Perennial *Poa* Suppression in Bentgrass Greens/Fairways/Tees

<table>
<thead>
<tr>
<th>Product</th>
<th>Rate/Acre</th>
<th>Repeat Treatments</th>
<th>Tank Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paclobutrazol</td>
<td>8-16 fl.oz. product</td>
<td>Each 3 Weeks Apr to Nov.</td>
<td>With 0.25 lbs. actual N/1000 sq ft</td>
</tr>
<tr>
<td>Trimmit 2SC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turf Enhancer 2SC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flurprimidol</td>
<td>8-16 oz. product</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutless 50W</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trimmit/Turf Enhancer/Cutless (abbreviated TTC)

1. TTC activity is similar to Primo except TTC gives greater growth regulation of *Poa* than bent.
2. If *Poa* is predominant species, use TTC unless *Poa* becomes extremely weak in hot summer and the bentgrass is not filling-in.
3. If little *Poa* is present, use either TTC or Primo for quality enhancement and growth regulation.
4. If *Poa* is predominant and desired, then only Primo will improve *Poa* quality.
5. Primo will give longer/greater bent growth regulation. TTC will not kill *Poa*, but will greatly regulate *Poa* growth.

Rate/Acre, 8-16 oz. product/acre

Rate is not critical for *Poa* suppression:
1. Can use higher rate to give slightly longer growth regulation of *Poa*.
2. May use lower rate in summer or when first initiating *Poa* program on greens.
3. Should use lower rate when *Poa* is dominant species and bent stand appears to be inadequate for grow-in.
4. May use lower rate or extend application interval when *Poa* appears to be greatly stressed/regulated in summer.
5. **LABEL RESTRICTION for paclobutrazol**: Maximum use rate of 128 fluid oz. product/acre/year.

Repeat Treatments, every 3 Weeks Apr to Nov.

1. Initiate treatments after spring green-up and quit when fall growth subsides.
2. If DMI fungicides are used, reduce the potential for over-regulation by omitting TTC for about 1 week prior or 1 week after DMI application. Check PPA – 1 www.ca.uky.edu/agc/pubs/ppa/ppa1/ppa1.pdf for a list of DMI fungicides.

N Fertilization – Rate of Soluble N, approximately 0.25 lbs N/1000 sq ft.

Bent growth must continue for successful conversion. Continue normal fertilizer program that includes granular, specialty turf fertilizers. Supplement the normal N program with TTC tank mix with soluble N for each treatment made.
---Applying 24 pounds of urea (46-0-0) fertilizer per acre is equivalent to 11 lbs actual N/acre or 0.25 lbs actual N/1000 sq ft.
---Applying 0.54 lbs of urea (46-0-0) per 1000 sq ft is equivalent to 0.25 lbs actual N/1000 sq ft.
---Other water soluble N products are available but be sure the N is mostly readily available and the labeled N rate is approximately equivalent to 0.25 lbs N/1000 sq ft.
Additional information:

(1) TTC will not control Poa seedheads, but may delay their appearance for one to three weeks. If Embark is used in early spring for seedhead control, delay TTC applications until 2 weeks after last Embark treatment.

(2) Summer applications are most effective in stressing and suppressing perennial Poa; fall applications are most effective in preventing Poa establishment from seed.

(3) Fall TTC applications will greatly suppress germinating Poa; therefore there is no proven need for fall pre-emerge applications if TTC is applied every three weeks - all fall.

(4) Apply ¼ inch irrigation within 24 hours after PAC applications and prior to clipping removal to achieve best efficacy.

(5) Delay aerification and topdressing until about 2 weeks after last TTC application; then delay next TTC application for another 1-2 weeks after aerification/topdressing.

(6) TTC applications should not increase common bent diseases such as dollar spot, brown patch or pythium, and will likely reduce dollar spot.

EXPECTATIONS:

(1) Turf Quality:
Expect some off-colored Poa at the onset of applications and onset of summer heat stress. Otherwise, all quality aspects will normally be similar to that of Primo. All PGRs tend to make Poa species mimic bentgrass, especially older, segregated bentgrass that has many differing genotypes. Therefore it is a waste of time and effort to try to evaluate success of the Poa program except during the spring flowering period (usually April and early May). At that time it is easy to differentiate Poa because of the presence of flowers, coarser textured leaves, lighter green color of most genotypes, and coarser stolons.

(2) Poa Reduction:
Except for excessive Poa contamination, this program will likely reduce Poa from 30-70% the first complete year. If significant Poa is removed during one year, the bentgrass will likely be coarse in texture and grainy, resulting in a thinner stand of bentgrass during the summer and early fall. Fine-textured, dark green Poa types will be most difficult to remove. The light green, coarse textured genotypes will likely go out the first year. If a large percentage of Poa is suppressed the first year, then a growth regulator for seedhead suppression may not be needed the following spring. Even though Poa may be significantly reduced the first full year of treatments, this program will be an on-going program. Poa is never completely eliminated and the original cause of Poa encroachment is not likely to have changed. Poa genotypes that survive the first or second year of treatments may continue to slowly increase. However, the overall % Poa cover is greatly reduced, its increase is very slow and the perennial genotypes that survive are often fine textured, dark green and have a very short spring flowering period.

On old greens with very large Poa patches, Poa reduction will be much slower because bentgrass competition must occur from the outside edge of the Poa patches, and not necessarily from within the Poa patch. Most often however,
you will immediately see many recovering bentgrass tillers growing from within the Poa patch. On bentgrass fairways that are heavily infested with perennial Poa, current research includes a combination of TTC and Velocity (bispyribac-sodium); which may be effective to more rapidly reduce all Poa types from bentgrass.

Revised November 2008