CURRENT BLUE MOLD STATUS

by William Nesmith

Blue mold continued to build up in the Appalachian region with additional counties added in western North Carolina, eastern Kentucky, east Tennessee, and western Virginia. Some of the reports involved multiple fields with strong inoculum production. During the past week, low levels of new activity were confirmed in southeastern Kentucky - in Pulaski, Breathitt, and Jackson counties. In addition, the first confirmed case from western Kentucky was reported - a single field in Logan County with scattered, older lesion on the older leaves. Growers are finding low levels of blue mold in shady areas of fields, mainly on ground suckers in crops nearing the topping stage. In Breathitt County, the field scouted had new blue mold lesions developing on July 10 at about 1 lesion/2000 plants on a crop planted mid-June and growing quickly.

Conditions have not been favorable for rapid and widespread development of blue mold in Kentucky. Plant growth and development has improved, so much more of the crop is now highly susceptible to blue mold. Growers need to be especially watchful of the disease building up in fields of older tobacco (especially on ground suckers), without causing much damage, with those spores serving as an inoculum source to infect rapidly growing younger crops in the community.

Bright sunlight much of the past two weeks should have been lethal to most spores moving during the daylight hours, so new activity should be confined to shady areas, especially with shade from the west from trees or ridges. Once a crop canopy closes, however, movement of live spores within the field under the cover of the canopy is possible. Night conditions have been favorable for both sporulation and infection in most of the eastern third of Kentucky during the past two weeks. Where fog remained until mid-morning, spore movement would have had more protection.

Brown patch disease has been very destructive this year in new seedings of tall fescue. New seedings are at greatest risk because (1) they are more susceptible than established swards, and (2) infections are more readily lethal to young plants than to established plants.

Check seedings made this spring or last fall carefully for the disease. Although many blighted leaves will be dried up and dead, making detection difficult, some leaves will likely still have the typical lesions: irregular lesions on leaf blades that are olive-green when fresh, and which fade to a tan color with a thin brown border as they dry.

If an outbreak is detected on a new seeding, often one or two applications are justified during the hot, muggy weather of summer in order to get the turf established. The most effective curative materials are azoxystrobin.
(Heritage) and flutolanil (Prostar), but these are only available to the professional applicator. Other less effective options for curative control are listed in Chemical Control of Turfgrass Diseases, UK Extension Publication PPA-1, available at http://www.ca.uky.edu/agc/pubs/ppa/ppa1/ppa1.pdf. For cultural practices that can help control brown patch, see http://www.ca.uky.edu/agc/pubs/id/id112/id112.htm.

FRUIT CROPS

PEACH FRUIT DISEASES
by John Hartman

Many locations in Kentucky are reporting a peach crop this year. In some orchards diseases affecting peach fruits are now appearing. Rainy spring weather has made many of these diseases more severe than usual. Some diseases, such as peach scab should have been prevented a month or more ago while others, such as brown rot are still capable of being prevented.

Peach scab.
This disease is a common problem in Kentucky orchards especially where an early protective fungicide agenda was not strictly maintained. The scab fungus, *Cladosporium carpophilum*, causes primarily an unsightly spotting of the fruit skin. Consumers who purchase fruit with only a few lesions should not notice much difference in the taste or nutritional value of the fruit. However, consumers who preserve the fruits often dip them in hot water so that the skins slip off the fruit easily. Skins of scab-infected fruits do not slip off easily. Peach preservers try to select scab-free fruits for canning.

Symptoms. Scab first appears as small, round, green to black spots on the fruit about six or seven weeks after petal fall. Fruit lesions first appear as small, greenish, circular spots which later become black and velvety, primarily on the stem end of half-grown to mature fruit. When the disease is severe, the lesions often run together which results in fruit cracking or abnormal fruit development. The time from infection to appearance of visible symptoms may take about a month, so peaches infected rainy periods at shuck-split may not show symptoms until just before harvest. At the time growers begin to notice symptoms, it is much to late to attempt disease prevention. Although the most conspicuous symptoms of peach scab occur on the fruit, the disease can also occur on twigs and leaves. Shoot and twig infections are circular to oval, brown in the center with slightly raised purple margins. The fungus overwinters in twig lesions and becomes active during shuck split (just after petal fall) and the following weeks.

