
# WATER QUALITY IN THE KENTUCKY RIVER BASIN

# **DANIEL I. CAREY**



KENTUCKY GEOLOGICAL SURVEY Donald C. Haney, State Geologist and Director UNIVERSITY OF KENTUCKY, Lexington

in cooperation with The Kentucky River Authority INFORMATION CIRCULAR 37 Series XI, 1992

### DISCLAIMER

The Kentucky Geological Survey provides online versions of its publications as a public service. Publications are provided as Adobe PDF (portable document format) files. Hard-copy versions are available for purchase by contacting the Survey at:

Kentucky Geological Survey Publication Sales Office 228 Mining and Mineral Resources Building University of Kentucky Lexington, Kentucky 40506-0107

Phone: 606-257-5500 Fax: 606-257-1147

Selected KGS reports published before 1999 have been scanned and converted to PDF format. Scanned documents may not retain the formatting of the original publication. In addition, color may have been added to some documents to clarify illustrations; in these cases, the color does not appear in the original printed copy of the publication. Every effort has been made to ensure the integrity of the text. KGS maps and charts are supplied either whole or in part and some are too large to be printed on most plotters. Open-file reports are reproduced from the best available copy provided by the author, and have not undergone KGS technical or editorial review.

The Kentucky Geological Survey disclaims all warranties, representations, or endorsements, expressed or implied, with regard to the information accessed from, or via, this server or the Internet.

ISSN 0075-5583

KENTUCKY GEOLOGICAL SURVEY UNIVERSITY OF KENTUCKY, LEXINGTON Donald C. Haney, State Geologist and Director in cooperation with THE KENTUCKY RIVER AUTHORITY

# WATER QUALITY IN THE KENTUCKY RIVER BASIN

**Daniel I. Carey** 

**INFORMATION CIRCULAR 37** Series XI, 1992

#### UNIVERSITY OF KENTUCKY

Charles T. Wethington, Jr., President Linda J. Magid, Vice President for Research and **Graduate Studies** Jack Supplee, Director, Fiscal Affairs and Sponsored **Project Administration** KENTUCKY GEOLOGICAL SURVEY ADVISORY BOARD Steve Cawood, Chairman, Pineville John Berry, Jr., Turners Station Larry R. Finley, Henderson Hugh B. Gabbard, Richmond Kenneth Gibson, Madisonville Wallace W. Hagan, Lexington Phil M. Miles, Lexington W. A. Mossbarger, Lexington Henry A. Spalding, Hazard Ralph N. Thomas, Owensboro George H. Warren, Jr., Owensboro David A. Zegeer, Lexington KENTUCKY GEOLOGICAL SURVEY Donald C. Haney, State Geologist and Director John D. Kiefer, Assistant State Geologist for Administration James C. Cobb. Assistant State Geologist for Research

#### ADMINISTRATIVE DIVISION

Personnel and Finance Section: James L. Hamilton, Administrative Staff Officer II

Clerical Section: Marilyn J. Wooten, Staff Assistant VII Jody L. Fox, Staff Assistant VI Shirley D. Dawson, Staff Assistant V Eugenia E. Kelley, Staff Assistant V Juanita G. Smith, Staff Assistant V, Henderson Office

Publications Section: Donald W. Hutcheson, Head Margaret Luther Smath, Geologic Editor III Terry D. Hounshell, Chief Cartographic Illustrator Richard A. Smath, Geologist III, ESIC Coordinator Robert C. Holladay, Principal Drafting Technician Michael L. Murphy, Drafting Technician William A. Briscoe, III, Publication Sales Supervisor Roger S. Banks, Account Clerk II Kenneth Otis, Stores Worker

#### **GEOLOGICAL DIVISION**

#### Coal and Minerals Section:

James C. Cobb, Head Garland R. Dever, Jr., Geologist VII Donald R. Chesnut, Jr., Geologist V Cortland F. Eble, Geologist V David A. Williams, Geologist V, Henderson Office Warren H. Anderson, Geologist IV Gerald A. Weisenfluh, Geologist IV Stephen F. Greb, Geologist III Jude Cecil, Geologist I

Petroleum and Stratigraphy Section: James A. Drahovzal, Head Martin C. Noger, Geologist VII Terence Hamilton-Smith, Geologist V Patrick J. Gooding, Geologist IV David Harris, Geologist IV Brandon C. Nuttall, Geologist IV Dan Walker, Post-Doctoral Scholar Robert R. Daniel, Laboratory Technician B David E. McFadden, Senior Laboratory Assistant Frances Benson, Staff Assistant IV Luanne Davis, Staff Assistant IV Theola L. Evans, Staff Assistant IV

Water Resources Section: James S. Dinger, Head James A. Kipp, Geologist V Daniel 1. Carey, Hydrologist IV James C. Currens, Geologist IV David R. Wunsch, Geologist IV Alex W. Fogle, Hydrologist III Philip G. Conrad, Geologist II Dwayne Keagy, Geologist II Shelley Minns, Research Assistant

Computer and Laboratory Services Section: Steven J. Cordiviola, Head Richard E. Sergeant, Geologist V Joseph B. Dixon, Systems Programmer Henry E. Francis, Associate Scientist Zhalet Baharestan, Senior Research Analyst Xenia Culbertson, Research Analyst Edward H. Heeg, Senior Laboratory Technician Steven Mock, Senior Laboratory Technician Mark F. Thompson, Research Analyst

# FOREWORD

Water-quality management decisions, which touch the lives of everyone either directly or indirectly, must be based on public consensus to be effective. Obtaining a consensus on issues that are of common concern but extend beyond the boundaries of individual communities will require that the public be provided with information from which to make informed judgments. Information must be provided in understandable, non-technical language. This report provides a starting point from which to begin evaluating water-quality issues in the Kentucky River Basin. The impetus for this summary was provided by the Kentucky River Authority, which, by statute, bears the ultimate burden of responsibility for water-quality maintenance in the basin.

The Kentucky River and its tributaries provide the life blood to the body of the basin. The streams provide sustaining water for communities, commerce, and agriculture. They also provide sustenance for the spirit through their natural beauty and recreational opportunities--boating, swimming, and fishing. The streams also convey wastes from the body of the basin-human and animal wastes, grease, oil and combustion by-products flushed from city streets, industrial wastes, pesticides, herbicides and fertilizers from home and farm use, natural detritus, and countless others.

Five hundred years ago perhaps 3,500 people lived in the basin, and their activities had little impact on streams. Today, about 600,000 people live in the basin, and streams in many areas are polluted.

For the past 20 years, more and more regulations have been developed in an attempt to control the dumping of wastes into streams. During that time population and developmental pressures have increased. Environmental control and the treatment of wastes have become more complex and more costly. Environmental agencies seem to lack the resources to adequately address the current issues (Kentucky Department for Environmental Protection, 1989). Continued population growth and development will require even more resources to treat wastes and to regulate waste disposal.

The amount of waste a stream can absorb and still provide clean water is limited. There are also practical limits to waste treatment: it is not possible to remove 100 percent of the wastes before discharge to a stream. Therefore, the total amount of wastes that can be generated and satisfactorily treated is limited.

Sources of pollution that do not enter streams at known points, such as runoff from agricultural areas, are difficult, if not impossible, to control. Such nonpoint sources significantly affect water quality. It has become clear that in addition to regulating discharges to streams, activities that can produce pollutants that will be washed to streams or drained to ground water must also be managed. The responsible use of pesticides, herbicides, and fertilizers, for instance, will reduce the amount of these chemicals entering streams and ground water. Impacts on water quality must also be considered when deciding issues of industrial or commercial development, population growth, and land use. Locating new development outside of sensitive ground-water recharge areas or away from overloaded stream segments will also help maintain water quality.

New institutional and financing approaches will also be required to effectively manage water quality. Economists and environmentalists have explored a variety of pollution-control and prevention policies based on economic incentives. These approaches need to be further examined for application to Kentucky. New approaches and financing methods for waste treatment in small municipalities and rural areas are also needed.

A comprehensive water-quality management plan must incorporate an entire river basin. A first step in the Kentucky River Basin would be to establish general water-quality policies based on a consensus of interested parties within the basin. These policies could provide the basis for the development of water-quality management plans that would reflect both local and basinwide issues and concerns. Water-resource management decisions will not be easy or always popular, but will be necessary to create an environment that will enhance the quality of life in the basin.

# CONTENTS

# Page

| Foreword i                                        | i |
|---------------------------------------------------|---|
| Abstract                                          |   |
| Abstract                                          |   |
|                                                   |   |
| Designated Uses of Streams 2                      |   |
| Chemicals and Bacteria                            |   |
| Life in Streams                                   |   |
| Water Quality of Individual Basins and Streams    |   |
| North Fork of the Kentucky River Basin            |   |
| Buckhorn Creek Watershed 10                       |   |
| Troublesome Creek Watershed 10                    |   |
| Carr Fork Watershed                               |   |
| Laurel Fork Watershed                             |   |
| Middle Fork of the Kentucky River Basin 11        |   |
| Greasy Creek Watershed 14                         | ŧ |
| Cutshin Creek Watershed 14                        |   |
| Squabble Creek Watershed 14                       | 1 |
| South Fork of the Kentucky River Basin 14         | 4 |
| Goose Creek Watershed 16                          | 3 |
| Red Bird River Basin                              | 7 |
| Sexton Creek Watershed 17                         | 7 |
| Buck Creek Watershed 17                           | 7 |
| Kentucky River Basin from South Fork to Red River |   |
| Sturgeon Creek Watershed 19                       |   |
| Millers Creek and Ross Creek Watersheds 20        |   |
| Station Camp Creek Watershed 20                   |   |
| Red River Basin                                   |   |
| Middle and South Forks of the Red River 21        |   |
| Kentucky River Basin from Red River to Ohio River |   |
| Silver Creek Watershed                            |   |
| Jessamine Creek Watershed 24                      |   |
| Dix River Basin                                   |   |
| Elkhorn Creek Watershed                           |   |
| South Elkhorn Creek Watershed                     |   |
| Eagle Creek Watershed                             |   |
| Summary of Water Quality                          |   |
|                                                   | • |

# CONTENTS (continued)

| P                                                                                                       | age |
|---------------------------------------------------------------------------------------------------------|-----|
| Regulatory Activities                                                                                   | 29  |
| Responsibilities                                                                                        | 29  |
| Issues                                                                                                  | 29  |
| Division of Water Action Plans, 1990–1992                                                               | 29  |
| Compliance and Enforcement                                                                              | 29  |
| Toxin Control Strategies                                                                                | 30  |
| Plan of Action                                                                                          | 30  |
| Controlling Chlorides                                                                                   | 30  |
| Plan of Action                                                                                          | 30  |
| Storm Water and Combined Sewer Permits                                                                  | 30  |
| Plan of Action                                                                                          | 30  |
| Waste-Water Treatment Facilities                                                                        | 31  |
| Plan of Action                                                                                          | 31  |
| Drinking–Water Management                                                                               | 31  |
| Plan of Action                                                                                          | 31  |
| Ambient Monitoring                                                                                      | 31  |
| Plan of Action                                                                                          | 32  |
| Nonpoint Sources of Water Pollution                                                                     | 32  |
| Plan of Action                                                                                          | 32  |
| Regulatory Development                                                                                  | 32  |
| Plan of Action                                                                                          | 32  |
| Summary of Regulatory Activities                                                                        | 32  |
| Conclusions                                                                                             | 32  |
| References Cited                                                                                        | 34  |
| Glossary                                                                                                | 35  |
| Appendix A: Streams, Lakes, Wetlands, and Ground Waters Affected by Nonpoint–Source           Pollution | 37  |
| Appendix B: Percentage of Water–Quality Measurements Not Meeting Criteria                               | 45  |
| Appendix C: Selected Kentucky Surface–Water–Quality Criteria                                            |     |
| Appendix D: Selected EPA Water–Quality Criteria for Fresh–Water Aquatic Life                            |     |
| Appendix E: Selected EPA Drinking–Water Standards                                                       | 56  |
| ··· · ·                                                                                                 |     |

# **ILLUSTRATIONS**

# Figure 1. Locations of surface-water-quality sampling sites in the Kentucky River Basin at which 10 or more samples were collected, 1976-86 ..... 6 3. Middle Fork of the Kentucky River Basin ..... 12 4. South Fork of the Kentucky River Basin ..... 15 6. Basin of the Kentucky River from the Red River to the Ohio River ...... 22

