring months.  The 

RegCM2 model predicts average temperature increases in the Southeast United States ranging from 1.8-

12.6°F across all seasons with largest increases in summer months but the model output is more variable 

both temporally and spatially than the CSIRO model (Mearns et al., 2003).   
1CSIRO model is a climate model developed by the Center for Australian Weather and Climate Research.  2RegCM is a 
Regional Climate Model developed by the International Center for Theoretical Physics. 
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Precipitation 

 Total annual precipitation and extreme precipitation events are likely to increase across much of the 

United States with increasing greenhouse gas concentrations.  IPCC projects an increase in annual global 

precipitation of 5 to 25% which is directly related to an increase in atmospheric water vapor due to higher 

evapotranspiration as the earth warms.  Winter temperatures are expected to increase disproportionately 

causing the hydrological cycle to further intensify.  Winter precipitation is projected to be more rain than 

snowfall with decreased snowpack and spring runoff in mid to high latitudes.   

Quantity and timing of rainfall will be a primary concern for crop production in the United States.  

Distribution of precipitation across the year is expected to shift, leading to wetter winters and dryer 

summers.  The imbalance between less rainfall and higher evapotranspiration rates during the summer 

months,  may lead to more soil drying at critical stages of crop production (Cherkauer, 2008).  According 

to Mearns et al. (2003), the climate change scenario for agriculture in the Southeast U.S. predicts the 

largest decreases in summer precipitation (20% in the CSIRO and 30% in the RegCM models) and largest 

increases in spring precipitation in both models (35% in the CSIRO and 25% in the RegCM).  

Although total rainfall is expected to increase in many regions, droughts are also projected to 

become more severe because rainfall events are expected to be more intense, with longer dry spells 

between them.  The US Environmental Protection Agency (2010) reports an increase in one day extreme 

precipitation events in the lower 48 states between 1990 and 2008.  As these one-day events increase it is 

projected that drought will become more prevalent in the United States.  Conversely, wetter winters, a 

product of increased temperatures and rainfall, may result in increased winter flooding.   

 

Background on Kentucky’s Climate 

 

 

 

 

 

 

 

 The climate in Kentucky is highly variable and influenced by multiple drivers including the 

continental location with mid-level latitude (Foster, 2012).  The annual range in temperature for the state 

can be as large as 95°F and is driven by warm (subtropical) and cold (polar) alternating air masses.  The 

precipitation in Kentucky is generally considered evenly distributed with an annual range of 40-50 inches.  

While annual rainfall is typically adequate for agricultural production, mild to moderate droughts are not 

Summary:  
 Kentucky climate is defined by inter-annual variability with temperatures warming 

since the 1970’s and annual precipitation displaying increasing trends.   

 Kentucky has four climate divisions: West, Central, Bluegrass, and East. 

 Winter temperature is more variable than other seasons from year-to-year. 
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uncommon.  On the other hand, periods of excess rainfall and flooding are most frequent during late winter 

and early spring.  Due to its location in the Ohio River Valley, Kentucky is in a regular path for tropical 

storm systems that come inland and can cause major extremes in rainfall patterns.  The humid climate in 

Kentucky is primarily a result of southerly winds bringing water vapor from the Gulf of Mexico with local 

variations caused by the abundant surface water throughout the state (Hill, 2005).  

 Kentucky is divided into the following four climate divisions: West, Central, Bluegrass, and East.   

 
Figure 1. Kentucky climate divisions.  

 
 
Source: Kentucky Climate Center, Western Kentucky University. 
 

 

 Data from the West, Central, and Bluegrass climate divisions reflect the climate in the major grain 

growing regions of the state.  The length of the growing season varies throughout the state and usually 

ranges from 200 days in the West division to 180 days in the Central division to 170 days in the Bluegrass 

division.  Table 1 shows Kentucky’s climate has been warming since the 1970’s with the annual 

temperature in the West, Central and Bluegrass divisions exceeding that of the prior warmest period of the 

1930-40’s (Foster, 2012).  Average annual precipitation has also increased since 1970, with current levels 

near the highest on record since 1895 (Foster, 2012).   

