Blue mold is operating at very damaging levels in many areas of the burley belt and the potential for even greater levels of activity and damage remains in the Ohio River Valley. Economically damaging, first-strike capability now exists from the inoculum load building up in Kentucky. Even areas that do not have blue mold need to appreciate that massive inoculum is available for movement from any of the following areas: Lake Cumberland, Wilderness Trail, Bluegrass, Fort Harrod, and Louisville. As wind patterns shift, that inoculum will be available to cause extensive crop damage. The only means of preventing losses from such events is to have a blue mold program in place before this inoculum arrives.

Most of what was said in last week’s report remains the case, so I will not repeat it here. Below is the status report by area. Most areas now have many counties under a blue mold warning due to active blue mold in the county.

PURCHASE of far western Kentucky has not reported blue mold. A blue mold advisory remains in place because a shift in winds could carry heavy inoculum loads into the area.

PENNYRILE of southwestern Kentucky has low levels of confirmed blue mold in Christian, Muhlenberg, and Todd counties on burley tobacco. New activity was reported in some of these counties during the week.

GREEN RIVER AREA of northwestern Kentucky:

Confirmed only from Daviess and Ohio counties, mainly as hot spots in fields, but growers from neighboring counties report finding scattered blue mold in fields being topped. Damaging levels have not been reported to us from this area.

MAMMOTH CAVE AREA of southwestern/south-central Kentucky has confirmed activity in Barren, Hart, Logan, and Simpson counties and the level of activity is increasing fast in some fields.

LINCOLN TRAIL AREA of central and west-central Kentucky: Confirmed only in LaRue and Hardin counties, with the activity being highly variable but moderate to strong centers of activity are present in lush growing tobacco. Some agents report that bleach is the most widely used treatment being applied, but some are using Actigard.

LAKE CUMBERLAND AREA of southern Kentucky: Confirmed activity in Adair, Casey, Cumberland, Pulaski, Taylor, and Wayne counties. Several agents have reported a major increase in activity during the past four days with damaging activity present from the ground to the top of the plant in many fields. Preventive and rescue activities are not widespread. One agent reported that the growers are just going to ride it out.

LOUISVILLE AREA: Blue mold is becoming widespread with moderate to strong activity present in many fields in Oldham, Shelby, Spencer, and Trimble counties. Strongest activity is being found in crops that have just closed the canopy, but it is continuing to develop after topping for at least 10 days. The disease has gone systemic in midribs and veins and is causing considerable damage on some farms. Agents confirmed that transplants from east Tennessee were moved into...
this area about five weeks ago.

NORTHERN KENTUCKY AREA: Confirmed only in Carroll, Grant and Owen counties, but growers are reporting the disease from other counties.

FORT HARROD AREA of central Kentucky: Disease has been confirmed from all counties except Franklin. Active in Anderson, Boyle, Garrard, Jessamine, Lincoln, Mercer, and Woodford counties, ranging from scattered lesions to covered from the bottom foliage through the top of plant in fields with closed canopy. Use of control programs has been low compared to the threat. East Tennessee transplants were moved into this area.

BLUEGRASS AREA of central Kentucky: Confirmed in Bourbon, Clark, Estill, Fayette, Harrison, Madison, Nicholas and Scott counties, with activity being highly variable from no disease to very strong activity, especially in large hot spots within the field.

LICKING RIVER AREA of north-central Kentucky: Has been confirmed in Bath, Bracken, and Mason counties, but is probably active in others. The area needs to appreciate that massive inoculum is available nearby to cause great damage on a first strike should winds shift to the south or southwest.

NORTHEAST KENTUCKY AREA: Has been confirmed only in Greenup County, but is probably active throughout this region.

QUICKSAND AREA of southeastern Kentucky: Most counties have not reported blue mold, but some that have report very strong and damaging levels of blue mold. Systemic activity is occurring in the main stem as well as the midrib and veins. The disease has been confirmed in Breathitt, Lee, Owsley, and Perry and is probably developed widely in this region. Much of the crop is now closing canopy, so expect even stronger activity in the next week.

WILDERNESS TRAIL AREA of southeastern Kentucky: This area also has some counties with very strong activity, with confirmed cases from Knox, Jackson, and Rockcastle. Growers are reporting it is active in most counties with significant tobacco.

WESTERN WEST VIRGINIA: Blue mold has not been confirmed to our knowledge, but our sources indicate that transplants from east Tennessee ended up in the region. Thus, we have placed your region under an advisory.