Disease management.
- Prune trees to increase air circulation which facilitates drying of fruit and foliage and increases spray penetration into the trees.
- Diligently apply protectant fungicides. Peach scab outbreaks can usually be traced to a failure to apply a fungicide in the early season spray program due to rainy weather or sprayer malfunction. Peach scab can be controlled using fungicides such as Captan, Sulfur, Benlate, Bravo, Topsin M, Thiram, and Ziram applied according to label directions. Spray applications begun at shuck-split and again at shuck off are critically important (to cover the newly exposed fruit surface). Sprays just before harvest to protect against scab are unnecessary.

Peach Bacterial Spot
This disease, caused by *Xanthomonas arboricola* (*X. campestris* pv *pruni*) may appear on some cultivars in years with stormy, rainy weather.

Symptoms. Leaf lesions are brown to black and generally angular in outline. Often the centers of spots fall out, and margins have a reddish coloration; severely infected leaves turn yellow and drop. Infected fruit develop brown to black lesions. Lesions may coalesce and the fruit becomes pitted and cracked.

Disease management. Bacterial spot is difficult to control.
- Avoid growing highly susceptible varieties.
- The antibiotic, oxytetracycline (Myco-Shield Agricultural Terramycin 17 percent SP), can provide good control when used as the label directs. If the disease has been a problem for growers in the past, they should plan to begin sprays at shuck-split and continue at 7-day intervals until 3 weeks before harvest.

Peach Brown Rot
Brown rot disease, caused by the fungus *Monilinia fructicola*, reduces yields primarily by decaying the fruits on the tree and after harvest. All stone fruits are highly susceptible to brown rot.

Symptoms. Brown rot disease causes a soft, brown decay of stone fruits. Warm, wet, humid summer weather conditions favor infections by the fungus. Decay begins as a small circular brown spot which rapidly expands to destroy the entire fruit. As fruit softens during the ripening process, it becomes more susceptible to brown rot. Rotted fruits may fall or remain on the tree as mummies. The brown rot fungus also causes blossom blight and twig blight in the spring.
Disease management.

- Use sanitation to reduce sources of inoculum. Mummies and small fruit left over from earlier thinning operations and simply lying on the ground can be sources of inoculum. Blighted twigs should also be removed after the final harvest.
- Avoid fruit injury. Insect damage to the fruits can open up wounds that allow entry by the brown rot fungus. Take care to avoid fruit injuries during harvest.
- Improve orchard drying conditions. Densely planted orchards or those partially shaded or surrounded by a woods could have problems with reduced air movement and slow drying, leading to greater brown rot outbreaks.
- Apply fungicides to prevent brown rot. Effective brown rot fungicides such as Elite (tebuconazole), Indar (fenbuconazole), or Orbit (propiconazole), often referred to as DMI fungicides, can be alternated with Topsisin-M (thiophanate-methyl) or Rovral to manage DMI fungicide resistance. Wettable sulfur is fairly effective for brown rot management if applied at frequent intervals and if disease pressure is not too high.

For peach fruit diseases, fungicide suggestions and timing are found in the U.K. Cooperative Extension bulletin ID-92, Kentucky Commercial Tree Fruit Spray Guide 2003, available at County Extension Offices.