# **TABLES**

| Table | e P                                                                                                                                 | age |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.    | Stream-Use Designations in the Kentucky River Basin                                                                                 | . 2 |
|       | Streams in the Kentucky River Basin That Do Not Support Designated Uses                                                             |     |
|       | Summary of Fish-Kill Investigations in the Kentucky River Basin in 1988-89                                                          |     |
| 4.    | Surface–Water–Quality Sampling Sites in the Kentucky River Basin                                                                    | . 7 |
| 5.    | Streams Not Fully Supporting Aquatic Life and Recreation in the North Fork of                                                       |     |
|       | the Kentucky River Basin in 1990                                                                                                    | 10  |
|       | Water–Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in North Fork of the Kentucky River Basin           | 10  |
| 7.    | Streams Not Fully Supporting Aquatic Life and Recreation in the Troublesome Creek Watershed in 1990                                 | 13  |
| 8.    | Streams Not Fully Supporting Aquatic Life and Recreation in the Middle Fork of the Kentucky River Basin in 1990                     |     |
| 9.    | Water–Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in Middle Fork of the Kentucky River Basin          |     |
| 10.   | Streams Not Fully Supporting Aquatic Life and Recreation in the Cutshin Creek                                                       |     |
|       | Watershed in 1990                                                                                                                   | 14  |
| 11.   | Water–Quality Parameters Exceeding Standards or Guidelines (Percent of                                                              |     |
|       | Samples) in Cutshin Creek Watershed                                                                                                 | 16  |
| 12.   | Water-Quality Parameters Exceeding Standards or Guidelines (Percent of                                                              |     |
|       | Samples) in South Fork of the Kentucky River Basin                                                                                  | 16  |
| 13.   | Water–Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in the Goose Creek Watershed                        | 17  |
| 4.4   | Streams Not Fully Supporting Aquatic Life and Recreation in the Kentucky                                                            | 17  |
| 14.   | River Basin from South Fork to Red River in 1990                                                                                    | 19  |
| 15.   | Water-Quality Parameters Exceeding Standards or Guidelines (Percent of                                                              |     |
|       | Samples) in the Kentucky River Basin from South Fork to Red River                                                                   | 19  |
| 16.   |                                                                                                                                     |     |
|       | and Ross Creek Watersheds in 1990                                                                                                   | 21  |
| 17.   | Streams Not Fully Supporting Aquatic Life and Recreation in the Red River                                                           |     |
|       | Basin in 1990                                                                                                                       | 23  |
| 18.   | Water–Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in the Red River Basin from South Fork to Red River | 23  |
| 10    | Streams Not Fully Supporting Aquatic Life and Recreation in the Middle and                                                          | 20  |
| 13.   | South Forks of the Red River in 1990                                                                                                | 23  |
| 20.   | Streams Not Fully Supporting Aquatic Life and Recreation in the Kentucky                                                            | - 2 |
|       | River Basin from Red River to the Ohio River in 1990                                                                                | 24  |

#### Page

# TABLES (continued)

# Table 21. Water-Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in the Kentucky River Basin from Red River to the Ohio River ..... 25 22. Streams Not Fully Supporting Aquatic Life and Recreation in the Silver Creek 23. Streams Not Fully Supporting Aquatic Life and Recreation in the Dix River 24. Streams Not Fully Supporting Aquatic Life and Recreation in the Elkhorn Creek 25. Streams Not Fully Supporting Aquatic Life and Recreation in the South Elkhorn Creek Watershed in 1990 ..... 27 26. Water-Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in the South Elkhorn Creek Watershed ..... 28 27. Water-Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in the Eagle Creek Watershed ..... 28

#### Page

# WATER QUALITY IN THE KENTUCKY RIVER BASIN

# Daniel I. Carey

#### ABSTRACT

Data gathered up to 1990 suggest that water pollution problems existed throughout the Kentucky River Basin. Fecal coliform bacteria in streams was a widespread problem because of the inadequate treatment of municipal wastes, failing septic systems, and agricultural runoff. Iron, lead, manganese, mercury, and silver exceeded State standards and Federal guidelines for drinking water and aquatic life at most of the sample sites for a majority of samples. Aquatic life in many smaller streams in the Knobs region was reduced by chloride discharges from oil and gas operations, according to the Kentucky Division of Water. Organic enrichment and high nutrient loads from waste-water treatment plants and farms reduced aquatic life in the Blue Grass region. Several locations were affected by unknown toxins, and detectible levels of heavy metals and the organic pesticides chlordane, aldrin, dieldrin, and DDT were found in fish tissues from the Kentucky River.

In the Kentucky Environmental Management Plan, 1990-92, the Division of Water identified several water-quality issues: the timely issuance of permits and assuring that permits were complied with; improving the control of toxins and chlorides; responding to the proliferation of package waste-water treatment plants and combined sewer/storm water systems; assuring compliance with new, more stringent drinking-water requirements; improving the monitoring network; improving the Wild Rivers Program; and responding to cuts in Federal funding. To address these issues and meet the demands of new regulations and programs required an increase in personnel and funding of about 50 percent.

An increasing number of actual and potential pollutants are being identified and regulated. The Kentucky Department for Environmental Protection recognized that the current regulatory approach could not be indefinitely sustained. Environmental protection to date has focused on treating air and water emissions at the end of the pipe or safely disposing of waste after it is produced. We are discovering that the superior approach is to eliminate or reduce waste *before* it is generated.

The Department also recognized that transforming waste streams is often counterproductive. Reducing pollutants in water discharges may increase the land disposal problem. Burning wastes reduces the quantity for land disposal, but may increase toxic concentrations of solids to be disposed of, or produce unacceptable air pollutants. Waste cannot be made to disappear, but must be dispersed or diluted by the environment. Excessive concentrations of waste may produce irreversible damage to the environment.

The severity of water-quality problems in many parts of the Kentucky River Basin has been reduced during the past 20 years. Brine discharges from oil and gas operations have reportedly been reduced. Chronic problems at some waste-water treatment plants, such as the Lexington facility on Town Branch, have diminished. It is clear, however, that despite the best efforts of such agencies as the Division of Water and the Kentucky Nature Preserves Commission, water-quality problems in the basin continue to be widespread and persistent.

#### INTRODUCTION

This report summarizes the most recently published information on water quality and water-quality regulation in the Kentucky River Basin. Information was obtained from the "1990 Report to Congress on Water Quality" by the Kentucky Division of Water, which evaluated streams throughout the State to determine if water quality was adequate to support fishing, swimming, and boating (equivalent to the regulatory categories of warm-water aquatic habitat, primary contact recreation, and secondary contact recreation); "Surface Water-Quality Assessment of the Kentucky River Basin, Kentucky: Analysis of Available Water-Quality Data through 1986" (Smoot and others, 1990), which compared concentrations of potential pollutants with State and Federal standards for clean water; and "Summary of Biological Investigations Relating to Surface-Water Quality in the Kentucky River Basin, Kentucky" (Bradfield and Porter, 1990), which reviewed available data on the aquatic life of streams in the basin and the resulting water quality. An overview of the water-quality regulatory activities of the Kentucky Division of Water was taken from the Kentucky Environmental Management Plan, 1990-1992 (Kentucky Department for Environmental Protection, 1989). All four documents are recommended for a more detailed study of water quality in the basin and for an extensive list of data sources.

Some changes in water quality at specific locations have no doubt occurred since the data were published. In general, however, this summary presents either current conditions, or conditions that have occurred during the past 20 years and have the potential to recur. As a summary, this report is by definition incomplete. Waterquality professionals will no doubt be disturbed by some omissions. The purpose of this report is, however, to provide a starting point for the understanding of water-quality issues in the Kentucky River Basin. From this starting point it is hoped that the public can become meaningfully involved in water-quality decisions.

### DESIGNATED USES OF STREAMS

What does "clean water' mean? The Federal Water Pollution Control Act of 1972 (FWPCA, 1972) put forth two national goals: by July 1, 1983, wherever attainable, water quality should provide for the protection and propagation of fish, shellfish, and wildlife and provide for recreation in and out of the Nation's waters; and, by December 31, 1985, the discharge of pollutants into all navigable waters would be eliminated. These goals provide a reasonable definition of clean water and how it should be maintained. They have yet to be achieved. Stream-use designations, which have been assigned to all stream segments in the Kentucky River Basin, are used to define the clean-water goals. With the exception of the specific designations shown in Table 1, all streams are designated for the use of warm-water aquatic habitat (fishing), primary contact recreation (swimming), secondary contact recreation (boating), and domestic water supply.

| Environmental Protection Cabinet (1991).              |                                                                                                                                                                                      |                       |  |  |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|
| Stream Name                                           | Stream Segment                                                                                                                                                                       | Use Designation       |  |  |  |  |  |
| Chimney Top<br>Creek                                  | basin                                                                                                                                                                                | CAH, PCR, SCR         |  |  |  |  |  |
| East Fork, Indian<br>Creek                            | source to Indian<br>Creek                                                                                                                                                            | CAH, PCR, SCR         |  |  |  |  |  |
| Gladie Creek                                          | basin                                                                                                                                                                                | CAH, PCR, SCR         |  |  |  |  |  |
| Middle Fork, Red<br>River                             | source to river<br>mile 10.6                                                                                                                                                         | CAH, PCR, SCR         |  |  |  |  |  |
| Parched Corn<br>Creek                                 | source to Red<br>River                                                                                                                                                               | CAH, PCR, SCR         |  |  |  |  |  |
| Red River                                             | river mile 68.6 to 59.5                                                                                                                                                              | WAH, PCR,<br>SCR, ORW |  |  |  |  |  |
| Dix River                                             | Herrington Lake<br>Dam to Kentucky<br>River                                                                                                                                          | CAH, PCR, SCR         |  |  |  |  |  |
| Swift Camp<br>Creek                                   | source to Red<br>River                                                                                                                                                               | CAH, PCR, SCR         |  |  |  |  |  |
| WAH: Warm-Wate<br>CAH: Cold-Water<br>PCR: Primary Con | Notes: SCR: Secondary Contact Recreation<br>WAH: Warm–Water Aquatic Habitat<br>CAH: Cold–Water Aquatic Habitat<br>PCR: Primary Contact Recreation<br>ORW: Outstanding Resource Water |                       |  |  |  |  |  |

The 1990 Kentucky Report to Congress on Water Quality (Kentucky Division of Water, 1990) assessed the extent to which streams in the Kentucky River Basin achieved the use categories discussed above. Of the 3,416 stream miles in the Kentucky River Basin depicted on the Hydrologic Unit Map (U.S. Geological Survey, 1974), 1,698.5 stream miles (49.7 percent) were assessed. Of the assessed stream miles, 323.3 miles (19 percent) did not support designated uses and 231.5 miles (13.6 percent) only partially supported designated uses. Assuming that streams that were not assessed were similar to those that were, about 1,115 miles of streams (32.6 percent) in the Kentucky River Basin did not fully meet designated uses.

Table 1.—Stream-Use Designations in the KentuckyRiver Basin. From Kentucky Natural Resources andEnvironmental Protection Cabinet (1991).