SOUTHERN OHIO: Blue mold has been confirmed only from Adams, Brown, Highland, and Scioto counties with the level of activity being highly variable, but some strong activity is present.

SOUTHEASTERN INDIANA: Blue mold has been confirmed in Jefferson, Switzerland, Ripley, and Ohio counties of southeastern Indiana, but no reports have come from southern counties. The level of activity is highly variable but serious crop damage is occurring in some fields or large portions of the field. We expect the activity in the Lincoln Trail Area of Kentucky has extended through to southern Indiana, too.

Eastern Tennessee, western North Carolina, and western Virginia also have active blue mold in burley tobacco that are impacting our region with spores.

In counties under a watch, reduce the plant’s susceptibility to blue mold by using Actigard 50W if the plants are large enough; otherwise, start sprays with Acrobat MZ. In counties under a warning, at least one spray of Acrobat MZ should be made to reduce inoculum even if Actigard will be used. In fields of young tobacco (prior to topping) with active blue mold, use aggressive spray programs with Acrobat MZ to get the disease under control, plus activate the plant’s immune system with Actigard. In fields at the topping stage, Actigard may help improve resistance, but topping and including MH-type materials in the sucker control program are even more important. In a few communities, we have found evidence that metalaxyl-mefenoxam sensitive strains are operating, but in most areas the fungus is highly resistant to the fungicides found in Ridomil Gold and Ultra Flourish. Where sensitive strains are present, that portion of the population can be easily eliminated with applications of these fungicides to the soil.

Foliar fungicide sprays properly made prior to the outbreak or very early on can greatly reduce the potential damage from blue mold. Use Acrobat MZ at 2.5 lbs /100 gallons of water, adjusting the concentration and volume of fungicide to the stage of growth, according to the label. Repeat the applications at weekly intervals. The systemic aspect of this fungicide makes it especially valuable in blue mold control early in the epidemic, because it greatly reduces systemic infections in the lower stem and midribs. It must be applied well and at close intervals when tobacco is growing rapidly to be effective.

Appreciate that in a weeks time, a rapidly growing tobacco plant between layby and topping can increase its growth by 50%, meaning half of the foliage has not received fungicide even when you are spraying on weekly intervals!

Application guidelines for the fungicides labeled for blue mold control in the field in Kentucky can be found in Kentucky Pest News, issue number 983, April 28, 2003 or at the web address - http://www.uky.edu/Agriculture/kpn/kpn_03/pi030428.htm
FALL ARMYWORM CONTROL: A MATTER OF TIMING
by Ric Bessin

Reports of fall armyworm problems have begun to roll in from the western portion of the state. These have been restricted to late planted corn and grain sorghum. Some fields have had sufficient numbers of fall armyworm to require treatment. In some instances, fields that were treated still have high numbers of fall armyworm. The problem may be that large larvae were the targets of the treatments.

Fall armyworm is more of a problem this year due to the large amount of late planted corn. This insect cannot overwinter in Kentucky and must re-invade from the south each year. It prefers to attack sorghum and corn while they are in the vegetative stages. In most years, by the time that the insect has immigrated in sufficient numbers to cause problems, the corn has already tasseled and unattractive. The late planting this year has kept many fields vulnerable later into the season.

Fall armyworm is one of the more difficult to control insect pests in the state. Although the young larvae are relatively easy to control, many infestations are detected late and control of the larger, more difficult to kill larvae is attempted. Older larvae are more difficult to control because they are less sensitive to most insecticides and they bury themselves deep into the whorl below a frass plug that protects them from sprays. Smaller larvae don’t produce the plug and need a smaller dose of insecticide for control.

When deciding whether or not to control fall armyworm there are several factors to consider. First, large larvae (1-1/4" and larger) have already done most of the damage so killing them is of less value and much more difficult. Second, if a field in the whorl stage is to be treated, then sprays need to be directed directly over the whorl with sufficient water to move the spray down into the whorl. Third, late planted corn often does not have the same yield potential as earlier planting dates, therefore, economic thresholds will be to be adjusted upwards.

FRUIT CROPS

DISEASES AFFECT BLUEBERRY PRODUCTION IN KENTUCKY
by John Hartman

Kentucky blueberry growers sometimes experience plant and crop losses due to diseases. Most losses are due to root rot or to stem and twig canker diseases. With good crop management, most blueberry diseases can be avoided. The following are diseases found on Kentucky blueberries.