GRAPE ROOT BORER: DON’T WAIT UNTIL ITS TOO LATE
by Ric Bessin

Grape root borer (GRB) is one pest of grapes that is often ignored until it becomes a serious problem affecting the vineyard. Some of the older vineyards in Kentucky have experienced serious vine loss due to this insect. Many of the newer vineyards may have problems in the future if they don’t manage GRB effectively. Symptoms of GRB attack include poor vine growth and fruit set, even loss of some vines. The larvae spend 22 months feeding in the roots and crown of grape vines before emerging as adult moths. Generally the moths are active from July through September and lay eggs on grape leaves or weeds. The moths mimic the appearance and flight of paper wasps and are active during the day. The eggs hatch and the larvae drop to the ground and burrow down to the roots. Good weed management assists with control of GRB. Eliminating weeds around the base of vines reduces the sites for egg laying and improves spray coverage for GRB control. In small plantings, plastic mulch works as an effective barrier around the base of vines not allowing the GRB larvae from becoming established. In terms of chemical control, Lorsban is the only insecticide labeled for control of GRB. This treatment is applied directly to the ground under the grape trellis at least 35 days prior to harvest. Do not allow this spray to contact the fruit or foliage. We recommend treatments for GRB if more than 5 percent of the vines are found to have GRB pupal cases emerging from the soil.

At this point, we have found no evidence that Kentucky’s tobacco growers introduced blue mold on transplants. This is the first time I have been able to say that in many years. Consequently, blue mold is a much more manageable disease within the local community, because the pathogen must still arrive in each community and then build up to damaging levels, rather than already be producing inoculum at damaging levels; which would have been the case with this year’s weather had we introduced it with transplants. This warning system and good scouting programs should be especially helpful to growers in their management of blue mold under these conditions. Fields in watch/warning areas should be scouted at least twice weekly for new blue mold, with aggressive spray programs initiated with Acrobat MZ should the disease be found in the field. Why this fungicide and not the inducer, Actigard? Because we want to stop inoculum production on that farm, which Actigard will not do! Widespread fungicide application within counties should not be warranted unless strong centers of blue mold are present within the community or a large mass of inoculum outside the state becomes threatening. Once plants reach 18 inches in height, Actigard 50W can be used to greatly improve the plants tolerance to blue mold where growers desire that additional protection.

Application guidelines for the fungicides labeled for blue mold control in the field in Kentucky can be found in Kentucky Pest News, issue number 983, April 28, 2003 or at web address - http://www.uky.edu/Agriculture/kpn/kpn_03/pi030428.htm

SOYBEAN

WATCH FOR SPIDER MITES IN SOYBEAN
by Doug Johnson

Many areas have had recent rains but there are still some very dry spots around. Long spells of dry weather can result in very troublesome pests problems, especially spider mites.

Spider mites are very small. You may be able to see them with the naked eye but you will have to use a hand lens to see any features. The two-spotted spider mite, the species that we most often see, is greenish yellow to dull orange with a large irregular-shaped spot on each side of the body. Adults have 8 legs. If you suspect spider mites, shake some leaves over a piece of white paper. Look to see if you can see tiny spots moving on the paper. Generally examination with a hand lens or preferably a microscope is needed to confirm the diagnosis.
In most cases symptoms of spider mite damage will be noticed before the mites. Spider mites feed with long stylet-like mouthparts which they stick into individual cells and suck out the contents. Most other pests with piercing sucking mouthparts feed on the plant sap in the conducting tissue of the plant. These mites feed on the cell contents. As each cell is fed upon and dies as a result, it appears as a small white or yellow spot. This gives the leaves a stippled or spotted appearance to the leaves. The result is a reduction of photosynthetic capacity. As damage increases, plants take on a yellowed then bronzed appearance. If high levels of pressure continue, the plants will defoliate. Remember, this is a double whammy as it usually occurs in the presence of drought stress.