 

Table 1. Kentucky Climate Division Average Annual Temperature and Precipitation, 1970-2010. 

  Average Annual Temperature (°F ) 
Climate 
Division 1970 1980 1990 2000 2010 

West 56.7 57 57.3 57.5 58.2 

Central 55.6 55.8 56.2 56.6 56.8 

Bluegrass 54.1 54.3 54.8 55.2 55.5 

  Average Annual Precipitation (in.) 
Climate 
Division 1970 1980 1990 2000 2010 

West 48.99 50.14 48.77 49.51 50.98 

Central 50.18 51.16 49.36 50.54 52.51 

Bluegrass 45.42 45.63 45.22 46.54 47.15 

 
Source: S. Foster (2012). 
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 The following figures focus on the West Climate Division showing the historical averages by 

seasons (note the temperature range on the axis changes for each season) for data collected from 1890-

present.  This data is collected daily, from approximately 30-40 locations by volunteer observers and 

averaged on a monthly scale.  As a result of the number of locations and collection techniques, important 

patterns of climate change that evolve gradually may be difficult to detect.   A smoothing curve is added 

based on a locally weighted regression curve that follows data for a 30-year margin and centers the data 

around the average. 

Winter- 

 

Figure 2. Historical averages for winter months (December, January, February) in West Kentucky climate 
division. 

 
Source: Kentucky Climate Center, Western Kentucky University. 

 

 

 

 Year to year variability is displayed in every season but is more discernible in the winter months.  

The range between the coldest and warmest winters was about 16 F which is wider than the range for any 

other season (Figures 2, 3, 4, and 5). Wide variations of temperature can occur throughout the winter 

months with January usually having the coldest temperatures annually.  Snowfall is generally limited 

accounting for less than 5% of total moisture annually. Skies are more frequently cloudy in the winter 

months with only 40% of available sunshine reaching the surface (Foster 2012).  
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Spring- 

Figure 3. Historical averages for spring (March, April, May) in West Kentucky climate division. 

 
Source: Kentucky Climate Center, Western Kentucky University. 

 

Less year to year temperature variability is observed in the spring months than in other seasons 

(Figure 3).  In recent years  fewer cold spring seasons have been observed and  the date of the last freeze in 

spring has been occurring earlier than the historical median for each climate division.  The last freeze 

varies from year to year around the median which ranges from April 5 in the West division to May 1 in the 

East division of the state (Hill 2005).   

Summer- 

Figure 4. Historical averages for summer months (June, July, August) in West Kentucky climate division. 

 
Source: Kentucky Climate Center, Western Kentucky University. 
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Summer months also display considerable year to year variability with warm and humid conditions 

and 60% available sunshine hours prevailing in most areas of the state.  Average daily high temperature 

ranges from 86 °F in the East division to 90 °F in the West division.  High temperatures exceed 90 °F for an 

average 40+ days in the West division and 20+ days in the Central and East divisions.   

Fall- 
Figure 5. Historical averages for fall months (September, October, November) in West Kentucky climate 
division. 
 

 
Source: Kentucky Climate Center, Western Kentucky University. 
 

Fall is typically Kentucky’s driest season and can have diurnal temperature ranges of 25°F with 

warm days and cool nights.  The average date of the first fall freeze varies across the state with median 

dates of October 12 in the East division and October 30 in the West division. 