Table 2 shows the streams in the Kentucky River Basin that did not support designated uses, and the causes and sources of the problems. Where primary contact recreation was not supported in the basin, the major cause was fecal coliform bacteria contamination. Sources identified were municipal waste-water treatment plants, agriculture, septic systems, and urban runoff. Fort Boonesborough State Park beach was closed to swimming for the season on July 9, 1988, because of drought conditions and bacterial contamination of the Kentucky River. The beach was again closed for the season on July 27, 1989, and July 6, 1990, because of bacterial contamination of the river.

| Stream                            | Aquatic<br>Life (miles) | Cause                        | Source                           | Recreation<br>(miles) | Cause     | Source                     |
|-----------------------------------|-------------------------|------------------------------|----------------------------------|-----------------------|-----------|----------------------------|
| North Fork, Kentucky<br>River     | 8.6                     | siltation                    | mining/agricul-<br>ture          | 46.1                  | pathogens | municipal/<br>urban runoff |
| Lost Creek                        | 18.5                    | siltation                    | mining                           |                       |           |                            |
| Spring Fork, Quicksand<br>Creek   | 15.0                    | siltation                    | mining                           |                       |           |                            |
| South Fork, Quicksand<br>Creek    |                         |                              |                                  | 13.8                  | pathogens | agriculture                |
| Quicksand Creek                   |                         |                              | 1                                | 20.8                  | pathogens | agriculture                |
| Troublesome Creek                 |                         |                              |                                  | 49.5                  | pathogens | municipal/<br>septic tanks |
| Rockhouse Creek                   | 24.3                    | siltation                    | mining                           |                       |           | 1                          |
| Middle Fork, Kentucky<br>River    |                         |                              |                                  | 43.2                  | pathogens | agriculture                |
| Raccoon Creek                     | 8.5                     | oil and grease/<br>siltation | petroleum acti-<br>vities/mining |                       |           |                            |
| Cutshin Creek                     | 28.8                    | oil and grease/<br>siltation | petroleum acti-<br>vities/mining |                       |           |                            |
| Kentucky River at Hei-<br>delberg |                         |                              |                                  | 28.3                  | pathogens | municipal/<br>agriculture  |
| Kentucky River at Camp<br>Nelson  |                         |                              |                                  | 37.7                  | pathogens | unknown                    |
| Kentucky River at Frank-<br>fort  |                         |                              |                                  | 30.1                  | pathogens | unknown                    |
| Red River                         | 34.3                    | siltation/<br>metals         | habitat damage/<br>mining        | 10.1                  | pathogens | municipal                  |
| South Fork, Red River             | 11.8                    | chlorides                    | petroleum acti-<br>vities        |                       |           |                            |
| Sand Lick Fork                    | 5.0                     | chlorides                    | petroleum acti-<br>vities        |                       |           |                            |
| Billey Fork                       | 8.6                     | chlorides                    | petroleum acti-<br>vities        |                       |           |                            |
| Millers Creek                     | 6.4                     | chlorides                    | petroleum acti-<br>vities        |                       |           |                            |
| Big Sinking Creek                 | 14.1                    | chlorides                    | petroleum acti-<br>vities        |                       |           |                            |

|                      |                         | Table 2.                                       | -Continued. |                       |           |                            |
|----------------------|-------------------------|------------------------------------------------|-------------|-----------------------|-----------|----------------------------|
| Stream               | Aquatic<br>Life (miles) | Cause                                          | Source      | Recreation<br>(miles) | Cause     | Source                     |
| North Elkhorn Creek  | 2.0                     | organic enrich-<br>ment/chlorine/<br>nutrients | municipal   |                       |           |                            |
| Cane Run             | 17.4                    | unknown toxic-<br>ity                          | unknown     |                       |           |                            |
| South Elkhorn Creek  | 41.0                    | organic enrich-<br>ment/metals                 | municipal   | 17.6                  | pathogens | municipal/<br>urban runoff |
| Town Branch          | 11.3                    | organic enrich-<br>ment/metals                 | municipal   | 11.3                  | pathogens | municipal                  |
| Dix River            |                         |                                                |             | 13.5                  | pathogens | municipal                  |
| Clarks Run           | 8.0                     | organic enrich-<br>ment/unknown<br>toxicity    | municipal   |                       |           |                            |
| Silver Creek         | 2.0                     | organic enrich-<br>ment/nutrients              | municipal   |                       |           |                            |
| Walnut Meadow Branch | 3.6                     | organic enrich-<br>ment/nutrients              | municipal   |                       |           |                            |
| Brushy Fork          | 0.2                     | nutrients                                      | municipal   |                       |           |                            |

Organic enrichment, siltation, and chlorides degraded warm-water aquatic habitats. Municipal point sources were primarily responsible for organic enrichment. An estimated 36,000 fish were killed by organic enrichment in West Hickman Creek in 1988 (Table 3), and an unknown number of fish were killed in East Hickman Creek in 1989. Surface mining and agriculture were the major causes of siltation. In addition to the streams listed in Table 2, Carr Fork and Buckhorn Lakes only partially supported recreation because of high sediment concentrations. Oil and gas operations were the primary sources for chloride pollution in the Red River Basin.

Metals from point discharges also reduced water quality. The Lexington sewage treatment plant discharged lead and copper to Town Branch, and North American Phillips Lighting, near Danville, was cited as discharging lead. The North Fork of the Kentucky River, Red River, Town Branch, and South Elkhorn Creek were also listed as affected by zinc. The aquatic habitat for virtually the entire length of Cane Run, a tributary to North Elkhorn Creek, was listed as impaired because of an unknown toxicity from an unknown source.

In addition to the streams listed in Table 2, excessive nutrients adversely affected aquatic life and recreation in Wilgreen, Carr Fork, and Herrington Lakes. Herrington Lake received excessive nutrients from municipal discharges, septic systems, and agriculture, and Wilgreen Lake was affected by septic systems. Fish kills in Herrington Lake for 1988–89 caused by excessive nutrients (eutrophy) and an unknown cause are listed in Table 3.

Pollution of streams, lakes, wetlands, and ground water from nonpoint sources (agriculture, mining, oil and gas operations, urban runoff, septic systems, etc.) was also assessed in the 1990 Report to Congress (KDOW, 1990). Affected waters are shown in Appendix A. "Monitored" waters were assessed based on recent site-specific water-quality data. Most of the "evaluated" waters were based on data obtained from the 1987 Nonpoint Source Pollution Survey (discussed in Kentucky Division of Water, 1989a).

Nonpoint-source (NPS) categories shown in Appendix A are ranked, with "1" being the most severe. Coalmining and petroleum-recovery activities are the most significant sources of nonpoint water pollution in the North (KY05100201-), Middle (KY05100202-), and South Forks (KY05100203-) of the Kentucky River. The NPS category "80-Other" in most cases represents solid waste and sewage. This category was not listed in the 1987 NPS questionnaire, but was written in by respondents. Solid waste, which primarily clogs water courses and creates eyesores, can also be a waterquality problem when it includes substances that can

| Т        | Table 3.—Summary of Fish-Kill Investigations in the Kentucky River Basin in 1988-89. |               |         |       |                                                        |  |  |  |  |
|----------|--------------------------------------------------------------------------------------|---------------|---------|-------|--------------------------------------------------------|--|--|--|--|
| County   | Water Body                                                                           | Number Killed | Date    | Miles | Cause                                                  |  |  |  |  |
| Boyle    | Herrington Lake                                                                      | 2,000         | 4-28-89 | 5.00  | unknown                                                |  |  |  |  |
| Boyle    | Herrington Lake                                                                      | 2,000         | 9–17–89 | 4.00  | eutrophy (natural)                                     |  |  |  |  |
| Fayette  | North Elkhorn Creek                                                                  | unknown       | 6-01-89 | 2.00  | unknown                                                |  |  |  |  |
| Fayette  | West Hickman Creek                                                                   | 36,268        | 6–14–88 | 2.27  | waste-water treat-<br>ment plant organic<br>enrichment |  |  |  |  |
| Fayette  | West Hickman Creek                                                                   | 17,200        | 4-23-89 | 2.00  | chlorine                                               |  |  |  |  |
| Fayette  | East Hickman Creek                                                                   | unknown       | 8-03-89 | _     | organic enrich-<br>ment                                |  |  |  |  |
| Fayette  | Reservoirs 2, 3                                                                      | unknown       | 5-12-89 | _     | unknown                                                |  |  |  |  |
| Franklin | Kentucky River                                                                       | 2,538         | 8-19-88 | 0.37  | unknown                                                |  |  |  |  |
| Harlan   | Greasy Creek                                                                         | 6,159         | 6-21-88 | 1.50  | coal-mine subsi-<br>dence                              |  |  |  |  |
| Madison  | Otter Creek                                                                          | 18,000        | 103189  | 11.75 | ammonia                                                |  |  |  |  |
| Scott    | North Elkhorn Creek                                                                  | unknown       | 7–15–88 | 1.00  | eutrophy (natural)                                     |  |  |  |  |

pollute the water. Sediment, bacteria, nutrients, chlorides, sulfates, and metals affect aquatic life and recreation in the eastern Kentucky region.

Agriculture, petroleum, and mining activities are the primary nonpoint-source polluters in the Knobs region (KY05100204-). Sediment, chlorides, metals, sulfates, nutrients, and bacteria affect aquatic life and recreation uses in the region.

Croplands and pasture, land development, urban runoff, solidwaste and sewage, andon-sitewaste-water systems are the primary sources of nonpoint pollution in the Blue Grass region (KY05100205-). Sediment, nutrients, and bacteria affect aquatic life and water recreation in the region.

#### CHEMICALS AND BACTERIA

The most recent and comprehensive analysis of water-quality data in the Kentucky River Basin was completed in 1990 by the U.S. Geological Survey (Smoot and others, 1990). This study evaluated all available water-quality data for the basin through 1986. The primary data for the study were collected from 1976 to 1986 at the sites shown in Figure 1 and listed in Table 4. The study made a generalized assessment of common water-quality properties and constituents such as pH, alkalinity, major ions, nutrients, selected major metals, trace elements, and fecal coliform bacteria. These data were used to assess, among other things, how often waters at sample points did not meet Federal and

State water-quality standards and therefore did not support designated uses. The percentage of samples not meeting guidelines is given in Appendix B.

The data in Appendix B show that throughout the basin regulatory standards and guidelines were frequently not met. Elevated levels of iron, lead, manganese, mercury, silver, and fecal coliform bacteria were observed at virtually all of the sample sites.

### LIFE IN STREAMS

Bradfield and Porter (1990) examined water quality in the basin from a biological perspective. Biological surveys provide a direct look at the impacts of water quality on stream life. Aside from the technical scientific names (see Glossary for definitions of selected terms), biological surveys provide the average person with a better feel for water-quality impacts than chemical analyses do. The fact that a stream has no fish is more graphic than a number representing chloride concentration. Biologists have developed procedures for determining the health of a stream based on the types, numbers, diversity, distribution, and pollution tolerances of organisms living there. The following discussion is based on Bradfield and Porter (1990).

Algal communities can reflect short-term (days to months) changes in water quality. For example, streams affected by oikfield brines frequently are dominated by *halophific* (salt-loving) diatoms. Streams that receive sewage effluents often have dense growths of algae types that dominate in nutrient-enriched waters,

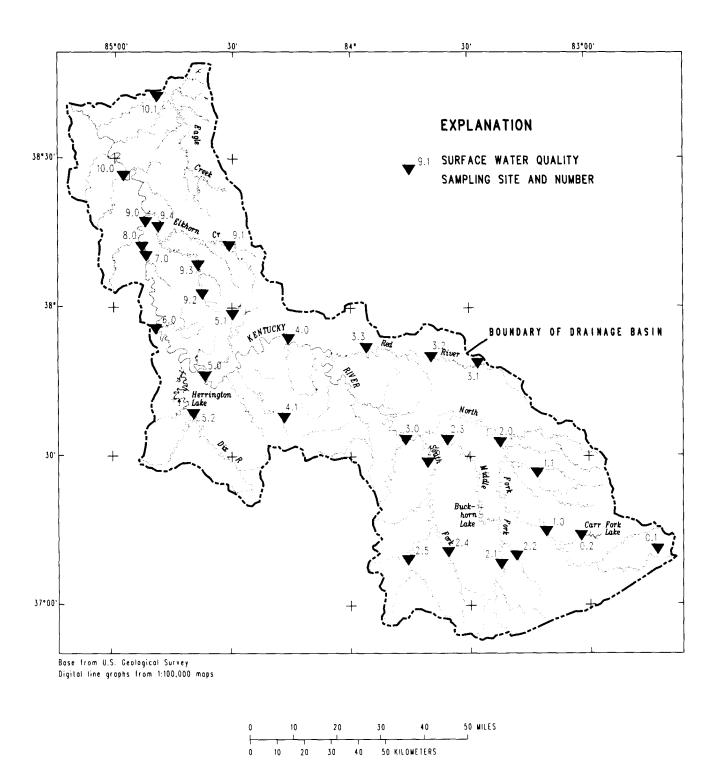



Figure 1. Locations of surface-water-quality sampling sites in the Kentucky River Basin at which 10 or more samples were collected, 1976-86. From Smoot and others (1990).

and streams subjected to organic enrichment contain *heterotrophic algae* (able to convert carbon compounds to energy). The effects of sedimentation can be seen by the dominance of epipefic algae (associated

with sediments). Most undisturbed streams in eastern Kentucky contain epilithic (attached to rocks) and epiphytic (attached to filamentous algae and aquatic plants) diatoms.

