Alternative and Strategic Evaluation and Approaches for Injection Well Development for Western Kentucky CO$_2$ Storage

Presentation to Kentucky Consortium for Carbon Storage (KYCCS)

February 21, 2008

Presented by:

Phil Papadeas, PG -- Sandia Technologies, LLC
Items for Discussion

- Project Goals and Strategic Approaches
- Drill new Well approach
- Re-entry Well Approach- single or multiple wells
- Project Efficiencies-Allocations
- Risk Assessment & Chance of Success, Measuring Success
- Estimated Costs
- Public Visibility, Partner Goals, Organization Goals
- Summary
Project Goals and Strategic Approaches

• **Goal:**
 – Prove injection intervals and storage reservoirs to develop a CO₂ sequestration storage industry
 • Prove capability of Knox Ls and/or Mt. Simon as Injection Intervals

• **Objectives:**
 – acquire and integrate new geologic data on deep reservoirs and interval capability
 • Challenge of Limited Geologic borehole data and knowledge across large areas of KY; Carbonate terrain is complex

• **Funds constraint – drives an Innovative Assessment:**
 – Drill new Well vs. Well Re-entry Approach

• **Alternative Plan**
 – Consider 2 geographically separated re-entry wells of equal risk/chance of success. There is more potential offering a better overall project chance of success with considerably more risk management incorporated.
Drill new Well approach

• Advantages/Disadvantages
 – Home Run – Excellent Interval, \textit{generally rare}
 – Risk of limited or no success, no injection interval present
 – Seismic based location, or offset geology twin, \textit{helpful, not magic}
 – Assume 8,000 ft TD to get to Knox and Mt. Simon

• \textbf{Total of 5.745 MM} (w/10\% contingency)—Conservative Estimate
 – 42 days drilling, 4.36 MM drill 8,000’
 – + completion, 0.488 MM; set 5-1/2 casing, equipment
 – + testing, 0.770 MM

• Risk is all ‘ eggs in one basket’ philosophy
 – Need detailed geology, offset twin geology, seismic evaluation to minimize risk present – \textit{we do not have pure quality of exploration data to warrant this approach}—pwp & Sandia personal opinion

• Game over if no interval or success or limited success
• Funds not Present for this approach
Re-entry Well Approach

- Advantages/Disadvantages
 - Candidate Parameters
 - Single Re-entry or Multiple Well Re-entries
 - Help Manage risk via multiple wellbore evaluation approaches, integrated information, leverage from offset or remote boreholes
 - Based on key offset detailed geologic assessment, or direct correlation of candidate injection intervals with porosity
 - Based on wellbore condition, target depth and size of casing
 - Assumes Multiple (2) work overs, re-entry, drill deeper combination
 - Assumes open-hole test, logging, DST, coring
 - Set casing only if favorable for extended injection testing or future CO₂
 - Estimated costs of $ 0.6 MM per well re-entry to pre-existing depth, assumes depth of ~ 4,000 ft, log and prepare to drill new borehole
 - Est. Incremental Costs + < $ 0.7 - 1.0 MM drilling deeper from 4,000 to 8,000’ TD, log, openhole test
 - If interval favorable -- + casing $ 0.2 MM
 - Est. Totals for Re-entry, drill deeper, completion, test = $ 1.8 MM per well Candidate
 - If new deeper interval(s) not favorable -- Risk only $ 0.7 - 1.0 MM total; however a shallower interval maybe identified in < 4,000’ borehole
Re-entry Well Approach (cont’d)

• Advantages/Disadvantages
 – Primary Risk is in initial Borehole Re-entry due to Junk and potential Obstructions, collapsed casing, cement plugs, etc.
 • Can cut losses if well cannot be re-entered, apply unused funds to other Candidates
 – Secondary Risk is in Drilling New Borehole; acquiring data, testing, etc.
 • If drilled deeper interval not favorable -- Risk only $1.0 MM total

• Efficient Allocation of funds allow re-entry, drill deeper, testing of 1-2 wells with various data gathered

• Consider up to 2 well Re-entries, select Candidates that meet criteria and may be within a geologic fairway for Knox, Mt. Simon porosity-permeability development

• Scalable testing, can perform as little basic data acquisition to as much as evaluation as funds allow
Project Efficiencies-Allocations

• A single New Well is good for a larger budget, can prove an interval using managed data and acquisition (seismic, geology integration), with selection of favorable location to narrow risk.
 – Sparse data yields essentially a Wildcat to TD
 – May take more than one well for success

• Drilling; Logging; Testing (up to 2 re-entry wells)
 – Selection of favorable location(s) via subsurface geology, interval correlation, seismic, and all available integrated data sets
 – Wildcat from original well TD to new drilled well TD

• Tubular & Services purchases (multiple wells, i.e. 2) offer discounts

• Work over vs. Drilling Costs
 – Day rate $10-12,000 vs. $20,000 (e.g. 7 days workover ~ 3.5 days drilling)
 – Pricing is efficient, competitive for 2 + wells
 – Can buy more testing with workover Re-entry approach vs. New Well Drilling approach
Risk Assessment & Chance of Success