 

Future Projections: 

Simulation projections in the National Climate Assessment (NCA) for the Southeast (2010) project 

that  Kentucky will experince greater increases in temperatures during all four seasons than what has been 

observed in previous years (Foster, 2012, Kunkel et al., 2013).  The coolest summers will be warmer than 

the hottest summers of the past.  The coldest winters will be about the same as the warmest winters in the 

past.  This suggests that we need to focus our decision making in the future on these projections rather than 

historical trends.  The NCA projections are based on “high” and “low” emission scenarios.  Under the 

“high” scenario economic development is the primary consideration, while  sustainability is the primary 

consideration under the “low” scenario (IPCC, 2007).  For 2035, tempertaure increase values range from 

about 1.5 to 3.5°F for both emission scenarios. For 2055, warming in low emission scenarios ranges from 

1.5-4.5°F while high emission scenarios range from 3.5 to 5.5°F. (Kunkel et al., 2013) 

The following figures are meant to provide a visual representation of the nature of our climate 

based on future projections of warming and current patterns of inter-annual variability.  These projections 
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are descriptive and based on mid-range historical temperatures provided in the National Climate 

Assessment (Foster, personal communication, December 2013). 

 

Figure 6. Summer temperature simulations for Kentucky based on historical averages until 2100. 

 
Source: Kentucky Climate Center, Western Kentucky University 

 

Figure 7. Winter temperature simulations for Kentucky based on historical averages until 2100 

 
Source: Kentucky Climate Center, Western Kentucky University 
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Kentucky Wheat Profile 

 

 

 

 

 

Wheat (Triticum aestivum) accounts for 21% of the world’s food supply and is grown on 200 

million hectares (494 million acres) of farmland globally.  By 2020, the demand for wheat is expected to 

increase by 1.6% per year meaning the average yield will need to increase in the next 25 years from 39 

bu/acre to 52.5 bu/acre (Ortiz et al., 2008).  Kentucky is ranked 19th in wheat production in the United 

States with 1.5% of the total US production the average acres planted in Kentucky from 2000-2009 was 

513,000 with 356,000 acres harvested for a total value of $69,011,400 (USDA 2010).  Wheat yields in the 

state have increased dramatically since 1940 (Figure 8) even with the acres planted decreasing since 1981 

(ID-125 2009).  In Kentucky, wheat is primarily produced for grain as part of a corn-wheat-double crop 

soybean rotation with more than 50% of wheat produced currently in a no-tillage management system. 

 
Figure 8. Kentucky average wheat grain yields (bu/ac), 1940-2008. 
 

 
Source: ID-125. Comprehensive Guide to Wheat Management in Kentucky, Kentucky Agricultural Statistics 

Climate Effects on Wheat Development and Grain Quality- 

 

 

 

 

 

 

 

 

Summary:  
 Kentucky is ranked 19th in the United States for wheat production with 1.5% of total US 

production and a value of $69,011,400. 

 By 2020, the global demand for wheat is expected to increase by 1.6% per year. 

Summary:  
 Increases in winter and spring temperatures up to 3.5 °F will accelerate early 

development of tillers and increase straw yield. 

 High temperatures greater than 86°F can cause stress and reduce grain set or grain fill.  

 C3 plants, like wheat, will experience increased rates of photosynthesis and growth by 
as much as 35% from increased CO2 levels 

 Exposure to elevated levels of CO2 will cause nutritional and processing quality of 
flour to be reduced. 
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Coupled with the challenge of increasing yields to meet global food demands is the need to produce 

crops in a sustainable manner while maintaining end use quality and value.  To understand the potential 

effects of climate change on grain production we must consider the effects of temperature, precipitation 

and atmospheric gas concentrations on plant growth and development.   

Temperature: 

Temperature and precipitation affect plant growth directly and can induce or alleviate stress, while 

alterations in atmospheric gases and temperature will effect assimilate supply and grain quality (Hatfield et 

al., 2011).  Increases in winter and spring temperatures can accelerate early development of tillers and is 

positively correlated with straw yield (Chmielewsky and Potts, 1995).  Simulation experiments using crop 

growth models have shown temperature increases up to a 3.5°F maximum will stimulate early development 

of tillers.  Increases greater than 3.5°F may result in premature senescence and less dry matter production 

(Miglietta and Porter, 1992).  However, warmer temperatures are also associated with lower grain weights 

due to the fact that the increased rate of growth is offset by reduced grain set or shorter grain fill period.   