Making a control decision is often very difficult. The general rule of thumb is: if you expect to make a crop, then estimate the percentage of damaged areas as of leaf surface just like you would for leaf feeding insects. At this time of year I think most producers still have reasonable expectation that enough rain will occur to make a crop. If so, use the defoliation tables in: ENT-13 (Insecticide Recommendations for Soybeans - 2003)

www.uky.edu/Agriculture/PAT/recs/crop/pdf/recsoy.htm) OR IPM-3 www.uky.edu/Agriculture/IPM/manuals.htm to make a control decision. If the drought is relieved by a sustained rain (increased humidity) then mite populations will be reduced. If however, a heavy (drought relieving rain) is quickly followed by a clearing sky and low humidity the mite populations may stick around. The importance of rain fall in reducing mite populations is actually a secondary effect. When rain (mainly humidity) increases the activity of a fungal pathogen, which infects and kills the mites, also increases, resulting in reduced mite populations. However, if the rainfall does not result in continued humid conditions the mites may remain around at high levels for some time.

If control is required, be prepared to make more than one application. This is not the typical soybean pest. Most of the insect pests of soybean are easily controlled with a single insecticide application. This is often not the case with spider mites. A single application may be enough especially if the drought conditions lift. However, be ready to make at least two applications and possible a third.

If damage appears to be restricted to a portion of the field, you may elect to control only that region. However, if this is the case be sure to look for the mites in the “Non-symptomatic” beans that surround those that are showing symptoms. As the beans are damaged they will become less desirable to the mites as a host, so the mites will move outward to the unaffected beans. You should always check to see how widely the mites are distributed, then treat another round or two to insure you have covered the entire infestation.

You can find out more about the two-spotted spider mite in Entfact - 310 at:

www.uky.edu/Agriculture/PAT/recs/crop/pdf/entfa310.pdf

This publication is geared toward vegetables but the biology information will be the same.

LAWN & GARDEN

SUMMER’S BIG GUYS
by Lee Townsend

Two of our largest beetles can be found now. They are most frequently seen resting on tree trunks but can show up almost anywhere. Both are impressive, neither is harmful. On top of that, many of our large caterpillars will be seen over the next few weeks.

The eastern Hercules beetle has a large, greenish grey to black body with spotted markings and is 2” to 2-1/2" long. Males have a large horn on the head and are sometimes called rhinoceros beetles. These beetles occur throughout the southeastern US. We see them during July and August in Kentucky. The beetles will feed some on ripe fruit but are not a pest. They are attracted to lights so they may be found around homes. The larvae, large white grubs, feed in decaying logs and stumps. They can be dredged out of the crumbly earthy material in wet, rotting wood. It probably takes a little more than a year to complete a generation.

The eyed elater is an elongate black beetle with distinctive eye-like markings just behind the head. The markings are probably effective in scaring potential predators, such as birds, but these false eyes are sightless. The larval stage is a yellowbrown wireworm that occurs in decaying wood.

Caterpillars of the giant silkworm moths are beginning to finish feeding and leave the trees to find sites to spin a cocoon and pupate. Some are brightly colored, others have spines and spikes. A few can give a painful sting. Pictures of the common species can be found at www.uky.edu/Agriculture/Entomology/entfacts/misc/ef008.htm

LAWN & TURF

GRAY LEAF SPOT PREVENTIVE PROGRAMS SHOULD BE IN PLACE SOON
by Paul Vincelli

I received reports last week of gray leaf spot activity in southern Kentucky in fields of forage-type perennial
ryegrass and annual ryegrass. Although we don’t know what
the weather over the next few months will bring, I believe it
would be advisable to have preventive fungicide programs in
place soon on sites with a history of the disease, and on all
high-maintenance perennial ryegrass swards by the end of
the month.

The strongest fungicides are azoxystrobin, thiophanate
methyl, and to a slightly lesser extent, trifloxystrobin. These
products should form the foundation of a spray program
during the period from early August through mid-September.
For sprays preceding or, if needed, following this critical
period, effective mixtures include tank-mixes of
propiconazole or triadimefon with chlorothalonil, or a premix
of myclobutanil with mancozeb.