Re-entry

- Low-hanging fruit -- Secure gains or success in proving candidate injection interval as identified from original re-entry well(s); logs, offset well data
- Incremental risk of drilling deeper is managed with successful test of pre-existing upper openhole interval
 - re-entry and deepening of original well to a TD sufficient to see basal Knox Ls and upper Mt. Simon offers new data, evaluation
- Can collect new information via existing wellbores
 - New logs, cores, data, DST, injection test, pressure data
 - Supplements known universe of data, adds to knowledge set
- Options to test 1 or both wells – openhole fashion to reduce costs
 - No casing, openhole testing philosophy, casing only to be set if interval good off log, or DST or cores, or if injection test warranted it – extended testing
- 2 well Re-entry provides 2 new data points, acquisition of geologic, interval and formation data, tie-in to offset well(s)
Estimated Costs

- **New Well** = $5.745 MM vs. **2 Re-entry Wells** = $3.6 MM

- **1 Well Re-entry** *(separate location or county)*
 - Assumes re-entry of ~ 4000’ borehole into Knox Ls
 - Test existing original drilled hole if log indicates favorable interval(s)
 - Drill and Deepen new hole from 4000’ to 8000’ ~ Knox to Mt. Simon
 - Logging, coring, testing *(if warranted)*
 - Estimated Costs = $0.6 + $1.0 + $0.2 MM = $1.8 MM

- **2nd Well Re-entry** *(separate location or county)*
 - Assumes re-entry of ~ 4000’ borehole into Knox Ls
 - Test existing original drilled hole if log indicates favorable interval(s)
 - Drill and Deepen new hole from 4000’ to 8000’ ~ Knox to Mt. Simon
 - Logging, coring, testing *(if warranted)*
 - Estimated Costs = $0.6 + $1.0 + $0.2 MM = $1.8 MM

- Can have options to limit testing to Knox, with no Mt. Simon but not recommended; must assess the Mt Simon, since data may attract funding from DOE, operators in the area.
- Can hold interval(s) open, deferred for later extensive testing with CO₂
Public Visibility, Partner & Organization Goals

• High Visibility, typically have 1 – shot to make it work; limited funds

• There is corporate pressure, lots of public visibility to show success by finding a suitable injection interval
 – Geology does not always cooperate….
 – Heterogeneity Rules!!

• Consider dedicating and using limited funds toward re-entry of up to 2 wells, testing, evaluation, etc.
 – Base well locations on key offset detailed geologic assessment, correlation of candidate injection intervals with porosity

• Re-entry gives data population, adds 2 wells to integrate into subsurface geologic assessment, identify favorable fairways
 – may offer 1 or 2 favorable locations or 1 or 2 favorable intervals
Suggested Steps for Re-entry Candidates

• Select County-Counties
 – Identify all Knox & Mt. Simon penetration wells
 – Identify all wells ~ 3 to 4,000 feet for Re-entry with suitable casing size, depth, etc.

• Perform Detailed Geology
 – Structure, Isopach, Cross Sections-regional/local
 – Correlatable intervals, net porosity, permeability, core data
 – Predict depths, tops of Knox, Mt. Simon
 • Base location on favorable Knox Ls intervals originally logged in re-entry well
 • Integrate DST data, logs, carbonate textures, features, breccias, fractures, etc.
 • Integrate all geologic data

• Integrate Available Seismic data
 – Check Seismic lines, for formations, basement, tie in well(s)

• Search data for DSTs, cores, logs, porosity sections
Summary

• Re-entries offer more ‘Bang for the Testing Buck’ $$$
• Spread or hedge risk with 2 wells, geographically separated, evaluating multiple formations—Knox, Mt. Simon
• Data Collection, Acquisition critical to assessment
• ‘Piggy back’ on known leads -- geologic porosity or interval leads, identifying favorable areas, fairways
• Utilize all area data, with an integrated approach
Potential Re-entry Test Plan

Stage 1
- Plug 1
- Plug 2
- Plug 3

Stage 2
- Re-enter & re-Log interval
- Drill Deeper

Stage 3
- Logging New Openhole 4000 – 8000’ DSTs, Logs, Cores

Stage 4
- Openhole Testing Packer, short term Injection tests

Stage 4a
- Set Casing Extended Testing
 - Openhole slotted liner Completion Injection tests
Potential Re-entry Test Plan

Stage 1
- Re-enter & re-Log interval
- Require 8-5/8-inch Surface or Intermediate Casing
- Drill out Cement Plugs
- Wash to bottom, 4000'
- Re-Log Well if original Log not acceptable
- Test intervals if present DST, Horiz Cores,
- Openhole Injection Test

Stage 2
- Re-entry & Drill Deeper
- Require 8-5/8-inch Surface or Intermediate Casing
- Drill new borehole (Air) Using 8-1/2; 8 or 7-7/8-inch To TD of ~ 8,000 ft Thru Knox Ls, top 2-300' Mt. Simon
- Log Well, Platform Express Add DSSI Horizontal Cores DSTs MDT Openhole Injection Test
Summary Criteria for a Suitable Injection Interval

Injection Interval

- Favorable Primary Reservoir Porosity & Permeability in Sandstone Clastic Matrix.
- Favorable Primary & Secondary Reservoir Porosity & Permeability in Limestone-Dolomite formations, with associated fractures, oolites, biohermal features, etc.
- Combination of suitable primary and Secondary porosity and permeability development.
- Connected Fracture networks, dolomitization processes in carbonate rocks.
- Presence of Karstification, collapse breccias, erosional surfaces, weathering features in formations. Prevalent in Knox and Cambro-Ordovician formations.
- Distance to major faulting may affect the fracture potential of the formations.
- Horizontal Wellbore may enhance kh and injectivity of the interval