  Temperatures greater than 86°F can cause stress and reduce grain set or grain fill for winter annual 

crops like wheat.  High temperatures (>86°F) before flowering can decrease seed number and after 

flowering can reduce duration of grain fill leading to yield loss in wheat.  Research has shown that low 

grain fertility was induced by exposure to temperatures above 86°F for as little as one day during critical 

periods between booting and flowering (Ferris et al., 1998).  Plants at mid-flowering are particularly 

sensitive to even brief exposures of high temperatures Ferris et al. (1998) observed that eight days with 

temperatures above 87°F at flowering was related to a 50% reduction in grain yields.  Production of pollen 

grains and transfer to stigma, as well as germination and fertilization of the zygote are all temperature-

sensitive events.  Male and female sterility can occur in wheat at high temperatures (>86-89°F) (Saini and 

Aspinall, 1982).   

 According to the US Global Change Research Program, nighttime temperatures have been rising 

more rapidly than daytime temperatures and are expected to continue to rise in the future (Karl et al., 

2009).  Increased nighttime temperatures are particularly critical for the reproductive phase of 

development due to increased respiration rate and the reduction in the amount of carbon uptake from 

photosynthesis during the day being retained in the grain. Increased nighttime temperatures resulted in 

decreased photosynthesis after 14 days of stress (nighttime temperatures above 57.2 °F) causing grain 

yields to decrease linearly.  Nighttime temperatures above 68 °F caused a decrease in spikelet fertility, 

grains per spike, and grain size (Hatfield et al., 2011).  
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Atmospheric Gas Concentration: 

C3 plants, like wheat, will experience increased rates of photosynthesis and growth by as much as 

35% from increased CO2 levels.  This enhanced photosynthesis is due to the decrease in rates of 

photorespiration.  According to Lobell (2007), each additional ppm of CO2 results in ~0.1% yield increase 

for C3 crops so a ~17% increase in wheat yields would be predicted if CO2 levels increase from the current 

380 ppm to 550 ppm as expected by 2050.  

 Spiertz and Schapendonk (2001) reviewed wheat experiments across multiple sites and years and 

reported an increase in average yield of 30% due to doubled CO2 levels (550 ppm) while simulation 

models predicted an average increase of 25-40%.  Higher CO2 is expected to increase the rate of 

photosynthesis, resulting in higher biomass yield coupled with increased water use efficiency due to 

stomatal regulation.     

 Wheeler et al. (1996) observed 15-55% increases in wheat yields under doubled CO2 

concentrations (550 ppm).  Rate of grain growth per ear was increased 21-24% in the doubled CO2 

concentration compared to the normal CO2.  However, a high frequency of undeveloped grains were found 

when temperatures were above 86 °F for 5 days at normal CO2 concentrations just before flowering 

compared to ambient conditions.   

 Exposure of wheat to elevated levels carbon dioxide and ozone can result in significant trade-offs 

between grain yield and grain quality (Pleijel and Uddling, 2012).  Research has demonstrated that grain 

protein concentrations are primary determinants for nutritional value, flour properties and dough quality 

(Erbs et al., 2010).  Under projected elevated CO2 concentrations increased nitrogen fertilization will be 

necessary to maintain grain quality due to evidence of CO2 - induced impairment of nitrate uptake (Kimball 

et al., 2001). This result occurs when the increase in biomass is larger than the increase in N acquisition.  

The lag in N acquisition is caused by a failure of the root system and shoots to keep pace with the 

necessary nutrient uptake required for the increased growth seen in higher CO2 gas concentrations (Pleijel 

and Uddling, 2012).   Under realistic agronomic conditions future grain quality is likely to decline with 

projected increases in CO2 and could be further exacerbated by decreased nitrogen supply.   

 Studies suggest that reductions in grain protein concentrations as a result of increased CO2 will 

have consequences for the wheat processing industry. Specifically nutritional and processing quality of 

flour will be reduced for cereals grown under elevated CO2 and lower nitrogen fertilizer.  Increases have 

also been reported in lipid concentrations at high levels of CO2 but appear to be negated by the associated 

increase in temperatures. (Williams et al., 1995)  Gluten quality has also been observed to vary depending 

on mean temperature during grain filling (Moldestad et al., 2011).  A reduced gluten quality was observed 
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when diurnal temperature was below 64 °F from heading to midway through the grain fill period.  Higher 

temperatures were positively related to gluten quality. 