Twig blights, stem cankers, stem blights. These diseases are caused by several fungi including Phomopsis vaccinii, Fusicoccum putrefaciens, Botryosphaeria corticis, and B. dothidia. These fungi produce canker symptoms which cause dieback of twigs, branches or entire stems. The most visible symptoms of canker diseases are dead twigs and branches on the plant, often adjacent to healthy branches. Dead branches may have brown or reddish-brown leaves clinging to them. Sometimes symptoms begin on smaller twigs and then spread into larger branches and the crown. Some lesions appearing on infected stems may be a red-maron-brown color and be centered around a leaf scar, with a bulls-eye pattern. Other lesions may appear as a broad brown or tan discoloration of the woody tissue, often on one side of the stem. Extensive stem infestations quickly lead to flagging and dieback of the entire stem.

Phytophthora Root Rot. Root rot, caused by *Phytophthora cinnamomi* or other species of *Phytophthora*, is usually associated with poorly drained areas of a field where the fungus thrives and survives for long periods of time. The very fine absorbing roots turn brown to black; larger diameter roots may also be discolored. In severely infected bushes, the entire root system is reduced and totally black. Above-ground symptoms include chlorosis and reddening of the leaves, small leaves, defoliation, branch dieback, death of entire stems, stunting, and death of the entire bush. The disease may be present in a few infected plants scattered throughout the planting or localized in a group of plants in a low-lying area of the field. The disease is most severe where plants are growing in heavy clay soils.

Mummy Berry. This sometimes-devastating disease is caused by the fungus *Monilinia vaccinii-corymbosi*. The fungus overwinters in mummified fruit on the ground. Spores of the fungus infect young tissue and cause rapid wilting, also called leaf and twig blight, or bud and twig blight which is difficult to distinguish from frost injury. The fungus also infects the developing fruit causing it to become malformed, resembling a pumpkin, and turning salmon or grey by midsummer. By fall, these fruit drop to the ground where they turn to mummies, ready to produce spores the next spring.

Botrytis Blight/Gray Mold. The fungus *Botrytis cinerea* causes ripening fruit to rot with a typically gray, moldy cast. The fungus also causes a stem canker which is similar to that caused by other fungi. Cultivars with tight fruit clusters are more prone to gray mold.
Anthracnose. Caused by the fungus *Colletotrichum gloeosporioides*, anthracnose primarily rots fruit, but also infects twigs and spurs. The disease causes a soft, sunken berry rot, usually on the calyx end, which ruins fruit quality. The fungus may produce a salmon or rust-colored mass of spores on the rotted berry. Anthracnose can also cause a post-harvest fruit decay and is favored by warm, wet weather.

Iron Chlorosis. This abiotic disease appears as chlorotic (yellow) and stunted plants. The major cause of chlorosis is planting on a site with pH levels above 5.5. The best soils for blueberries are well-drained sandy silt loam or silt loam, with a pH of 4.5 to 5.2, organic matter of 4 to 7% and adequate phosphorus and potassium. Blueberries with iron deficiency will be growing under stress and be more susceptible to many of the canker diseases.

Blueberry disease management.

- To avoid Phytophthora root rot disease, choose a site that is well-drained or install tiles or raised beds to improve drainage.
- Choose a site that receives full sun with no shade.
- Determine in advance if soil buffering capacity will allow soil pH adjustments. Begin soil pH adjustments a year or two before planting.
- Select disease-resistant cultivars where they are available.
- Purchase only healthy, disease-free, virus-indexed plants from a reputable nursery.
- Sanitation is essential; remove and destroy canker-infected canes and branches.
- A dormant application of lime sulfur may be helpful in canker disease management.
- If mummy berry disease is a problem: before bud break, rake up and burn mummies or cultivate between rows or apply at least 2 inches of mulch to bury them.
- To reduce fruit rot disease, use pruning practices such as removing old canes and twiggy wood to promote improved ventilation and sunlight penetration.
- Avoid unnecessary wounding; remove old and weak stems; remove badly diseased plants.
- Avoid use of excess nitrogen fertilization; do not fertilize in late summer.
- Control weeds to improve drying of the fruit and foliage.
- Water plants during dry periods to reduce stress.