For more information on efficacy of fungicides, see
Chemical Control of Turfgrass Diseases, UK Extension Publication PPA-1,

SHADE TREES & ORNAMENTALS

IT’S IN THE BAG

by Lee Townsend

Bagworm eggs hatched in to late May and the tiny larvae
crawled out from the end of the bag in search of food. By
using silk and bits of plant material, they soon constructed a
small bag around their hind part that looks like a tiny,
upright ice cream cone. As the larvae continue to feed and
grow, they enlarge the bag enabling them to withdraw into it
when disturbed. Older larvae strip evergreens of their needles
and consume whole leaves of susceptible deciduous species,
leaving only the larger veins. The bag is ornamented with bits
of whatever type of vegetation they are feeding upon.

If only a few small trees or shrubs are infested, picking the
bags off by hand and disposing of them may afford
satisfactory control. This approach is most effective during
fall, winter or early spring before the eggs have hatched.

When many small bagworms are infesting evergreens, an
insecticide may be needed to prevent serious damage. The
best time to apply an insecticide is while the larvae are still
small (less than 1/2-inch long). Small larvae are more
vulnerable to insecticides, and inflict less damage. Carefully
inspect susceptible landscape plants, especially evergreens,
for last year’s bags. Young bagworms are harder to see; look
closely for the small, upright bags which have the appearance
of tiny ice cream cones constructed of bits of plant material.
Preventive treatment is often justified on plants that were
heavily infested with bagworms the previous year.

Several products are available for homeowner and
professional use. For homeowners, conventional insecticides
such as Sevin, or the microbial insecticide *Bacillus thuringiensis* (BT) provide satisfactory results. The BT
products have very low mammalian toxicities, but are only
effective against younger larvae. If large bagworms are
present (more than about 3/4-inch long), a conventional
insecticide probably will provide better results. For nursery
and landscape professionals, other effective products
include Astro, Decathlon, Ficam, Mavrik, Orthene, Pounce,
Scimitar, Talstar and Tempo. Foliage should be thoroughly
wetted with the insecticide spray in order to achieve
thorough coverage. Trade names are used as examples. No
endorsement is intended, nor criticism implied of similar
products not named. Always read and follow directions on
the label.

PINE SAWFLIES DEVOUR FROM THE TOP DOWN

by Lee Townsend

The redheaded pine sawfly is sawflies we see in Kentucky.
It tends to attack trees in the 1 foot to 12 foot height range,
especially those already under stress due to poor site or
severe competition from other trees. This species attacks
jack, short leaf loblolly, slash, red, Scots, and other 2- and 3-
needled pines. These distinctive larvae have red heads with
2 black eye spots and a yellow-white body with six rows of
black spots. When full grown, the caterpillars are 1” to 1-
1/4” long.

There can be two or three generations each year, with the
first appearing in the spring. The larvae feed gregariously
on new and old needles as well as the tender bark of young
twigs. They generally feed downward from the top of the
tree. After complete defoliation, they may crawl over
ground for several yards to find new foliage. Orthene or
Sevin can be used for control, Bt caterpillar sprays do not
work against these insects.

HOUSEHOLD

CONTROLLING CARPENTER ANTS

by Mike Potter

“I’m seeing big, black ants in my house, especially in the kitchen
and bathroom. I spray the ones I see, but they keep coming back.
What kind of ants are these and how do I get rid of them?”
These are the questions typically asked by clients who have
carpenter ants. Callers may also complain about a swarm of
winged carpenter ants emerging inside their homes — a
sure sign that the ants are nesting within the structure. This
column will help you deal with this challenging pest
problem.
The Problem

Carpenter ants vary in size and color, but are usually rather large (1/4-1/2”) and blackish. Not every large black ant encountered around homes is a carpenter ant, however (see footnote* below). In addition to being a nuisance, carpenter ants may damage wood while hollowing it out for nesting. The galleries have a smooth, sandpapered appearance and contain no mud, which distinguishes them from wood damaged by termites. Shredded fragments of wood similar to coarse sawdust are ejected from the galleries, along with dead ants and bits of insects which the carpenter ants have eaten. When such accumulations are found, it’s a good indication that a nest is nearby. Often, however, the excavated sawdust remains hidden behind a wall or in some other concealed area.

