# Advances in the Epidemiology of Fusarium Head Blight and Applications in Prediction Models

Erick De Wolf and Mizuho Nita Department of Plant Pathology Kansas State University

#### **Presentation Outline**

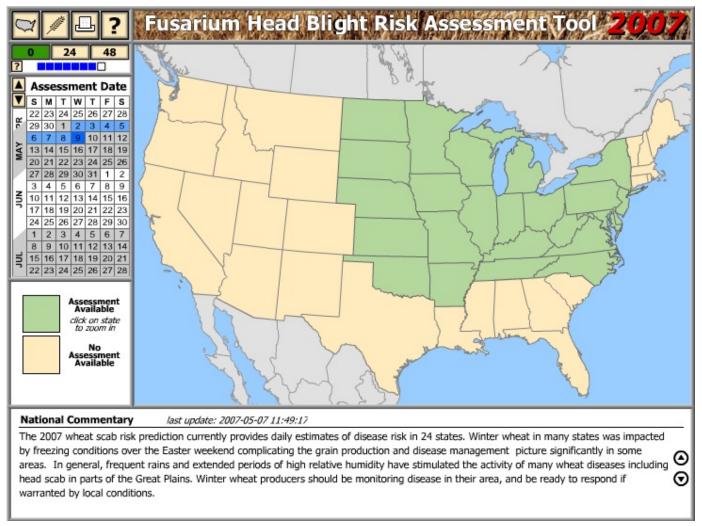
- Brief history of the forecasting effort supported by the USWBSI
- Current modeling initiatives
- Future priorities

## The Big Picture

- General understanding the conditions that trigger FHB epidemics
- Observations of weather associated with FHB epidemics from early 1900's

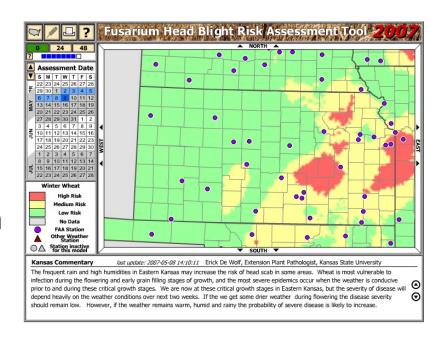


Symptoms of FHB on wheat


#### Global Effort to Predict FHB and DON

- Tremendous effort to develop prediction models
- China, Argentina, Canada, Brazil, Italy and US

## History of US Efforts


- The early years
  - 1999 2000: Initial models developed
  - 2001: Individual states deploy models
  - 2002 03: Second generation models developed

## Large Scale Deployment



#### Third Generation Models 2006-2007

- Use pre-athesis weather to predict scab epidemics >10% field severity
- Spring wheat
  - RH
  - Host resistance level
- Winter wheat
  - -Temp and RH combination



## **Current Modeling Initiatives**

- Expansion of the effort to predict both disease epidemics and DON
- Mechanistic and empirical modeling approaches
- Capitalize on the strengths of both approaches

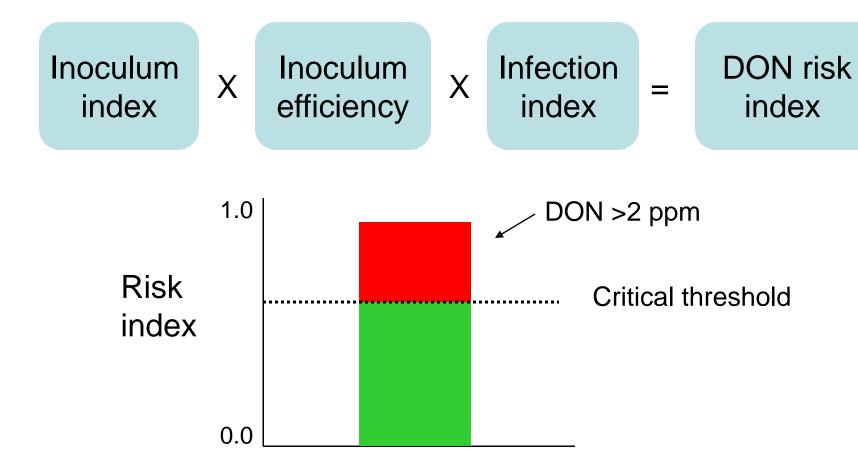
#### Data Available

- 110 Cases
  - hourly weather, anthesis and DON level
- Representing 7 states and 14 varieties
  - IN, OH, MI, MN, ND, PA and SD
  - Winter and spring wheat

## Overview of the Mechanistic Modeling Process

- Develop a conceptual model of the disease cycle
- Develop model prototypes using STELLA software
- Parameterize model with published research results

## Conceptualized DON Model


Inoculum index

Infection efficiency

Pathogenesis index

**DON** risk index

## Conceptualized DON Model



#### Mechanistic Model Components

#### Inoculum index

- Perithecia development (T, RH & Time)
- Macroconidia production
- Spore release and survival

#### Infection efficiency

- Germination rate
- Pathogenesis index
  - Infection (T, RH, GS, & Time)
  - Colonization (T, Time, & Host resistance)
  - DON degradation (Time)

#### Mechanistic Model Results

 Accuracy of mechanistic models for DON (2 ppm) in winter and spring wheat

| Accuracy % |             |             |  |  |  |  |
|------------|-------------|-------------|--|--|--|--|
| Overall    | Sensitivity | Specificity |  |  |  |  |
| 73.6       | 53.3        | 81.2        |  |  |  |  |

n = 110

## Overview of Empirical Approach

- Design variables that represent potential relationships with DON
  - 2 ppm threshold for binary response
- Variable selection (Kendall's tau)
- Develop candidate models using logistic regression

#### Correlation results

Non-parametric measures of association (Kendall's tau)

| Time period relative to anthesis | Spring Wheat                       | Winter Wheat          |
|----------------------------------|------------------------------------|-----------------------|
| 10 to 7 days pre                 | Average RH<br>RH>90%               | •                     |
| 7 day pre                        | Average RH Average Temp Max Temp . | Average RH  Min Temp  |
| 3 day during                     | Max Temp                           | Average RH . Min Temp |

## Summary of Logistic Models

| Variables           |                   |                    |       | Accuracy (%) |             |             |
|---------------------|-------------------|--------------------|-------|--------------|-------------|-------------|
| Production<br>Class | Pre-<br>anthesis  | During anthesis    | AUROC | Overall      | Sensitivity | Specificity |
| Spring              | RH, T,<br>Rain    | Max T,<br>Rain     | 0.96  | 76.6         | 83.9        | 58.3        |
| Winter              | RH,TRH            | Min T,<br>RH, Rain | 0.91  | 79.6         | 85.2        | 74.1        |
| Spring              | RH, T             |                    | 0.88  | 80.4         | 91.2        | 50.0        |
| Winter              | RH, TRH,<br>T9-30 |                    | 0.90  | 79.6         | 85.2        | 74.1        |

#### **Future Priorities**

- Validate empirical models for DON with additional observations
- Link inoculum level, and environment with disease and DON
- Infection efficiency of the inoculum
- Degradation of DON effects of host resistance and environment

## Acknowledgements

KSU: Mizuho Nita

OSU: Pierce Paul and Larry Madden

SDSU: Jeff Stein and Larry Osborne

NDSU: Shaukat Ali and Shaobin Zhong

UNL: Stephen Wegulo

PSU: Paul Knight and Doug Miller

 Others: Marcia McMullen, Char Hollingsworth, Don Hershman, Diane Brown-Rytlewski, Greg Shaner, Pat Lipps