| Table 4        | Table 4.—Surface-Water-Quality Sampling Sites in the Kentucky River Basin. From Smoot and others (1990). |                |                                             |                                 |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------|---------------------------------|--|--|--|
| Site<br>Number | Kentucky<br>River Mile                                                                                   | Station Number | Station Name                                | Drainage Area<br>(square miles) |  |  |  |
|                | 417.3                                                                                                    |                | BOONE FORK BASIN                            | 19.4                            |  |  |  |
| 0.1            |                                                                                                          | 03277260       | Yonts Fork near Neon                        | 12.4                            |  |  |  |
|                | 367.8                                                                                                    |                | CARR FORK BASIN                             | 85.5                            |  |  |  |
| 0.2            |                                                                                                          | 03277450       | Carr Fork near Sassafras                    | 60.6                            |  |  |  |
| 1.0            | 361                                                                                                      | 03277500       | North Fork, Kentucky River, at Hazard       | 466                             |  |  |  |
|                | 317.7                                                                                                    |                | TROUBLESOME CREEK BASIN                     | 246                             |  |  |  |
| 1.1            |                                                                                                          | 03278500       | Troublesome Creek at Noble                  | 177                             |  |  |  |
| 2.0            | 304.5                                                                                                    | 03280000       | North Fork, Kentucky River, at Jackson      | 1,101                           |  |  |  |
| ·              | 258.6                                                                                                    |                | MIDDLE FORK, KENTUCKY RIVER, BASIN          | 559                             |  |  |  |
| 2.1            |                                                                                                          | 03280600       | Middle Fork, Kentucky River, near Hyden     | 202                             |  |  |  |
| 2.2            |                                                                                                          | 03280700       | Cutshin Creek at Wooton                     | 61.3                            |  |  |  |
| 2.3            |                                                                                                          | 03281000       | Middle Fork, Kentucky River, at Tallega     | 537                             |  |  |  |
|                | 254.8                                                                                                    |                | SOUTH FORK, KENTUCKY RIVER, BASIN           | 748                             |  |  |  |
| 2.4            |                                                                                                          | 03281040       | Red Bird River near Big Creek               | 155                             |  |  |  |
| 2.5            |                                                                                                          | 03281100       | Goose Creek at Manchester                   | 163                             |  |  |  |
| 2.6            |                                                                                                          | 03281500       | South Fork, Kentucky River, at Booneville   | 722                             |  |  |  |
| 3.0            | 249                                                                                                      | 03282000       | Kentucky River at Lock 14 at Heidelberg     | 2,657                           |  |  |  |
|                | 190.8                                                                                                    |                | RED RIVER BASIN                             | 487                             |  |  |  |
| 3.1            |                                                                                                          | 03282500       | Red River near Hazel Green                  | 65.8                            |  |  |  |
| 3.2            |                                                                                                          | 03283200       | Red River at Kentucky Highway 77 near Bowen | 184                             |  |  |  |
| 3.3            |                                                                                                          | 03283500       | Red River at Clay City                      | 362                             |  |  |  |
| 4.0            | 176.4                                                                                                    | 03284000       | Kentucky River at Lock 10 near Winchester   | 3,955                           |  |  |  |
|                | 150.3                                                                                                    |                | SILVER CREEK BASIN                          | 126                             |  |  |  |
| 4.1            |                                                                                                          | 03284300       | Silver Creek near Kingston                  | 28.6                            |  |  |  |
| 5.0            | 135.9                                                                                                    | 03284500       | Kentucky River at Camp Nelson               | 4,425                           |  |  |  |
|                | 135.3                                                                                                    |                | HICKMAN CREEK BASIN                         | 101                             |  |  |  |
| 5.1            |                                                                                                          | 03284550       | West Hickman Creek at Jonestown             | 11.0                            |  |  |  |
|                | 118.2                                                                                                    |                | DIX RIVER BASIN                             | 442                             |  |  |  |
| 5.2            |                                                                                                          | 03285000       | Dix River near Danville                     | 318                             |  |  |  |
| 6.0            | 96.2                                                                                                     | 03287000       | Kentucky River at Lock 6 near Salvisa       | 5,102                           |  |  |  |
| 7.0            | 68.4                                                                                                     | 03287400       | Kentucky River above Frankfort              | 5,292                           |  |  |  |
| 8.0            | 65.8                                                                                                     | 03287500       | Kentucky River at Lock 4 at Frankfort       | 5,411                           |  |  |  |
| 9.0            | 56.0                                                                                                     | 03287570       | Kentucky River below Frankfort              | 5,420                           |  |  |  |
| •              | 51.9                                                                                                     |                | ELKHORN CREEK BASIN                         | 500                             |  |  |  |
| 9.1            |                                                                                                          | 03288000       | North Elkhorn Creek near Georgetown         | 119                             |  |  |  |
| 9.2            |                                                                                                          | 03289000       | South Elkhorn Creek at Fort Spring          | 24.0                            |  |  |  |
| 9.3            |                                                                                                          | 03289300       | South Elkhorn Creek near Midway             | 105                             |  |  |  |
| 9.4            |                                                                                                          | 03289500       | Elkhorn Creek near Frankfort                | 473                             |  |  |  |
| 10.0           | 31.0                                                                                                     | 03290500       | Kentucky River at Lock 2 at Lockport        | 6,180                           |  |  |  |

| Site<br>Number | Kentucky<br>River Mile | Station Number | Station Name                                | Drainage Area<br>(square miles) |
|----------------|------------------------|----------------|---------------------------------------------|---------------------------------|
| 10.1           | 11.0                   | 03291500       | EAGLE CREEK BASIN<br>Eagle Creek at Glencoe | 519<br>437                      |

Macroinvertebrates, small aquatic animals without backbones, are excellent indicators of intermediate to long-term changes (months to years) in water quality because of their relatively long and complex life histories. The number of macroinvertebrate types is often reduced in streams with poor water quality or limited habitat. In contrast, streams with exceptional water quality and diverse habitat generally support many macroinvertebrate types. Benthic macroinvertebrates, which live on stream bottoms, are useful in detecting alterations of aquatic environments. Streams with rocky beds (substrata) and well-oxygenated waters usually support communities dominated by aquatic insects such as mayflies, stoneflies, and caddisflies. A shift in dominance to more pollution-tolerant types such as midges and worms often occurs in response to increases in sedimentation or nutrient enrichment. Because they are essentially non-moving and have long life spans and specific living requirements, fresh-water mussels are very useful in determining long-term water-quality trends. Mussels in the Kentucky River Basin may be studied to determine the buildup of toxic substances such as heavy metals, pesticides, and other synthetic organic compounds.

Since fish may be able to swim away from locally polluted water, they are often less reliable as indicators of local water quality than macroinvertebrates and algae. However, the number and types of fish species can also indicate water quality. Clean-water streams support a variety of sensitive types, including game fish such as trout and muskellunge as well as non-game fish including certain darters and minnows. In contrast, fish communities in polluted water are frequently limited to pollution-tolerant species such as carp and mosquito fish. The analysis of fish tissue can also reveal important environmental information regarding the buildup of toxic substances, and the toxicity of waste water can be tested using species such as fathead minnows.

Brookfield and Porter's evaluation of aquatic life in the Kentucky River Basin was based on a number of sources. Data collected by R. R. Hannan, D. F. Harker, and others at the Kentucky Nature Preserves Commission, R. W. Logan and others at the Kentucky Division of Water, the Kentucky Department of Fish and Wildlife, and a large number of individuals from the University of Kentucky, Eastern Kentucky University, the University of Louisville, and other agencies and institutions in Kentucky were used. A summary of the findings is given below. In general, the information represents the period 1968--88. Where available, water-quality data are also included so that an overall picture of each stream or basin is obtained.

# WATER QUALITY OF INDIVIDUAL BASINS AND STREAMS

## North Fork of the

#### Kentucky River Basin

Of the rivers draining the upper Kentucky River Basin. the North Fork of the Kentucky River (Fig. 2) seemed to be the most degraded in terms of water quality, sedimentation, and the capacity to support diverse aquatic life. In some areas high pollutant concentrations and sediment loads had eliminated all but the most pollution-tolerant species of aquatic life. Biological data for the North Fork of the Kentucky River mainstem were limited. Aquatic life in the river at Jackson indicated sediment and nutrient/organic enrichment. Water-quality data at Jackson reflected the effects of drainage from mining operations and discharge from domestic sewage treatment facilities. Williams (1975) documented nine species of fresh-water mussels in the North Fork, some probably represented by relic shells. The habitat for mussels had been reduced because of drastic environmental changes that had occurred in the past 50 to 75 years.

Sedimentation and high concentrations of iron and manganese were problems throughout the basin. On the mainstem of the North Fork, fecal coliform bacteria, lead, mercury, silver, and zinc affected water quality. Previous studies suggested that the few relatively natural watersheds in the North Fork Basin should be preserved. It is hoped that aquatic life from these streams will migrate into downstream areas once the impacts of land disturbance have declined.

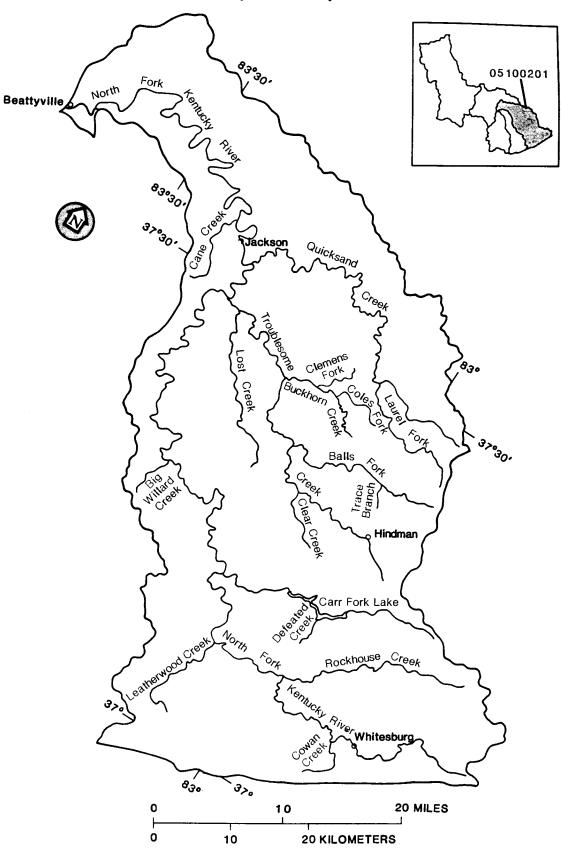



Figure 2. North Fork of the Kentucky River Basin. From Smoot and others (1990).

Water quality in the North Fork of the Kentucky River watershed was affected by iron, lead, manganese, mercury, silver, siltation, and fecal coliform bacteria. Data for the basin are given in Tables 5 and 6.

#### Buckhorn Creek Watershed

Buckhorn Creek supported numerous species of algae, benthic invertebrates, and fish, although elevated specific conductance and sulfate concentrations had been observed. Buckhorn Creek was deemed one of the largest relatively healthy aquatic systems in the Kentucky River Basin, and an important source for aquatic life that might someday recolonize Troublesome Creek and other river systems downstream. Buckhorn Creek, including Clemmons Fork and Coles Fork, was recommended as an Outstanding Resource Water by the Kentucky Nature Preserve Commission (KNPC, 1982).

#### Troublesome Creek Watershed

Troublesome Creek is the largest eastern tributary of the North Fork of the Kentucky River. Extensive contour and deep mining in the basin, a mountaintop removal project, and sewage eff luents from Hindman had severely degraded this stream. As late as 1973, some reaches near the mouth of Troublesome Creek and Balls Fork supported a viable fishery. Data collected in 1978 indicated that conditions had degraded throughout the Troublesome Creek drainage, as indicated by elevated pollutant concentrations. Benthic algae, macroinvertebrate, and fish populations were moderately diverse, but total numbers of organisms were low. Data for Troublesome Creek are given in Table 7.