Carpenter ants nest in moist or dry locations, but prefer sites that are moist. Consequently, nests often occur in wood dampened by water leaks, such as around sinks, tubs, shower stalls, poorly sealed window and door frames, leaking roofs, and within damp crawlspaces. When considering likely nesting sites, it’s also important to remember that carpenter ants nest in areas other than wood. Nests commonly occur in moist, hollow spaces, like the wall behind a dishwasher, beneath insulation in the basement, crawlspace, garage, or attic, or in a hollow porch column. False ceilings, hollow-core doors, curtain rods, or even an old suitcase up in the attic may serve as nesting sites for carpenter ants.

Nests may be located indoors and/or outdoors. Ants spotted inside the home may actually be nesting outdoors in a tree stump, landscape timber or woodpile and foraging indoors in search of food. Noticing five or more carpenter ants per day in an area of the home where there is no food, such as a bathroom or bedroom, usually indicates an indoor nest. Swarms of winged carpenter ants emerging indoors is another sign of an indoor nest, as is the sighting of ants indoors on cool or rainy days.

The vicinity of a carpenter nest can often be located by placing small dabs of honey or maple syrup in the area(s) where ants have been seen. Cleanup is aided by placing the “bait” onto small squares of wax paper, or the back (non-sticky side) of pieces of masking tape. The best time to check the bait spots is at night when the ants are most active. After the ants have fed on the bait, follow them on their journey back to their nest. Be patient — eventually the ants will disappear behind a baseboard, cabinet, or into some other concealed location such as behind a wall, window, door frame or porch column.

Treat behind walls and other hidden locations where ants are entering by puffing boric acid dust into existing cracks, or drilling small (1/8”) holes into suspected nest areas. With a little luck, the insecticide dust will disperse in the hidden void and contact and kill the ants. If you suspect the nest is in a wall, drill and treat at least 3-6 feet on either side of where ants are entering so as to maximize the chances of contacting the nest. As is true for most ants, carpenter ants prefer to travel along wires, pipes and edges. It often pays to inject dust into any openings around plumbing pipes and behind (not inside) the junction boxes of electrical light switches and receptacles. Never apply insecticides directly into junction boxes or spray liquids around electrical outlets. Turn off the main circuit breaker as an additional safety precaution.

Professional pest control firms have “dusters” specifically designed for this type of treatment. Homeowners wishing to perform treatment themselves can purchase boric acid in a ready-to-use “puffer” (squeeze bottle), or attempt to make one using an empty, dry, narrow-tipped plastic container. Don’t expect to see results overnight; a week or more may be needed to eliminate the entire nest which may contain thousands of ants.

As noted earlier, carpenter ants seen in the home may actually be nesting outdoors and foraging indoors for food and water. Consequently, you may end up following the ants out into the yard, possibly to a nest located in a stump, fence, dead tree limb, or landscaping timber. Once an outdoor nest is discovered, treatment can be performed by spraying or drenching with Sevin or other general-purpose liquid insecticide. If outdoor nests are suspected, inspect for ants around the foundation and siding at night with a flashlight. Like most ants, carpenter ants prefer to trail along edges and wires. Pay particular attention to the bottom edges of siding, areas around doors, windows, and where utility pipes and wires enter the structure. The sweet bait technique can again be used to trace these ants back to the main colony.

The Solution

There are no insecticide baits available to homeowners that are consistently effective against carpenter ants. Therefore, for the “do-it-yourselfer” the best way to control them is to find and treat the nest(s) directly. This is easier said than done. Carpenter ants seldom travel in clearly defined ant “trails” as do many other ants. When attempting to locate a nest, focus your efforts on where most of the ants have been seen. Areas dampened by moisture, e.g., around sinks, dishwashers, chimneys, fascia boards, roof edge, and window or door frames are especially attractive to carpenter ants, although dry walls may also serve as nesting sites. The chances of finding ants will be much greater at night since carpenter ants do most of their foraging after dark.