In some circumstances, canker diseases have devastated Kentucky blueberry plantings. In most of these instances, plants were growing under stressful conditions such as drought or high pH soils. For most Kentucky locations, blueberry diseases are not a serious problem as long as the site is well-drained, the soil pH is near 5.0, the soil has adequate organic matter, good sanitation pruning practices are used, and the plants are watered regularly during dry periods. With good growing conditions and following good cultural control practices, use of fungicides can be minimized.

GRAIN SORGHUM

WORMS (AND OTHER INSECTS) IN GRAIN SORGHUM

by Doug Johnson

Several reports of “worm” infestations of in grain sorghum or “milo” have come in. We have three problem worms in this crop in Kentucky. Two, the corn earworm and the fall armyworm are active now (but will get worse), the third, sorghum webworm prefers the cooler weather of September.

If your grain sorghum has not “headed out” yet, see the article on Sorghum Midge in this issue.

Soybean podworms range from ¾” up to 1½” in length. They are usually tan to pale green with several dark stripes down the back. However, color may be quite variable, with some individuals almost black. FAW usually are darker than SPW, have a strip down the side which contains some red or pink splotches (CEW doesn’t) and have an inverted ‘Y’ on their heads (again CEW does not have this).

Fall armyworm will infest whorl stage milo and may be found in mixed populations with corn earworm when the head emerges. This worm is a very bad pest of corn, but is not as damaging to grain sorghum. Milo is just a tougher plant.

Fall armyworm damage to milo will look very much like corn damage. At first you will see “hot hole” feeding that looks like corn borers. Following that stage, feeding damage will be larger and more ragged. Many FAW will be found in each plant.

Insecticidal treatment is warranted if 50% or more of plants have FAW infestations, in the whorl stage. Control problems much like they are in corn. You must get spray down into the whorl to get good control. Us a flooding nozzle over the row and as much water as you can carry. For recommended insecticides see ENT- 24.

Corn earworm may be found as a foliar feeder of grain sorghum, but this is a bit unusual. CEW is usually a pest.
of the grain head, and will be much more common as surrounding corn fields begin to mature. CEW moths will leave maturing corn and look for later developing crops like grain sorghum and soybean (where we call it the soybean podworm).

Insecticidal control for corn earworm in grain sorghum should be made if you find on average 2 small worms per head.

If you have mixed populations of CEW and FAW the use the 50% infested plants for whorl stage, and 2 small worms per head during the head filling stages, to trigger an insecticidal control.

All of our insecticide recommendations can be obtained from your County Extension Office or on line: http://www.uky.edu/Agriculture/PAT/recs/rechome.htm

SORGHUM MIDGE ON GRAIN SORGHUM
by Doug Johnson

The sorghum midge has the potential to be a devastating pest on grain sorghum. The pest is usually the greatest problem on late planted sorghum, and in sorghum fields that are sequentially planted. Generally speaking, sorghum planted as a double crop, or planted late because an original corn planting was lost will be at greater risk than early full season plantings. Also the further south and west sorghum is grown in Kentucky, the higher the risk. This is because of the more “southern” climate, as opposed to central Kentucky. Johnson-grass is also a host for this pest so infested fields will be more at risk than fields clear of Johnson-grass.

Sorghum midge may be present in production fields from boot stage through the remainder of the year. However, midge is ONLY A PROBLEM DURING BLOOM !! The sorghum midge lays its eggs in the open bloom. The maggot hatches and immediately enters the kernel, hollowing the kernel out from the inside. No damage will be seen until much later in the season when the kernels begin to fill out.

Sorghum midge is a very small fragile fly. This 1/8” long orange insect may be confused with winged aphids. However, most of the aphids will be black or dark green. Also when winged aphids appear colonies and un-winged individuals will be present.

Scout for Sorghum midge early in the day generally before 10 AM. They will not be present in the hottest part of the day. Check twenty heads in each location. Place a clear plastic bag over the head and shake the head. Carefully remove the bag and examine it against a light background.

Look for small, orange, fly-like insects.

The treatment threshold is an average of one, sorghum midge per head. If you detect a population equal or greater DURING SORGHUM BLOOM an insecticide application should be considered.

Midges are not difficult to control. See ENT-24 for insecticides that may be used. You will not see symptoms until it is too late!

