Fungicides for FHB Management:
Past, Present, and Future

Carl A. Bradley
University of Illinois

Marcia P. McMullen
North Dakota State University
For fungicides to be effective, we need:

- Safe products with fairly short PHI's
- High efficacy in reducing FHB and DON
- Optimum rates and timing of application
- Optimum application techniques
- Reasonably priced products
Fungicides for Control of FHB – A Review

- Reviewed international literature: 1977-1995
 - 41 citations
 - 21 different fungicides evaluated for FHB control, alone or in combinations
 - “Most showed potential for reducing disease incidence and severity, but results varied greatly from test to test”
 - “Reduction of mycotoxins was very inconsistent”
Examples of Fungicides Tested 1977-1995

- **Benzimidazoles:** Benomyl, carbendazim, thiophanate methyl, thiabendazole
- **Multi-site activity:** Mancozeb, chlorothalonil
- **Triazoles:** Triademnol, triadimefon, bromuconazole, flusilazole, fenbuconazole, propiconazole, tebuconazole
- **Carboximides:** Prochloraz
1st Published US Fungicide Test

Barry Jacobson, 1977, Phytopath. 67:1412-1414

- Tested:
 - Benomyl,
 - Benomyl + mancozeb,
 - MBC (methyl benzimidazole carbamate)

- Winter wheat at the Univ. of Illinois
- Applied 2x
- 70% reduction in FHB with benomyl or MBC
- 50% reduction with benomyl + mancozeb
Use of Benomyl, Mancozebs

- **Benomyl (Benlate):** alone wasn’t effective against leaf diseases; added mancozebs
- **Benlate:** WP, a mess to mix and apply
- **Epidemics of 1990s:** only registered products available that could be applied at flowering
- **Expensive:** relative to wheat price at time and generally had to be applied 2x
- **Discontent with their use:** sparked multi-state effort to evaluate fungicides
Timetable 1988-1996

- **1988:** First US registration of a foliar triazole with some activity against FHB:
 - propiconazole (Tilt), only to flag leaf emergence

- **‘94-’97:** Multi-state projects to identify most effective fungicides

- **1995:** ND, SD, MN request Sec. 18 for Tilt to be applied at flowering; denied

- **1996:** Europeans identify tebuconazole (Folicur) as one of more effective products (Suty and Mauler-Machnik)
Timetable 1997-2001

- **1997:** First National Fusarium Head Blight Forum, St. Paul, MN. Fungicide Technology Network formed
- **1997:** ND, MN, SD request Sec. 18 for Folicur fungicide; denied (Crisis declared)
- ‘98-’00: USWBSI Uniform trials: 5-9 trts evaluated; 5 wheat classes, 7 -15 states
- **2000:** Strobilurins registered in US
- **2001:** Benlate discontinued by DuPont
‘02–’03: More new chemistries, rates, timings, added to USWBSI uniform trials

Some eliminated:
- poor efficacy
- tendency to increase DON
- or termination by crop protection industry

2003: Uniform trial results with Folicur from 1998-2003: average reduction of FHB index = 39.4%; DON reduction = 27.4%
- (D. Hershman and G. Milus, 2003 Nat. FHB Forum talk)
Folicur (tebuconazole)

- **Sec. 18 emergency exemptions** for FHB control in multiple states 1998-2007. Why?
 - No other fungicides registered that had comparable, consistent control
 - EPA wouldn’t grant full registration because of a special review of triazole fungicides

 - “We may conclude that at the present time we do not have fungicides to control FHB with a very high efficacy, as has been obtained for rust or powdery mildew. Among the active ingredients in the tested fungicides, tebuconazole was the best”.
Where are we now?

- **2007**
 - Proline (prothioconazole) was registered by the U.S. EPA for control of FHB and other wheat diseases

- **2008**
 - Caramba (metconazole), Folicur (tebuconazole), and Prosaro (prothioconazole + tebuconazole) all registered on wheat
How do Proline, Prosaro, and Caramba stack up against Folicur?

“The toolbox is full”

- For the first time ever, in 2009, wheat growers in many states will have access to multiple fungicides that are effective against Fusarium head blight.

- Have we reached the peak of control yet?
Not quite there, yet

- Paul et al. (2008)
 - Prosaro = 52% reduction of FHB index and 42% reduction in DON relative to untreated control
 - Proline = 48% reduction of FHB index and 43% reduction in DON
 - Caramba = 50% reduction of FHB index and 45% reduction in DON

What does the future hold for fungicide control of Fusarium head blight?

• How long will current fungicides be effective……fungicide resistance?

• Will there be new, more effective fungicides available?
What is the risk of *F. graminearum* resistance to triazole fungicides?

- Fungicide Resistance Action Committee (FRAC) – classifies triazole fungicides as having a **medium risk** of fungi developing resistance to them

- Already several cases of phytopathogenic fungi with resistance to triazole fungicides
What is the risk of *F. graminearum* resistance to triazole fungicides?

Klix et al. (2007) – Evaluated triazole sensitivity in *F. graminearum* isolates collected over several years in Europe – Reported a decrease in sensitivity to tebuconazole and metconazole from 1994 to 2004

Fig. 4. Relationship between EC$_{50}$ values and time expressed as years that fungal strains were isolated. EC$_{50}$ values were obtained from the interpolations depicted in Fig. 3.

Will new chemistries be available?

- Li et al. (2008)
 - JS399-19 (2-cyano-3-amino-3-phenylacrylyc acetate)
 - Belongs to the cyanoacrylate fungicide group
 - In field and greenhouse tests in China, JS399-19 was more effective controlling FHB than carbendazim (an MBC-group fungicide)

Fig. 1. Chemical structure of JS399-19.
Will new chemistries be available?

- In 2008, a few “numbered” compounds were evaluated by a few university researchers.

- Continued testing is important!
THE FUTURE: Not the time to be complacent

- Current fungicides still only providing ~50% reduction of FHB index and ~40% reduction in DON

- Potential erosion of triazole fungicide sensitivity

- New chemistries with improved efficacy and new modes of action are still needed
Questions?

U.S. Wheat & Barley Scab Initiative

“This material is based upon work supported by the U.S. Department of Agriculture. This is a cooperative project with the U.S. Wheat & Barley Scab Initiative. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author and do not necessarily reflect the view of the U.S. Department of Agriculture.”