 

Climate Effects on Wheat Management- 

 

 

 

 

 

 

 

 

 

 

Crop management practices will be important in adapting agriculture to climate variability. Shifts 

in planting date can have significant impacts on the growth and development of winter wheat crops due to 

the range of temperature at planting.  Early planted crops displayed larger shoot and root systems prior to 

January and were retained until flowering (Vincent and Gregory, 1989).  Soil moisture, nutrient supply, 

pest pressure and climate conditions all contribute to the rate of shoot growth and canopy development.  

Sowing crops earlier is one strategy to avoid periods of heat stress but in wheat it could increase risk of 

freeze damage from jointing to flowering.  However, with daily minimum temperatures increasing at rates 

greater than maximum temperatures this strategy may become more useful. 

 Spiertz and Schapendonk (2001) offer advice for future research to focus breeding on adaptation to 

milder temperatures during winter and spring with more temperature extremes during flowering and grain 

fill.  Selection for extended early development, particularly from spike initiation to flowering may aid in 

making use of increased supply of photosynthates under increased CO2 conditions by increasing the 

number of grains.  This strategy is further based on the notion that the nitrogen demand of a high yielding 

crop under a changed climate will only be partially covered from reallocation of vegetative growth supply.   

Temperature-tolerant varieties are thought to differ from temperature-sensitive varieties by 

maintaining higher rates of kernel growth (Wheeler et al, 1996).  The authors hypothesize that wheat 

cultivars developed for adaptation to the warmer conditions will not be limited at seed set.  Cultivars with 

adaptive traits will not experience shortened duration of ear development or duration of post-flowering 

crop growth.  With this adaptation, yields may increase under both higher temperatures and increased CO2 

Summary:  
 Sowing crops earlier is one strategy to avoid periods of heat stress but in wheat early-

sowing could cause an increased risk of frost at the flowering stage.   

 Predicted climactic changes would likely favor seed dispersal and provide a habitat 
suitable for new weed species in the state while possibly harboring insect and pathogens. 

 Breeding for earlier-maturing wheat or tolerance to elevated temperatures may become an 
appropriate strategy for adaptation to climactic changes. 

 There is a need for improvement in accuracy of seasonal forecasts and the increased 
knowledge of cultivar response to certain climatic conditions.   
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conditions.  However, with the increase in yield will come the need to adjust fertility management to 

maintain grain quality.  Other potential management tools that may be available to growers in the future 

include the pairing of certain cultivars with seasonal forecasts; this is contingent on the improvement in 

accuracy of seasonal forecasts and the increased knowledge of cultivar response to certain climatic 

conditions.  It is anticipated that the use of crop models and historical weather data in combination with 

genotypic data will lead to this increased knowledge (Asseng et al., 2012) 

 

Climate Change Effects on Pest Management- 

 

 

 

 

 

 

In Kentucky there is great variability in date of first frost, onset of continuous cold weather late in 

the fall, and the onset of warmer temperatures in the spring.  Warmer temperatures bring the concern of 

increased generations of insects, improved conditions for survival and transmission of diseases, and 

movement and competitive ability of weeds (Johnson, 2005).   

Primary Insects in Wheat:   

Due to the seasonal patterns in Kentucky and the fact that wheat is a winter crop, producers must 

contend with three groups of insect pests:  Fall pests, spring pests, and those that either overwinter or do 

not overwinter (Figure 9).  While insects in wheat rarely cause any significant economic damage in 

Kentucky, a change in weather patterns could cause the appropriate conditions for damage (Johnson, 

2005).   

 
Figure 9.  Small Grain Insect Scouting Calendar (Johnson and Townsend, 2009) 

Oct Nov Dec Jan Feb Mar Apr May Jun

Aphids a,b

Armyworm

Fall 
Armywormb

Cereal Leaf 
Beetle
Hessian Flyb

 
                       *Red indicates possible economic impact. 
                       a.Warm fall weather favors these species. 
                                  b. Planting before October 15 favors these species. 