VEGETABLES

SQUASH VINE BORER ACTIVE
by Ric Bessin

The squash vine borer is a key pest of winter squash, gourds and pumpkins in Kentucky. Unfortunately, it is usually noticed only after it has done its damage. Symptoms appear in mid-summer when a long runner or an entire plant wilts suddenly. Infested vines usually die beyond the point of attack.

Sawdust-like frass near the base of the plant is the best evidence of squash vine borer activity. Careful examination will uncover yellow-brown excrement pushed out through holes in the side of the stem at the point of wilting. If the stem is split open, one to several borers are usually present. The caterpillars reach a length of 1 inch and have a brown head and a cream-colored body.

The adult squash vine borer is a stout dark gray moth with ‘hairy’ red hind legs, opaque front wings, and clear hind wings with dark veins. Unlike most moths, they fly about the plants during the daytime, appearing more like a paper wasp than a moth. Adult moths begin to emerge about the time the plants begin to run, and moth flight continues through mid August. The small brown eggs, laid individually on leaf stalks and vines, hatch in seven to 10 days. The newly hatched larva immediately bores into the stem. A larva feeds for 14 to 30 days before exiting the stem to pupate in the soil.

The key to squash vine borer management is controlling the borers before they enter the stem. Once inside the vine, insecticidal control is ineffective. Poor timing of sprays is the usual cause of inadequate control. Monitor plants weekly from mid-June through August for initial signs of the borer’s frass at entrance holes in the stems. Very early signs of larval feeding indicate that other eggs will be hatching soon. Use two insecticide applications 7 days apart to control newly hatching larvae and continue to monitor for additional activity. Sprays need to penetrate the canopy to cover the vines to be effective.
EMERALD 70WG™, A NEW FUNGICIDE FOR GOLF COURSE TURFGRASSES
by Paul Vincelli

A new fungicide, called Emerald 70WG™ (active ingredient boscalid), received a federal label on 21 Jul 03 for use on turfgrasses in golf courses. State labels are actively being pursued by the manufacturer, BASF Corporation, and should be in place when sales begin.

Emerald 70WG is labeled only for use on golf course turfs; it is not labeled for other turf uses nor for other crops. Emerald 70WG is labeled for control of dollar spot and bentgrass dead spot. Dollar spot is much, much more common in Kentucky than is bentgrass dead spot. Indeed, more fungicide is used for dollar spot control than any other turfgrass disease, so it is significant that boscalid has a different biochemical mode of action from other dollar spot fungicides. What this means is that boscalid poisons the cells of the dollar spot fungus in a way that is different from DMI fungicides (Banner, Eagle, etc), benzimidazoles (Cleary’s 3336, etc), or dicarboximides (Chipco 26GT, Vorlan, etc). This is important for two reasons:

• Emerald 70WG can be used in rotation with fungicides in these other groups, to reduce the risk of resistance to each of them. Basically, the advent of Emerald 70WG gives the superintendent more spray options for rotating among fungicides. This should help reduce the risk of resistance buildup to any one of these chemistries.

• Emerald 70WG provides a new fungicide that can be used in those locations with resistance to DMI fungicides, benzimidazole fungicides, and/or dicarboximides.

For dollar spot control, Emerald 70WG is labeled at 0.13 to 0.18 oz/1000 sq ft, to be applied at 14- to 28-day intervals. To BASF’s credit, they have been researching this product for several years at numerous locations including Kentucky, so there is a substantial (and growing) body of published work evaluating the efficacy of Emerald 70WG. In published reports, Emerald 70WG consistently has provided excellent control of dollar spot when used preventively at the 0.13 oz rate at 2-week intervals. Although the use of 0.18 oz for 3 to 4 weeks provided excellent control in several studies, disease control did sometimes slip at these extended intervals in other studies.

Boscalid is in a family of fungicides called “carboxamides” or “anilides”, which are regarded as having a moderate risk of resistance. In drafting the current label, BASF took a justifiably cautious approach by permitting only two sequential applications of Emerald 70WG before superintendents must rotate to another effective dollar spot fungicide. After that application has run its course, Emerald 70WG can be reapplied. I cannot stress enough how important it is to follow this guideline. It is mandated by the EPA-approved label, and it will reduce the risk of resistance buildup to boscalid on your course.

The label for Emerald 70WG provides a “Surface Water Advisory”, warning users of a potential to contaminate surface waters either by drift on a windy day or in surface runoff. There are several ways to reduce the potential for runoff: Have vegetated buffer strips between areas receiving application and surface waters, and minimize applications within 48 hours of forecasted rainfall.