Table 5.—Streams Not Fully Supporting Aquatic Life and Recreation in the North Fork of the Kentucky River Basin in 1990. From Kentucky Division of Water (1990).

| Aquatic Life<br>(miles)                 | Cause     | Source             | Recreation (miles) | Cause     | Source                    |
|-----------------------------------------|-----------|--------------------|--------------------|-----------|---------------------------|
| North Fork<br>8.6                       | siltation | mining/agriculture | 46.1               | pathogens | municipal/urban<br>runoff |
| Lost Creek<br>18.5                      | siltation | mining             |                    |           |                           |
| Spring Fork,<br>Quicksand Creek<br>15.0 | siltation | mining             |                    |           |                           |
| South Fork,<br>Quicksand Creek          |           |                    | 13.8               | pathogens | agriculture               |
| Quicksand Creek                         |           |                    | 20.8               | pathogens | agriculture               |
| Rockhouse Creek<br>24.3                 | siltation | mining             |                    |           |                           |

Table 6.—Water-Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in North Fork of the Kentucky River Basin. From Smoot and others (1990).

|                         | Federal G      | uidelines    | Kentucky Standards |              |            |
|-------------------------|----------------|--------------|--------------------|--------------|------------|
|                         | Drinking Water | Aquatic Life | Drinking Water     | Aquatic Life | Recreation |
| Yonts Fork near<br>Neon |                |              | -                  |              |            |
| Low pH<br>Total:        | 15             | 15           |                    | 8            | 8          |
| Iron<br>Manganese       | 77<br>100      | 54           | 100                | 54           |            |

|                                                         | Table 6.—Continued. |                                        |                |                    |                        |  |  |  |
|---------------------------------------------------------|---------------------|----------------------------------------|----------------|--------------------|------------------------|--|--|--|
|                                                         | Federal Guidelines  |                                        |                | Kentucky Standards |                        |  |  |  |
|                                                         | Drinking Water      | Aquatic Life                           | Drinking Water | Aquatic Life       | Recreation             |  |  |  |
| North Fork near<br>Hazard                               |                     |                                        |                |                    |                        |  |  |  |
| Total:<br>Iron<br>Manganese                             | 100<br>94           | 72                                     | 94             | 72                 |                        |  |  |  |
| North Fork at<br>Jackson                                |                     | ······································ |                |                    | umu <u>, _ t , _</u> u |  |  |  |
| Dissolved Solids<br>Total:<br>Cadmium<br>Copper<br>Iron | 6<br>96             | 6<br>6<br>58                           |                | 58                 |                        |  |  |  |
| Lead<br>Manganese<br>Mercury<br>Silver<br>Zinc          | 94<br>5             | 50<br>100<br>100<br>18                 | 94             | 30<br>18           |                        |  |  |  |
| Fecal Coliform                                          |                     |                                        | 35             |                    | 92                     |  |  |  |

#### Carr Fork Watershed

Extensive strip, auger, and deep mining had occurred in the Carr Fork watershed, and Carr Fork Lake was noted to be undergoing accelerated sedimentation. Recreational uses were impaired because of water turbidity. Below the dam, Carr Fork was polluted by acid-mine drainage. Sedimentation seemed to pose the primary threat to aquatic life.

#### Laurel Fork Watershed

Laurel Fork appeared to be the only stream in the Quicksand Creek drainage not affected by sedimentation from mining operations. The stream was recommended as a "put and take"trout fishery and supported a "limited good quality" fishery for black bass and panfish in 1973. Investigations of aquatic life during 1978 revealed diverse, productive communities associated with good water quality and habitat diversity. Laurel Fork was recommended for consideration as a "refugium" to provide a source of aguatic life for recolonization of degraded downstream areas (Harker and others, 1979).

# Middle Fork of the Kentucky River Basin

Primary land use in the basin (Fig. 3) includes coal mining, oil and gas production, forestry, and limited agriculture. These land-use practices affected many streams, but the effects on water quality and aquatic life did not appear to be as severe as in the North Fork Basin.

Algal blooms were observed in the headwater area of Buckhorn Lake and were probably the result of nutrient loads being discharged into the Middle Fork from the Hyden waste-water treatment plant. The river below Buckhorn Lake benefitted from low-flow augmentation and reduced sediment loads. The section of the river below Buckhorn Dam to the mouth was recommended as an Outstanding Resource Water (KNPC, 1982).

The water quality in the Middle Fork watershed was affected by iron, lead, manganese, mercury, siltation, oil and grease, and fecal coliform bacteria. Data for the Middle Fork of the Kentucky River are given in Tables 8 and 9.




Figure 3. Middle Fork of the Kentucky River Basin. From Smoot and others (1990).

| Table 7.—Streams Not Fully Supporting Aquatic Life and Recreation in the Troublesome Creek Watershed in 1990.         From Kentucky Division of Water (1990). |       |        |                    |           |                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------------------|-----------|----------------------------|--|
| Aquatic Life<br>(miles)                                                                                                                                       | Cause | Source | Recreation (miles) | Cause     | Source                     |  |
| Troublesome<br>Creek                                                                                                                                          |       |        | 49.5               | pathogens | municipal/<br>septic tanks |  |

Table 8.—Streams Not Fully Supporting Aquatic Life and Recreation in the Middle Fork of the Kentucky River Basin in 1990. From Kentucky Division of Water (1990).

| Aquatic Life<br>(miles)          | Cause | Source | Recreation (miles) | Cause     | Source      |
|----------------------------------|-------|--------|--------------------|-----------|-------------|
| Middle Fork, Ken-<br>tucky River |       |        | 43.2               | pathogens | agriculture |

| Middle Fork near<br>Hyden                      | Drinking Water | Aquatic Life |                |              |            |
|------------------------------------------------|----------------|--------------|----------------|--------------|------------|
|                                                | 1              |              | Drinking Water | Aquatic Life | Recreation |
| •                                              |                |              |                |              |            |
| Alkalinity<br>Total:                           |                | 19           |                |              | ,,,,,      |
| Iron<br>Manganese                              | 100<br>86      | 52           | 86             | 52           |            |
| Middle Fork at<br>Tallega                      |                |              |                |              |            |
| Low pH<br>Alkalinity<br>Total:                 | 8              | 8<br>12      |                |              |            |
| Cadmium<br>Copper                              |                | 11<br>6      |                |              |            |
| Iron<br>Lead                                   | 92             | 47<br>49     |                | 47           |            |
| Manganese<br>Mercury<br>Zinc<br>Fecal Coliform | 96             | 100<br>15    | 96             | 14<br>15     | 24         |

#### Greasy Creek Watershed

Greasy Creek flows from Harlan County to join the Middle Fork near Hoskinston. Biological investigations revealed diverse, productive aquatic communities during the late 1970's. In 1979 Greasy Creek was cited by Harker and others (1979) as supporting one of the most diverse fish populations in the Kentucky River Basin. Greasy Creek was considered an important source for recolonization of downstream areas adversely affected by land-use activities, and was recommended as an Outstanding Resource Water (KNPC, 1982) to provide a muskellunge habitat for spawning and a smallmouth and rock bass habitat and fishery. There are indications that the water quality of Greasy Creek has deteriorated since those studies were performed.

#### Cutshin Creek Watershed

Cutshin Creek, the largest tributary to the Middle Fork, flows from southeastern Leslie County and joins Middle Fork north of Hyden. Cutshin Creek was a source of sediment and had poor water quality. Elevated concentrations of sulfate, magnesium, sodium, and calcium were observed during low flows in 1978. The creek was the site of recurring fish kills caused by oil drilling and mining operations during the early to mid-1 980's.

in spite of the apparently poor water quality, biological studies indicated diverse aquatic communities. These studies were characterized, however, by types thatwere tolerant to awide range of environmental factors.

Data for the Cutshin Creek watershed are given in Tables 10 and 11.

#### Squabble Creek Watershed

Squabble Creek flows from western Perry County and joins the Middle Fork about 4 miles below Buckhorn Dam. Because of its location, this creek was sidered an important source of aquatic life to the Middle Fork downstream of Buckhorn Lake. In 1979 Squabble Creek was affected by drainage from old strip mines and discharges from two small sewage treatment plants. Water from Squabble Creek had high concentrations of constituents associated with mining, such as sulfates. The effects of sewage effluent were indicated by high nutrient concentrations. Flocculent masses and iron ochre seeps were also observed. Biological investigations of Squabble Creek indicated environmental stresses caused by poor water quality or reduced habitat. Algae were typified by numerous pollution-tolerant species. Siltation and stream channelization were the primary factors affecting the macroinvertebrates at the sampled site. Impacts to fish populations were difficult to evaluate at the sampling site because of its proximity to the Middle Fork. Squabble Creek provided spawning and feeding sites for many migratory fish that were effectively blocked from upstream reaches by Buckhorn Dam.

#### South Fork of the

### Kentucky River Basin

The South Fork mainstern begins at the confluence of Goose Creek and Red Bird River and flows about 40 miles to the Kentucky River at Beattyville (Fig. 4). The richness and diversity of small aquatic animal life decreases downstream, indicating a compounding of environmental effects as tributaries with poor water quality and large sediment loads join the mainstem. were Macroinvertebrate samples dominated by pollutiontolerant species. The sampling site at Booneville was affected by sedimentation from land disturbance and nutrient enrichment from numerous sewage treatment effluent discharges. Because the South Fork still provided some muskellunge habitat, it was recommended as an Outstanding Resource Water by the Kentucky Nature Preserves Commission (1982).

Table 10.—Streams Not Fully Supporting Aquatic Life and Recreation in the Cutshin Creek Watershed in 1990. From Kentucky Division of Water (1990).

| Aquatic Life<br>(miles) | Cause                         | Source           | Recreation (miles) | Cause | Source |
|-------------------------|-------------------------------|------------------|--------------------|-------|--------|
| Cutshin Creek<br>28.8   | oil and grease/sil-<br>tation | petroleum/mining |                    |       |        |
| Raccoon Creek<br>8.5    | oil and grease/sil-<br>tation | petroleum/mining |                    |       |        |

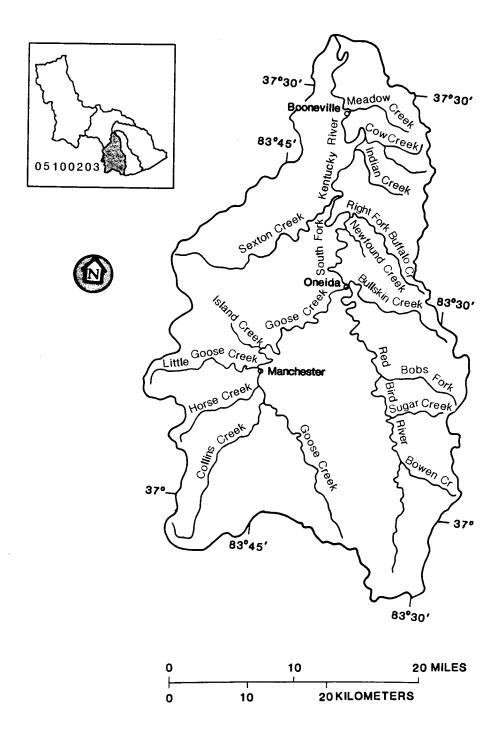



Figure 4. South Fork of the Kentucky River Basin. From Smoot and others (1990).

#### South Fork of the Kentucky River Basin

| Table 11.—Water–Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in Cutshin Creek Wa<br>tershed. From Smoot and others (1990). |                    |              |                    |              |            |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|--------------------|--------------|------------|--|--|--|
|                                                                                                                                                         | Federal Guidelines |              | Kentucky Standards |              |            |  |  |  |
| <u></u>                                                                                                                                                 | Drinking Water     | Aquatic Life | Drinking Water     | Aquatic Life | Recreation |  |  |  |
| Cutshin Creek at<br>Wooton                                                                                                                              |                    |              |                    |              |            |  |  |  |
| Alkalinity                                                                                                                                              |                    | 10           |                    | ·            |            |  |  |  |

|                             | Federal Guidelines |              | Kentucky Standards |              |            |
|-----------------------------|--------------------|--------------|--------------------|--------------|------------|
|                             | Drinking Water     | Aquatic Life | Drinking Water     | Aquatic Life | Recreation |
| South Fork at<br>Booneville |                    |              |                    |              |            |
| Low pH<br>Alkalinity        | 5                  | 5<br>12      |                    |              |            |
| Total:                      |                    | 12           |                    |              |            |
| Cadmium                     | 2                  | 11           |                    |              |            |
| Copper                      |                    | 6            |                    |              |            |
| Iron                        | 87                 | 28           |                    | 28           |            |
| Lead                        |                    | 60           | 3                  |              |            |
| Manganese                   | 92                 |              | 92                 |              |            |
| Mercury                     | 3                  | 100          |                    | 17           |            |
| Silver                      |                    | 67           |                    |              |            |
| Zinc                        |                    | 12           |                    | 12           |            |
| Fecal Coliform              |                    |              |                    |              | 40         |

Iron, lead, manganese, mercury, silver, and fecal coliform bacteria impaired the water quality of the basin. Data for the South Fork of the Kentucky River are given in Table 12.