 

Summary:  
 Changes in temperature will likely cause shifts in pest populations and severity. 

 Earlier springs and warmer winters are likely to allow proliferation and higher survival rates 
of disease causing pathogens.   
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Hessian Fly (Maylota destructor) - Currently control of this insect is achieved by planting after the “fly 

free” date.  If fall temperatures remain warmer longer, thus delaying the first frost, wheat planting may 

occur prior to the period of overwintering for this insect. 

Aphid Complex: English Grain Aphid (Sitobion avenae), Corn Leaf Aphid (Rhopalosiphum maidis), 

Rice Root Aphid (Rhopalosiphum rufiabdominalis), Bird Cherry Oat Aphid (Rhopalosiphum padi) - 

These insects are primarily vectors of Barley Yellow Dwarf Virus (BYDV) and do not typically cause 

direct damage.  For aphids to be active temperatures must be at or above 50°F; temperatures below 30°F 

increase aphid mortality. However, even at very low temperatures some aphids will survive.  A warm, dry 

winter will aid aphid survival and BYDV spread while a cold, wet winter will reduce aphid survival and 

movement. (Johnson and Townsend, 2009).  

Cereal Leaf Beetle (Oelema melanopus) - This beetle will occur from about mid-April until wheat 

maturity. The beetles over-winter as adults, and re-enter fields when warm-up occurs.  If spring 

temperatures trend upward earlier this insect may enter fields earlier than current temperatures allow.  

Damage early in the heading period, particularly to the upper leaves, is of more economic concern than 

later in the heading period. 

Fall Armyworm (Spodoptera frugiperda) – Fall armyworm does not overwinter, rather it migrates from 

the gulf coast in mid-summer infesting corn as the primary host and in early fall it can infest small grains.  

Damage is primarily on seedlings before roots are established.  Warmer fall weather could delay the first 

killing frost allowing fall armyworm a longer period of survival in Kentucky. 

True Armyworm (Pseudaletia unipuncta) – True armyworm is a spring pest for wheat in Kentucky as the 

adult moths begin flights and lay eggs in late April and May.  Damage is primarily on leaves and immature 

heads.  If spring temperatures increase earlier particularly in areas to the south this insect may appear 

earlier than current temperatures and could become a greater economic concern due to leaf feeding 

reducing yields. 

Primary Diseases in Wheat: 

Earlier springs and warmer winters are likely to allow proliferation and higher survival rates of 

pathogens.  Pathogens may change their host specificity through ‘green bridges’, a term that refers to the 

situation whereby a pathogen that commonly infects one species, when given the appropriate conditions, 

adapts to infect other species.  For example, in the spring of 2011, wheat blast (Pyricularia grisea) was 

discovered for the first time in any location outside of South America in Kentucky at the University of 

Kentucky Research and Education Center in Princeton, KY.  However, the genetic structure of the 

pathogen found in Kentucky was different from that of the South American pathogen but very similar to 

the pathogen that causes gray leaf spot in annual ryegrass in Kentucky.  Researchers believe that the 
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annual ryegrass pathogen gained the genetic ability to infect wheat, rather than the pathogen being 

imported on grain from South America (Pratt 2012).  This fungal pathogen thrives in warm, wet 

conditions, and as Kentucky’s climate becomes warmer and wetter the risk from this pathogen will 

continue to increase.  Examples of other diseases in wheat that may be affected by a changing climate are 

listed below: 

Speckled Leaf Blotch (Septoria tritici) – This disease may be associated with frost injury and later season 

development in cool, wet springs.  Intense rain events may favor spread of the disease to the upper leaves 

and head later in season causing economic damage. 

Stagonospora Leaf and Glume Blotch (Stagonospora nodurum) – This pathogen causes important 

diseases of wheat in Kentucky that occur mid to late-season and are most severe under warm, wet 

conditions.  Historically, these have been the most consistent yield limiting disease in the state.  Both 

diseases would be expected to increase in incidence and severity under a warming climate. 

