Strategies for Characterizing Shallow Soil Gas Flux and Chemistry, Blan Farm, Hancock County, Ky.

Investigators:

Marty Parris and Michael P. Solis

Kentucky Energy and Environment Cabinet, UK Environmental Research and Teaching Laboratory, Isotech Laboratories Penn State University

Monitoring, Mitigation, and Verification (MMV)

- MMV—portfolio of geophysical, geochemical, geological, and engineering techniques used to accurately document the fate of CO₂ injected into subsurface reservoirs.
- DOE's perspective—successful sequestration means that 99% of injected CO₂ remains in the reservoir for geologically significant time periods.
- For surface and near-surface soil gas measurements to be effective as an MMV tool, need to understand natural carbon cycle and its variability." (GEO-SEQ, 2004)

Soil Gas Chemistry Objectives

- Develop pre-injection database characterizing atmospheric, biologic, and geologic (microseepage) contributions to soil gas flux and chemistry
- Use database to resolve anomalies, if any, during injection and post-injection phases
- Evaluate influence of basin specific factors on soil gas flux and chemistry, e.g. shallow coals and reclaimed mine lands
- The challenge: resolve microseepage signal << biologic and atmospheric signal</p>

Blan Farm Geologic Setting

Shallow (< 1 m) Measurements

Shallow Soil Gas Chemistry

- Measured bulk (CO₂, CH₄, C₂H₆, C₃H₈) and carbon isotopic composition (δ¹³C-CO₂)
- Duplicate measurements per location at 30, 60, 100 cm
- Bulk and isotopic atmospheric composition also measured
- Characterize season variation and anthropomorphic influences

Shallow Soil Gas Chemistry

Collecting soil gases in Robinson Forest, fall 2005

Soil Gas Flux

- Measure fluxes using closed chamber method
- CO₂ flux measured directly w/ Licor LI-8100 equipped w/ infrared gas analyzer
- CH₄ flux determined indirectly by measuring change in chamber composition w/ time
- Triplicate flux measurements per location to capture variability

Average W06, S06 Soil Gas CO₂

CO₂ Concentration (ppmv)

Average W06, S06 Soil Gas CH₄

KGS

CO₂ and CH₄ Fluxes

- Positive CO₂ fluxes measured at all locations
- Summer (avg.= 15.7±6.2 grams/m²/day, n= 84) > winter (avg.= 4.6±0.8 grams/m²/day, n=83)
- For CH₄, most chamber locations (65%, n= 106) showed no consistent decrease or increase w/ time
- 28% (n= 46) showed negative CH₄ flux (avg.= 1.69±1.5 grams/m²/day)
- 7% (n= 11) showed positive CH₄ flux (avg.= 1.31±1.4 grams/m²/day)

Soil Gas Anomalies and Microseepage

- Positive CH₄ fluxes in oxidized soils
- Soil gas CH₄ concentrations consistently > atmospheric in oxidized soils
- Enriched δ¹³C-CO₂ values relative to atmosphere-soil organic matter mixing line
- Presence of light hydrocarbons (e.g. C₂H₆, C₃H₈)

Reclaimed Mine Lands and MMV

KGS