#### Goose Creek Watershed

Goose Creek begins in Clay County and joins the Red Bird River at Oneida to form the South Fork. The upper reaches of Goose Creek seemed to have good water quality and supported diverse aquatic life. The lower half of Goose Creek was affected by acid-mine drainage and sediment from Horse Creek and Little Goose Creek. Collins Fork, a tributary, was found in 1973 to be relatively unaffected, and provided cold water and long, deep pools for smallmouth bass, rock bass, and muskellunge. Several fish kills attributable to coal-mining discharges occurred at Goose Creek from 1969 to 1973. Water quality improved afterwards, although the eff ects of siltation were still apparent.

The Goose Creek drainage was considered to be a source of small aquatic animals for recolonization and provided some of the last muskellunge habitat in the basin. Goose Creek and Collins Fork were identified as Sport Fishery Resources by the Department of Fish and Wildlife, and were recommended as Outstanding Resource Waters (KNPC, 1982). Protection from the effects of rnining operations and from the discharge of treated sewage from Manchester are necessary to maintain good water quality in the Goose Creek Basin.

Data for Goose Creek at Manchester are given in Table 13.

|                              | Federal Guidelines |              | Kentucky Standards |              |            |
|------------------------------|--------------------|--------------|--------------------|--------------|------------|
|                              | Drinking Water     | Aquatic Life | Drinking Water     | Aquatic Life | Recreation |
| Goose Creek at<br>Manchester |                    |              |                    |              |            |
| Alkalinity                   |                    | 37           | 11                 |              |            |
| Total:                       |                    |              |                    |              |            |
| Iron                         | 100                | 84           |                    | 84           |            |
| Manganese                    | 100                |              | 100                |              |            |

#### Red Bird River Basin

The Red Bird River is the largest tributary of the South Fork, draining the eastern portion of the upper basin. Biological investigations indicated some effects from sediment in the headwater area, but the biological quality improved in downstream reaches. In the early 1970's fishing was considered good from the mouth upstream to Sugar Creek. Abundant fish food in the form of benthic invertebrates was noted in the river. This stream, from the confluence of Sugar Creek to the mouth, was designated a Sport Fishery Resource and recommended as an Outstanding Resource Water (KNPC, 1982).

#### Sexton Creek Watershed

Sexton Creek flows from the west and joins South Fork about halfway between Oneida and Booneville. Fish kills caused by coal-mining discharge were reported in the 1970's. At least in the lower reaches, the effects of mining on stream quality were reduced during the 1980's because Sexton Creek was reported to have one of the highest densities of muskellunge of all South Fork streams. Because it is a valuable habitat for muskellunge and golden redhorse, Sexton Creek was recommended as an Outstanding Resource Water by the Kentucky Nature Preserves Commission (1982).

#### Buck Creek Watershed

Buck Creek begins in Owsley County and flows northeast to join the South Fork near Booneville. Concentrations of sulfate and magnesium in the creek were higher than in undisturbed streams in the area in 1979; otherwise, reasonably good water quality was indicated. Macroinvertebrate data indicated good water quality and adequate habitat. Fish from the creek were typical for most eastern Kentucky drainages. Arrow darters, which were listed as being of special concern, were collected from Buck Creek. Extreme turbidity was present following a rainstorm at the time of sampling, indicating that sedimentation from surface mines or agricultural lands could pose a threat to aquatic resources.

### Kentucky River Basin from South Fork to Red River

This area of the Kentucky River Basin lies in the Knobs region (Fig. 5). Brines from oil and gas operations and sedimentation from mining affected aquatic life in the basin. Pollution from agricultural sources was more of a problem here than in the Eastern Kentucky Coal Field. Sewage effluents contributed by the major urban centers also tended to have more detrimental effects on water quality in this area because of low velocity.

Biological communities in the Kentucky River at Heidelberg have been routinely sampled by the Kentucky Division of Water. Blue-green algal blooms were reported upstream from Lock 14, and attached algal biomass and standing crop were elevated. This occurrence was partially attributed to waste-water effluent at Beattyville and the impounded nature of the river. Evaluation of benthic diatoms collected since 1978 indicates that the effects of oil and gas operations may have been most pronounced during the early to mid 1980's. Collections in 1985-86 contained fewer halophilic (salt-loving) species, indicating a reduction in the amount of brines reaching the stream. Sedimentation from upstream land disturbance had reduced benthic macroinvertebrate habitat at this slow-moving, deepwater site. Historically, the river supported viable mussel populations, but no mussel beds were observed in the Lock 14 pool in 1975.

The fish of the Lock 14 pool were typical of a large river; the pool supported a sport fishery as well as a limited commercial fishery. Thirteen species of fish were reported in the Lock 14 pool in 1975, compared with 20

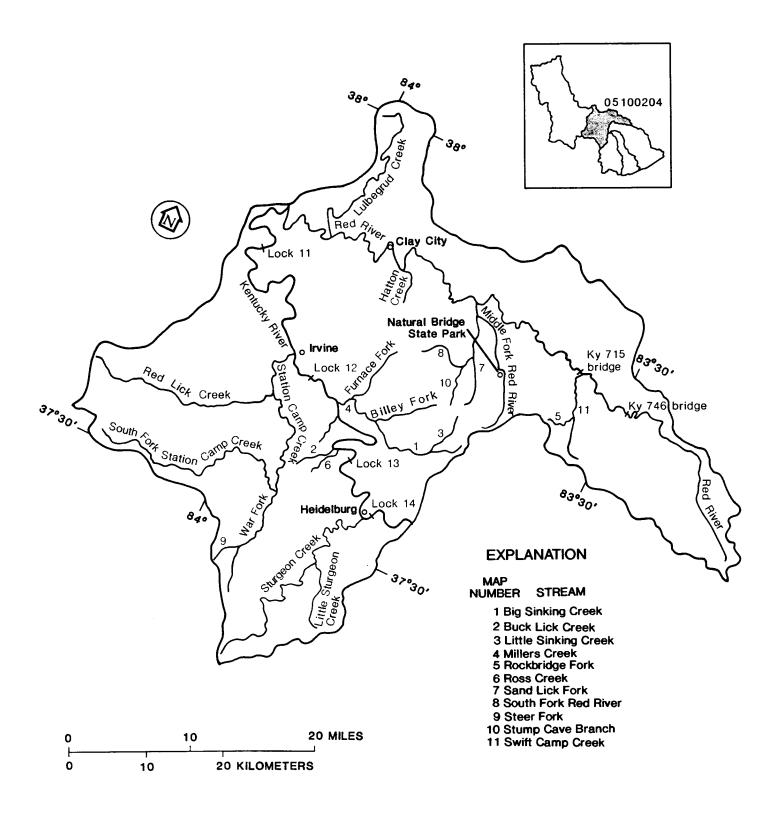



Figure 5. Basin of the Kentucky River from the South Fork to the Red River. From Smoot and others (1990).

to 22 species in Pools 11 to 13, possibly reflecting large sediment loads that were deposited upstream from Dam 14. Paddlefish were only observed at Pool I I during 1973. This occurrence apparently was one of the last published records of this unique species in the Kentucky River Basin. Although no mussels were observed in 1975 in Pool 14, four species were collected from Pools 11 and 13 and six species from Pool 12. None of these mussels beds were considered commercially valuable. Detectible levels of chlordane, aldrin, dieldrin, and several heavy metals were found in fish tissue samples in 1979-81. Bioassay studies revealed acute toxicity to fathead minnows during the fall of 1986 and the spring and winter of 1987 at this site.

Iron, lead, manganese, mercury, silver, chlorides, and fecal coliform bacteria affected the water quality in this part of the Kentucky River Basin. Data for the Kentucky River at

T-11 18

----

Heidelberg are given in Tables 14 and 15.

#### Sturgeon Creek Watershed

Sturgeon Creek flows from eastern Jackson County and joins the Kentucky River immediately below Lock 14. Although mining in the basin posed a potential threat to aquatic life, available data indicate that Sturgeon Creek has been a high-quality stream. This assessment was based on the occurrence of sensitive diatom species, diverse macroinvertebrate communities, and a large number of fish species. Because several fish species collected from Sturgeon Creek were listed as being of special concern, it was recommended by both the Kentucky Department of Fish and Wildlife Resources and the Kentucky Nature Preserves Commission (1982) for designation as an Outstanding Resource Water.

| Table 14.—Streams Not Fully Supporting Aquatic Life and Recreation in the Kentucky River Basin from South Fork |
|----------------------------------------------------------------------------------------------------------------|
| to Red River in 1990. From Kentucky Division of Water (1990).                                                  |
|                                                                                                                |

| Aquatic Life<br>(miles)         | Cause | Source | Recreation (miles) | Cause     | Source                    |
|---------------------------------|-------|--------|--------------------|-----------|---------------------------|
| Kentucky River at<br>Heidelberg |       |        | 28.3               | pathogens | municipal/<br>agriculture |

|                                 | Federal Guidelines |              | Kentucky Standards |              |            |
|---------------------------------|--------------------|--------------|--------------------|--------------|------------|
| _                               | Drinking Water     | Aquatic Life | Drinking Water     | Aquatic Life | Recreation |
| Kentucky River at<br>Heidelberg |                    |              |                    |              |            |
| Low pH                          | 1                  | 1            |                    |              |            |
| High pH                         | 1                  |              |                    |              |            |
| Dissolved Solids                | 1                  |              |                    |              |            |
| Total:                          |                    |              |                    |              |            |
| Nitrogen                        |                    |              |                    | 1            |            |
| Arsenic                         | 1                  |              |                    | 1            |            |
| Cadmium                         | 2                  | 19           |                    | 2            |            |
| Copper                          |                    | 16           |                    | -            |            |
| Iron                            | 80                 | 30           |                    | 30           |            |
| Lead                            | 9                  | 70           | 9                  | 20           |            |
| Manganese                       | 94                 |              | 94                 |              |            |
| Mercury                         | 10                 | 100          |                    | 56           |            |
| Silver                          |                    | 80           |                    | 50           |            |
| Zinc                            |                    | 20           |                    | 20           |            |
| Fecal Coliform                  |                    |              | 3                  |              | 49         |

# Millers Creek and

## Ross Creek Watersheds

These creeks, which flow into Pool 12 from the north and south, respectively, were the subject of biological studies during the early 1980's as a result of environmental concerns regarding brine discharges from oil and gas operations. Streams in both basins had elevated specific conductance and concentrations of chloride and barium.

Biological surveys were conducted in the Millers Creek Basin by the Kentucky Department of Water, which found most streams to be moderately to severely affected by brines from oil and gas operations. Halophilic (tolerant to brines) and epipelic (associated with sediment) species were common. Headwater areas of Big Sinking Creek, Little Sinking Creek, Billey Fork, and Furnace Fork supported low densities of macroinvertebrate organisms. Fish communities were severely affected by brines, and most streams supported fewer than 10 tolerant species. Two sampling sites on Big and Little Sinking Creeks were apparently devoid of fish. Small, unaffected tributaries to Big Sinking Creek contained diverse, productive aquatic communities. Chloride concentrations in the lower reaches of Millers Creek exceeded 1,000 mg/L (milligrams per liter). Background concentrations of chloride in unaffected streams were typically less than 10 mg/L. It is apparent that high concentrations of constituents of brine-water discharges in this area were toxic to many indigenous aquatic organisms. The vegetation and aquatic life of Buck Lick Creek, and Ross Creek below the confluence with Buck Lick Creek, were also severely degraded by brine. Algal and macroinvertebrate communities were limited to types tolerant to elevated salinity. Fish were eliminated in Buck Creek, and reduced numbers and varieties were noted in Ross Creek below Buck Lick Creek.

Data for the Millers Creek watershed are given in Table 16.