Powdery Mildew (Erysiphe graminis) - Early to mid-season disease that is favored by and cool and wet 

conditions.  Excessive free moisture or late spring freezes can slow disease progress, and therefore this 

disease would be expected to diminish in importance as temperature increases. 

Leaf Rust (Puccinia graminis f. sp. tritici) – Typically a late season fungal disease due to lack of 

overwintering in Kentucky.  When conditions allow over-wintering the disease may cause epidemics and 

yield loss in susceptible varieties, and thus a warming environment favors this disease.   

Stripe Rust/ Yellow Rust (Puccinia striiformis f. sp. tritici) - Mild winters and moisture favor 

overwintering in susceptible varieties.  The outlook under a changing climate is similar to that of leaf rust. 

Wheat Streak Mosaic Virus - Requires the wheat curl mite as a vector which is capable of overwintering 

in the state in mild winters.  Normally not a problem in Kentucky, the threat from this potentially 

devastating disease will increase if a warming environment favors the development of green bridges. 

Fusarium Head Blight (FHB; Fusarium spp. esp. F. graminearum) – This fungus infects the spike tissue 

primarily at flowering and favors temperatures between 75-85 F with prolonged periods of high humidity 

or prolonged wet periods  In recent years, Kentucky has escaped serious FHB damage when cool 

temperatures have prevailed during flowering.  This may change with a warming climate. 

Barley Yellow Dwarf Virus- Requires an aphid vector which may be favored with delayed frost in fall 

and milder winters.  Hot, dry summers may aid in control of aphid vectors. 
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Primary Weeds in Wheat: 

 The major weeds found in wheat fields in Kentucky are winter annuals and perennials.  Examples 

of weeds commonly found in wheat: Italian Ryegrass (Lolium multiflorum), Cheat (Bromus secalinus), 

Common Chickweed (Stellaria media), Henbit (Lamium amplexicaule), Shepherds-purse (Capsella bursa-

pastoris), Field pennycress (Thlaspi arvense), Mustard (Brassica spp), Horseweed (Conysa canadensis), 

Curly Dock (Rumex crispus), Wild Garlic (Allium vineale), Wild Onion (Allium canadense).  Weeds are 

not the primary pest of wheat in Kentucky primarily due to the growing season and the narrow row spacing 

allowing quick ground cover in early spring.  The primary concern is that climate change would shift weed 

species ranges since it would alter temperature, precipitation distribution and wind patterns (Chen and 

McCarl, 2001).  Climactic changes would likely favor seed dispersal and provide a habitat suitable for new 

weed species in the state which may additionally harbor insects and pathogens. 

Conclusions- 

Based on the future climate projections for Kentucky from the Kentucky Climate Center and the 

National Climate Assessment for the Southeast it seems appropriate to continue to explore the effects of 

climate change on wheat production in Kentucky.  Jerry Hatfield (unpublished), USDA Plant Physiologist, 

states “the combination of short-term weather and long-term climate presents a challenge in terms of being 

able to assess the potential adaptation and mitigation strategies possible to increase the resilience and long-

term stability in production”.  Despite rather minor changes occurring to date, the potential for climate 

change to impact wheat production remains evident.  This review of scientific literature indicates that 

climate change may impact management decisions, cultivar development, crop-pest interactions, and 

economic potential for wheat. 

 Projections of increased temperatures, precipitation, and CO2 concentrations will no doubt 

challenge the wheat industry, yet it appears that the climate in Kentucky will remain favorable for 

profitable wheat production.  However the impact of a warming climate on wheat pests introduces 

uncertainties.  A more diverse and robust suite of cultivars with heat tolerance, freeze tolerance and 

resistance to an array of pests will likely be required. Successful adaptation strategies will require input 

from wheat growers, agronomists, plant pathologists, entomologists, climate scientists, ecologists and crop 

physiologists.  
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