The potential for damage exists only when ants are nesting inside the structure. In Kentucky, damage produced by carpenter ants is often insignificant and seldom as extensive as that from termites. Nonetheless, the ants are a nuisance and over extended periods, large colonies can weaken studs, joists and other structural timbers.

Nonetheless, the ants are a nuisance and over extended periods, large colonies can weaken studs, joists and other structural timbers.
their nest.

Calling a Professional

Eliminating carpenter ants can be difficult and time consuming. Therefore many clients will want to call a professional. Pest control firms have a greater arsenal of effective products, including baits and sprays that can kill colonies in hidden or hard to reach areas. Knowledgeable companies will also spend a good bit of time inspecting and asking the homeowner where they have seen ants, whether there have been moisture leaks, etc. If no effort is made to locate the nest(s) or probable nest areas, the infestation will likely continue. The homeowner can often assist the professional in locating nests by using the sweet bait technique discussed earlier.

Preventing Future Problems

1. Correct roof leaks, plumbing leaks, and other moisture problems which attract carpenter ants.

2. Clip back tree limbs and branches touching the roof or siding of the house. These serve as “bridges” between ants nesting in dead portions of trees and the structure.

3. Seal cracks and openings in the foundation, especially where utility pipes and wires enter from outside.

4. Never store firewood in the garage since firewood is a prime nesting location for carpenter ants. Stack wood away from the foundation and elevate it off the ground.

* IMPORTANT NOTE – Another large black ant often mistaken for carpenter ants in Kentucky is the black field ant. Many costly “carpenter ant” jobs are inadvertently sold to homeowners by companies that confuse these two ‘look-alike’ pests. A good hand lens is needed to tell the difference: viewed from the side, carpenter ants have an evenly rounded thorax (the body segment just after the head); black field ants have a thorax which in profile appears ridged or uneven. Black field ants commonly form large, low-profile, earthen mounds in the yard. Unlike carpenter ants, they do not nest within buildings, although they may occasionally wander indoors in search of food. The solution to black field ants is simply a mound drench with Sevin, etc.

DIAGNOSTIC LAB HIGHLIGHTS
by Julie Beale and Paul Bachi

Samples in the Diagnostic Laboratory this past week included leaf hopper injury and Lepto leaf spot on alfalfa; black shank, soreshin, blue mold, nitrogen deficiency, alfalfa mosaic virus, tobacco streak virus, tomato spotted wilt virus, and manganese toxicity on tobacco.

On fruits and vegetables, we have seen black rot on grape; brown rot on apricot and peach; Rhizoctonia root and stem rot on bean; poor pollination on cantaloupe; bacterial stalk rot on sweet corn; blossom end rot on pepper; and Septoria leaf spot, early blight, bacterial canker, and blossom end rot on tomato.

On ornamentals, we have seen Septoria leaf spot and powdery mildew on dogwood; leaf/flower gall on azalea; bacterial spot on iris; leaf hopper injury on maple; magnolia scale on magnolia; Cylindrosporium leaf spot on weeping mulberry; Entomosporium leaf spot on photinia; and leaf scorch and dieback on many woody ornamentals from a variety of environmental stresses including chronic drought stress (from the past several summers) and transplant shock.

INSECT TRAP COUNTS

UKREC, Princeton KY
July 3 - 11

<table>
<thead>
<tr>
<th>Insect Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Cutworm</td>
<td>0</td>
</tr>
<tr>
<td>True Armyworm</td>
<td>8</td>
</tr>
<tr>
<td>Fall armyworm</td>
<td>0</td>
</tr>
<tr>
<td>European corn borer</td>
<td>4</td>
</tr>
<tr>
<td>Southwestern corn borer</td>
<td>0</td>
</tr>
<tr>
<td>Corn earworm</td>
<td>2</td>
</tr>
</tbody>
</table>

NOTE: Trade names are used to simplify the information presented in this newsletter. No endorsement by the Cooperative Extension Service is intended, nor is criticism implied of similar products that are not named.