#### Station Camp Creek Watershed

Station Camp Creek is formed by the confluence of War Fork and South Fork in Jackson County. It then flows northwest to join the Kentucky River at Irvine. Based on published interpretations of available biological data, Station Camp Creek can be considered to be one of the largest high-quality watersheds in the Kentucky River Basin. Fifty-five fish species have been identified in the basin, including a sizeable muskellunge population. Station Camp Creek, including War Fork and South Fork, were recommended as Outstanding Resource Waters (KNPC, 1982).

#### **Red River Basin**

Because of their unique aquatic environments, streams in the Red River Basin have been the subject of numerous biological investigations.

The Red River from Kentucky Highway 746 to Kentucky Highway 715 has been designated as a Kentucky Wild River (Miller, Wihry, and Lee, Inc., 1980). The remaining sections provide habitat for muskellunge and were recommended as Outstanding Resource Waters (KNPC, 1982). Swift Camp Creek, a high-quality tributary, was also recommended as an Outstanding Resource Water.

Above the confluence with the Middle Fork of the Red River the algal flora of the Red River is perhaps the most diverse in the Kentucky River Basin. The diatom and macroinvertebrate communities indicated excellent water quality during the late 1970's. Fifteen species of fresh-water mussels were reported from the Wild River section. Eighty-five species of fish were identified in the basin.

Increases in epipelic (associated with sediments) diatoms were observed during the mid 1980's. The entire mussel community seemed to have been eliminated by the effects of sedimentation during the early 1980's, although collections in 1988 revealed 19 species in the Wild River section and downstream. A reduction of fish species, particularly darters, was observed in 1985, and was attributed to loss of habitat from sedimentation.

Analyses of biological communities in the Hazel Green reach have generally indicated good water quality and habitat availability. However, bioassay studies revealed acute toxicity to fathead minnows in the Red River near Hazel Green, particularly during the fall of 1986. Detectible levels of dieldrin, DDT, chlordane, and heavy metals were measured in fish tissue samples. Some toxicity to fathead minnows was documented during 1986-87 at Clay City.

| Aquatic Life<br>(miles)   | Cause     | Source      | Recreation (miles) | Cause | Source |
|---------------------------|-----------|-------------|--------------------|-------|--------|
| Millers Creek<br>6.4      | chlorides | oil and gas |                    |       |        |
| Big Sinking Creek<br>14.1 | chlorides | oil and gas |                    |       |        |
| Billey Fork<br>8.6        | chlorides | oil and gas |                    |       |        |

Biological data on downstream reaches of the Red River near Clay City indicate fairly good water quality, although somewhat elevated chloride concentrations were reported.

Hatton and Lulbegrud Creeks, which join the Red River near Clay City, were both characterized by good water quality and diverse biological communities.

Water quality in the Red River Basin has been affected by siltation, iron, lead, manganese, mercury, silver, chlorides, and fecal coliform bacteria. Data on the Red River are given in Tables 17 and 18.

#### Middle and South Forks of the Red River

Biological and water-quality investigations indicated that the Middle and South Forks of the Red River were affected by oil and gas production and coal mining. Extremely high concentrations of chloride (1,500-10,000 mg/L) and specific conductance values (4,500-27,000 gS/cm [microsiemens/centimeter]) were reported. The poor water quality affected the biological communities at virtually all sampling sites in this part of the basin. Algal communities were dominated by halophilic species. Fish in the Middle and South Forks were also severely affected by brine. No fish were found at the Sand Lick Creek and Stump Cave Branch sites.

Data on the Middle and South Forks of the Red River are given in Table 19.

# Kentucky River Basin

### from Red River to Ohio River

On the mainstem Kentucky River (Fig. 6) the availability of biological data was primarily limited to Pools 2 (Lockport), 3 (Frankfort), and 7 (Camp Nelson). Historical fishery and fresh-water mussel information was available from other pools. Seventeen to 22 fish species were reported at Pools 5 through 10, 15 at Pool 3.

and 10 at Pools I and 2. Most pools supported 10 to 15 species of fresh-water mussels, with fewer species at Pools 2, 3, and 6 (reported in 1975). Beds in Pools 3, 5, and 8 were considered commercially valuable.

Phytoplankton communities at Camp Nelson were dominated by types associated with nutrient enrichment. Localized sources of nutrient enrichment included Hickman Creek, which received treated waste water from parts of Lexington, and other waste-water discharges and nutrients from agricultural sources. Fish tissues revealed detectible concentrations of chlordane and heavy metals. Sources were thought to be housing construction and light industry in the Lexington area. Bioassays revealed acute toxicity to fathead minnows, particularly during the fall of 1986 and the summer of 1987. Bioassays of waste-water effluents from the West Hickman (Lexington) treatment plant revealed toxicity in the final effluent and in the receiving stream of West Hickman Creek.

Phytoplankton communities near Frankfort were dominated by diatoms associated with nutrient enrichment. Analyses of fish tissues indicated detectible levels of chlordane, aldrin, dieldrin, DDT, and heavy metals. Chlordane levels exceeded Food and Drug Administration action levels during 1984. Acute toxicity to fathead minnows during 1986-87 was reported. Bioassays on the discharge from the Frankfort waste-water treatment plant in the summer of 1985 revealed no acute toxicity in the effluent.

Algal communities at Lock 2 were reported to be similar to those in Frankfort.

Water quality in this region of the Kentucky River Basin was affected by cadmium, copper, iron, lead, manganese, mercury, silver, zinc, organic enrichment, nutrients, fecal coliform bacteria, and unknown toxins. Data on the Kentucky River Basin from the Red River to the Ohio River are given in Tables 20 and 21.

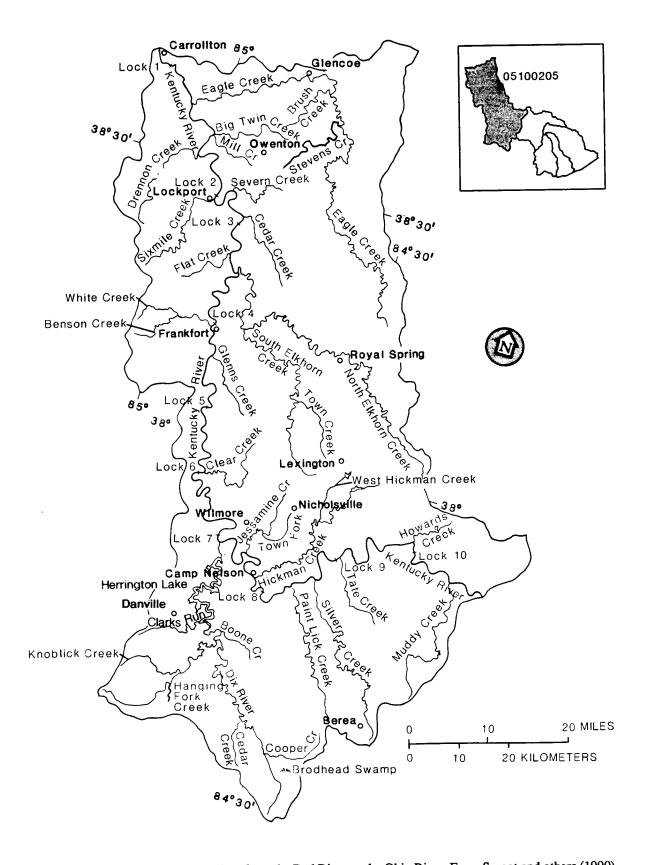



Figure 6. Basin of the Kentucky River from the Red River to the Ohio River. From Smoot and others (1990).

| Table 17.—Streams Not Fully Supporting Aquatic Life and Recreation in the Red River Basin in 1990. From Kentucky Division of Water (1990). |                  |                           |                    |           |           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|--------------------|-----------|-----------|--|--|
| Aquatic Life<br>(miles)                                                                                                                    | Cause            | Source                    | Recreation (miles) | Cause     | Source    |  |  |
| Red River<br>34.3                                                                                                                          | siltation/metals | habitat damage/<br>mining | 10.1               | pathogens | municipal |  |  |

# Table 18.—Water-Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in the Red River Basin from South Fork to Red River. From Smoot and others (1990).

|                               | Federal Guidelines |              | Kentucky Standards |                                        |            |
|-------------------------------|--------------------|--------------|--------------------|----------------------------------------|------------|
| ** , *,                       | Drinking Water     | Aquatic Life | Drinking Water     | Aquatic Life                           | Recreation |
| Red River near<br>Hazel Green |                    |              |                    |                                        |            |
| Low pH                        | 5                  | 5            |                    | ······································ |            |
| Alkalinity                    |                    | 28           |                    |                                        |            |
| Total:                        |                    |              |                    |                                        |            |
| Cadmium                       | 3                  | 26           |                    | 3                                      |            |
| Chromium                      | 1                  |              | 1                  | -                                      |            |
| Copper                        |                    | 11           |                    |                                        |            |
| Iron                          | 94                 | 35           |                    | 35                                     |            |
| Lead                          | 7                  | 58           | 7                  |                                        |            |
| Manganese                     | 99                 |              | 99                 |                                        |            |
| Mercury                       | 4                  | 100          |                    | 54                                     |            |
| Silver                        |                    | 100          |                    | 0,                                     |            |
| Zinc                          |                    | 3            |                    | 3                                      |            |
| Fecal Coliform                |                    |              | 7                  | -                                      | 66         |
| Red River near<br>Bowen       |                    |              |                    |                                        |            |
| High pH                       | 2                  | 2            |                    | 2                                      | 2          |

| Table 19.—Streams Not Fully Supporting Aquatic Life and Recreation in the Middle and South Forks of the Red River         in 1990. From Kentucky Division of Water (1990). |           |             |                    |         |        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|--------------------|---------|--------|--|
| Aquatic Life<br>(miles)                                                                                                                                                    | Cause     | Source      | Recreation (miles) | Cause   | Source |  |
| South Fork, Red<br>River<br>11.8                                                                                                                                           | chlorides | oil and gas |                    | <u></u> |        |  |
| Sand Lick Fork<br>5.0                                                                                                                                                      | chlorides | oil and gas |                    |         |        |  |

| Aquatic Life<br>(miles)          | Cause                                 | Source    | Recreation (miles) | Cause     | Source  |
|----------------------------------|---------------------------------------|-----------|--------------------|-----------|---------|
| Kentucky River at<br>Camp Nelson |                                       |           | 37.7               | pathogens | unknown |
| Kentucky River at<br>Frankfort   | · · · · · · · · · · · · · · · · · · · |           | 30.1               | pathogens | unknown |
| Walnut Meadow<br>Branch<br>3.6   | organic enrich-<br>ment/nutrients     | municipal |                    |           |         |
| Brushy Fork<br>0.2               | nutrients                             | municipal |                    |           |         |

| Table 20Streams Not Fully Supporting Aquatic Life and Recreation in the Kentucky River Basin from Red River to |
|----------------------------------------------------------------------------------------------------------------|
| the Ohio River in 1990.                                                                                        |

#### Silver Creek Watershed

Silver Creek flows northward from near Berea to join the Kentucky River in Pool 8. The stream was "one of the best streams in the drainage, supporting a good sport fishery for black and rock bass" in 1973 (Jones, 1973). Because of chronic pollution from the discharge of treated domestic waste water at Berea, an intensive investigation was conducted by the Kentucky Division of Water in 1982. Water-quality violations were observed for undissociated hydrogen sulfide, phthalate esters, aluminum, mercury, and fecal coliform bacteria. Algae were dominated by types associated with nutrient enrichment and high pollution tolerance. Biological communities had partially recovered in downstream reaches, but nutrient enrichment from agricultural runoff was indicated by dense growths of filamentous algae. Abundant macroinvertebrate habitat and good water quality were indicated in Silver Creek just upstream of its confluence with the Kentucky River, however. This part of Silver Creek provided a habitat for smallmouth bass, was designated as a Sport Fishery Resource, and was recommended as an Outstanding Resource Water (KNPC, 1982).

Data for Silver Creek are given in Table 22.

#### Jessamine Creek Watershed

The creek flows southward from north-central Jessamine County through one of the most scenic gorges in the Inner Blue Grass to join the Kentucky River near Wilmore. This stream was classified as an Outstanding Resource Water (KNPC, 1982) because of the presence of three protected species of bats. Fish species reported include bass and bluegill. Bioassays

conducted by the Kentucky Division of Water indicated acute toxicity to fathead minnows in the Nicholasville and Wilmore sewage effluents in Town Branch downstream from the Wilmore waste-water treatment plant.