WHAT ARE THOSE BIG YELLOW, ORANGE & BLACK THINGS?
by Mike Potter

Cicada killers have been flying around and burrowing into lawns, prompting calls from homeowners. Despite their menacing appearance (up to 2 inches long with rusty red head/thorax, amber-yellow wings, and black and yellow striped abdomen), the wasps seldom sting unless handled or molested.

Biology - Cicada killers do not live in communal nests like hornets or yellowjackets. They overwinter as larvae within cocoons deep in the soil, emerging as adults during July. The females feed, mate, and excavate burrows in the ground about ½ inch in diameter, ending in a series of brood chambers. Bare ground or sand are especially prone to infestation. Excess soil is pushed out of the burrow, leaving a U-shaped mound of dirt at the entrance. Each female excavates numerous burrows and provisions them with adult cicadas which she ambushes, paralyzes with her venom, and stuffs into individual brood chambers. She then lays an egg on top, backs out, and seals the cell behind her. The egg hatches within a few days and the hungry larva devours the offering, eventually transforming into an adult the following summer.

Management - Cicada killers seldom sting and the females normally do not defend their burrows. The males, while incapable of stinging, sometimes dive-bomb passers-by, or hover menacingly nearby. Insecticide treatment may be warranted where the soil burrows become unsightly or the wasps are digging in a high-traffic area, such as along a sidewalk, the entrance to a building, or a sand trap on a golf course. Individual burrows can be effectively sprayed or dusted with most lawn & garden insecticides (Sevin, Bayer Advanced Lawn & Garden Multi-Insect Killer, Spectracide Triazicide Soil & Turf...
Insect Killer, etc.) or a wasp & hornet aerosol spray. Large numbers of nests may need to be treated with a broadcast application to the ground surface, in which case an insecticide concentrate formulation will be most convenient applied with a pump up or hose-end sprayer.

As a long-term solution against future nesting, clients should be advised to eliminate bare-ground areas. Cicada killers generally do not prefer to burrow into well-managed turf, gravel, pebbles or mulch. In some situations, such as playgrounds, camping areas, or commercial landscapes, these materials can be substituted for sand or bare soil as a deterrent to future burrowing. The other option for now is to wait and do nothing – in a few weeks or so the adults will die off and there’s a chance the problem may not reoccur next year.

DIAGNOSTIC LAB HIGHLIGHTS
by Julie Beale and Paul Bachi

Last week in the Diagnostic Laboratory, we diagnosed boron deficiency on alfalfa; southern blight, stem canker (*Rhizoctonia*), downy mildew and manganese deficiency on soybean; maize dwarf mosaic virus on sorghum; angular leaf spot, blue mold, frogeye leaf spot, black shank, alfalfa mosaic virus, tobacco ringspot virus, and manganese toxicity on tobacco.

On fruits and vegetables, we diagnosed double blossom (rosette) on blackberry; cedar-apple rust and frogeye (*Botryosphaeria*) on apple; anthracnose and *Rhizoctonia* stem canker on bean; anthracnose on cantaloupe; powdery mildew on zucchini; bacterial canker, early blight, Septoria leaf spot, Fusarium wilt and blossom end rot on tomato.

On ornamentals and turf, we saw charcoal rot on chrysanthemum; leaf streak and anthracnose on daylily; Septoria leaf spot on dogwood; iron deficiency on oak; *Rhizosphaera* needle cast on spruce; summer patch on Ky. bluegrass; *Pythium* root rot and anthracnose on bentgrass; inflorescence smut on bermudagrass; and brown patch on tall fescue.

INSECT TRAP COUNTS

UKREC, Princeton KY

July 25-August 1, 2003

<table>
<thead>
<tr>
<th>Insect</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Cutworm</td>
<td>1</td>
</tr>
<tr>
<td>True Armyworm</td>
<td>18</td>
</tr>
<tr>
<td>Fall armyworm</td>
<td>35</td>
</tr>
<tr>
<td>European corn borer</td>
<td>2</td>
</tr>
<tr>
<td>Southwestern corn borer</td>
<td>139</td>
</tr>
<tr>
<td>Corn earworm</td>
<td>105</td>
</tr>
</tbody>
</table>

NOTE: Trade names are used to simplify the information presented in this newsletter. No endorsement by the Cooperative Extension Service is intended, nor is criticism implied of similar products that are not named.