#### Dix River Basin

The Dix River flows from Rockcastle County north about 85 miles and joins the Kentucky River upstream of Lock and Dam 7. The upper parts of the Dix and Copper Creek were affected by agricultural activities (organic matter and heavy use of the stream by cattle). Biological communities were dominated by species tolerant of a wide range of water-quality conditions. Hanging Fork Creek contained more sensitive species. Clarks Run received waste water and other point discharges from Danville, and was adversely affected. Acute toxicity to fathead Minnows was documented in 1986-87. Water quality in the Dix River below Herrington Lake Dam was enhanced by the mitigating effects of the lake. Cooler, less turbid waters were released to the Kentucky River during summer. The Dix River below the dam was identified as an important sport fishery resource by the Kentucky Department of Fish and Wildlife Resources, and was recommended as an Outstanding Resource Water (KNPC, 1982).

Data for the Dix River Basin are given in Table 23.

#### Elkhorn Creek Watershed

North Elkhorn Creek flows from northern Fayette County through Scott and Woodford Counties and merges with South Elkhorn Creek in Franklin County to form Elkhorn Creek. Elkhorn Creek joins the Kentucky River about 10 miles north of Frankfort in Pool 3.

|                                   | Federal Guidelines |              | Kentucky Standards |              |                       |
|-----------------------------------|--------------------|--------------|--------------------|--------------|-----------------------|
|                                   | Drinking Water     | Aquatic Life | Drinking Water     | Aquatic Life | Recreation            |
| Kentucky River at<br>Camp Nelson  |                    |              |                    |              | <u>- 0.05-5-5-</u> ,, |
| High pH<br>Dissolved Solids       | 1 2                | ······       |                    |              |                       |
| Total:                            | 2                  |              |                    |              |                       |
| Cadmium                           | 10                 | 25           |                    | 8            |                       |
|                                   | 10                 | 8            |                    | 0            |                       |
| Copper<br>Iron                    | 59                 | 28           |                    | 28           |                       |
| Lead                              | 12                 | 28<br>81     | 12                 | 20           |                       |
|                                   |                    | 01           | 76                 |              |                       |
| Manganese                         | 76                 | 100          | /0                 | 50           |                       |
| Mercury<br>Silver                 | 9                  | 100<br>100   |                    | 50           |                       |
|                                   |                    | 8            |                    | 8            |                       |
| Zinc                              |                    | ð            | 6                  | 0            | 23                    |
| Fecal Coliform                    |                    |              | 0                  |              | 43                    |
| Kentucky River<br>above Frankfort |                    |              |                    |              |                       |
| Low pH                            | 1                  | 1            |                    |              |                       |
| High pH                           | 1                  |              |                    |              |                       |
| Alkalinity                        |                    | 1            |                    |              |                       |
| Total:                            |                    |              |                    |              |                       |
| Cadmium                           | 11                 | 28           |                    | 10           |                       |
| Copper                            |                    | 21           |                    |              |                       |
| Iron                              | 57                 | 25           |                    | 25           |                       |
| Lead                              | 13                 | 68           | 13                 |              |                       |
| Manganese                         | 56                 |              | 56                 |              |                       |
| Mercury                           | 10                 | 100          |                    | 64           |                       |
| Silver                            |                    | 100          |                    |              |                       |
| Zinc                              |                    | 14           |                    | 14           |                       |
| Fecal Coliform                    |                    |              |                    |              | 22                    |
| Kentucky River                    |                    |              |                    |              |                       |
| below Frankfort                   |                    |              |                    |              |                       |
| Low pH                            | 1<br>3             | 1            |                    | 1            | 1                     |
| High pH                           | 3                  |              |                    |              |                       |
| Total:                            |                    |              |                    |              |                       |
| Nitrogen                          |                    |              |                    | 1            |                       |
| Cadmium                           | 14                 | 33           |                    | 14           |                       |
| Copper                            |                    | 8            |                    |              |                       |
| Iron                              | 59                 | 25           |                    | 25           |                       |
| Lead                              | 22                 | 73           | 22                 |              |                       |
| Manganese                         | 64                 |              | 64                 |              |                       |
| Mercury                           | 7                  | 100          |                    | 64           |                       |
| Silver                            |                    | 100          |                    |              |                       |
| Zinc                              |                    | 9            |                    | 9            |                       |
| Fecal Coliform                    |                    | -*           | 2                  |              | 36                    |

# Table 21.---Water-Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in the Kentucky River

| Table 21.—Continued.          |                    |              |                    |              |            |  |  |
|-------------------------------|--------------------|--------------|--------------------|--------------|------------|--|--|
|                               | Federal Guidelines |              | Kentucky Standards |              |            |  |  |
|                               | Drinking Water     | Aquatic Life | Drinking Water     | Aquatic Life | Recreation |  |  |
| Kentucky River at<br>Lockport |                    |              |                    |              |            |  |  |
| Low pH                        | 3                  | 3            |                    |              |            |  |  |
| High pH                       | 1                  |              |                    |              |            |  |  |
| Total:                        |                    |              |                    |              |            |  |  |
| Arsenic                       | 1                  |              |                    | 1            |            |  |  |
| Copper                        |                    | 46           |                    |              |            |  |  |
| Iron                          | 96                 | 52           |                    | 52           |            |  |  |
| Lead                          |                    | 96           |                    |              |            |  |  |
| Manganese                     | 96                 |              | 96                 |              |            |  |  |
| Mercury                       |                    | 100          |                    | 60           |            |  |  |
| Silver                        |                    | 9            |                    |              |            |  |  |
| Zinc                          |                    | 37           |                    | 37           |            |  |  |
| Fecal Coliform                |                    |              | 17                 |              | 75         |  |  |

North Elkhorn Creek is an extremely popular recreational resource and was recommended as an Outstanding Resource Water (KNPC, 1982) because of Viable populations of several organisms, including freshwater mussels. Because it provided habitat for smallmouth bass, it was also designated as a Sport Fishery Resource. Biological monitoring of the creek and its major tributaries by the Kentucky Division of Water was in progress in 1989, paying particular attention to the potential eff ects of industrial discharges on water quality. Sewage effluent into the creek from the Georgetown waste-water treatment plant was toxic to fathead minnows in May of 1986. Acute toxicity was also observed in the stream above and below the discharge point.

Data for the North Elkhorn Creek watershed are given in Table 24.

#### South Elkhorn Creek Watershed

South Elkhorn Creek was severely degraded by sewage effluent discharged into Town Branch by the

city of Lexington from 1970 to 1986. Although both the North and South Elkhorn drain areas of similar geology, the aquatic life supported by South Elkhorn Creek differed from that of North Elkhorn Creek.

Benthic invertebrate collections from South Elkhorn Creek below Town Branch in 1968-69 were composed primarily of Tubifex worms, which are characteristic of grossly polluted streams. Fish populations below Town Branch were severely affected by low dissolved oxygen content.

Water-quality and biological investigations were conducted at seven locations during 1981. Results indicated degraded environmental conditions throughout the system. Biological data collected from 1984 to 1986 were similar to the 1981 data. Macroinvertebrates on artificial substrates were limited to one pollution-tolerant species, indicating toxicity to most species of macroinvertebrates. Bioassays indicated consistent toxicity to fathead minnows, particularly during the summer of 1987.

| Table 22.—Streams Not Fully Supporting Aquatic Life and Recreation in the Silver Creek Watershed in 1990. From         Kentucky Division of Water (1990). |                                   |           |                    |       |        |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|--------------------|-------|--------|--|--|
| Aquatic Life<br>(miles)                                                                                                                                   | Cause                             | Source    | Recreation (miles) | Cause | Source |  |  |
| Silver Creek                                                                                                                                              | organic enrich-<br>ment/nutrients | municipal |                    |       |        |  |  |

| Table 23.—Streams Not Fully Supporting Aquatic Life and Recreation in the Dix River Basin in 1990. From Kentucky Division of Water (1990). |                                             |           |                    |           |           |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------|--------------------|-----------|-----------|--|--|--|--|
| Aquatic Life<br>(miles)                                                                                                                    | Cause                                       | Source    | Recreation (miles) | Cause     | Source    |  |  |  |  |
| Dix River                                                                                                                                  |                                             |           | 13.5               | pathogens | municipal |  |  |  |  |
| Clarks Run<br>8.0                                                                                                                          | organic enrich-<br>ment/unknown<br>toxicity | municipal |                    |           |           |  |  |  |  |

| Table 24.—Streams Not Fully Supporting Aquatic Life and Recreation in the Elkhorn Creek Watershed in 1990. From |
|-----------------------------------------------------------------------------------------------------------------|
| Kentucky Division of Water (1990).                                                                              |

| Aquatic Life<br>(miles) | Cause                                           | Source    | Recreation (miles) | Cause | Source |
|-------------------------|-------------------------------------------------|-----------|--------------------|-------|--------|
| North Elkhorn<br>2.0    | organic enrich-<br>ment/chlorine/nu-<br>trients | municipal |                    |       |        |
| Cane Run<br>17.4        | unknown toxicity                                | unknown   |                    |       |        |

Data for the South Elkhorn Creek watershed are given in Tables 25 and 26.

#### Eagle Creek Watershed

Eagle Creek is the last major tributary to join the Kentucky River. Eagle Creek was recommended for inclusion as an Outstanding Resource Water by the Kentucky Nature Preserves Commission (1982). Although phytoplankton communities at Glencoe were dominated by eutrophic species, macroinverlebrate communities reflected good water-quality and habitat conditions. Analysis of fish tissues revealed detectible concentrations of chlordane, PCB's, DDT, methoxychlor, and heavy metals. Bioassays revealed toxicity to fathead minnows during 1986-87. The major point source in the basin was the Owenton waste-water treatment plant, which discharged into Stevens Creek. Bioassays revealed no toxicity to fathead minnows in the effluent or in the receiving stream during July 1986.

#### SUMMARY OF WATER QUALITY

Data collected up to 1990 suggest that water pollution problems existed throughout the Kentucky River Basin. Fecal coliform bacteria in streams was a widespread problem because of inadequate treatment of municipal wastes, failing septic systems, and agriculture. Iron, lead, manganese, mercury, and silver exceeded State standards and Federal guidelines for drinking water and aquatic life at most of the sample sites for a majority of samples. In the Knobs region, chloride discharges from oil and gas operations severely reduced aquatic life in many smaller streams. Organic enrichment and high nutrient loads from waste-water treatment plants and agriculture reduced aquatic life in the Blue Grass region. Several locations were affected by unknown toxins, and detectible levels of heavy metals and the organic pesticides chlordane, aldrin, dieldrin, and DDT were found in fish tissues from the Kentucky River.

Eagle Creek data are given in Table 27.

| Table 25.—Streams | s Not Fully Supporti | ng Aquatic Life and | d Recreation in the Sou | th Elkhorn Creek | Watershed in 1990. |
|-------------------|----------------------|---------------------|-------------------------|------------------|--------------------|
| From Kentucky Di  | vision of Water (199 | 0).                 |                         |                  |                    |
| Aquatic Life      | Cause                | Source              | Recreation (miles)      | Cause            | Source             |

| Aquatic Life<br>(miles) | Cause                          | Source    | Recreation (miles) | Cause     | Source                    |
|-------------------------|--------------------------------|-----------|--------------------|-----------|---------------------------|
| South Elkhorn<br>41.0   | organic enrich-<br>ment/metals | municipal | 17.6               | pathogens | municipal/urban<br>runoff |
| Town Branch<br>11.3     | organic enrich-<br>ment/metals | municipal | 11.3               | pathogens | municipal                 |

| Creek Watershed.             | From Smoot and oth | ers (1990).  |                | • •                |            |  |  |  |
|------------------------------|--------------------|--------------|----------------|--------------------|------------|--|--|--|
|                              | Federal G          | uidelines    | 1              | Kentucky Standards |            |  |  |  |
| ······                       | Drinking Water     | Aquatic Life | Drinking Water | Aquatic Life       | Recreation |  |  |  |
| South Elkhorn<br>near Midway |                    |              |                |                    |            |  |  |  |
| Low pH                       | 4                  | 4            |                | 2                  | 2          |  |  |  |
| Fluoride                     |                    |              | 32             |                    |            |  |  |  |
| Total:                       |                    |              |                |                    |            |  |  |  |
| Nitrogen                     |                    |              |                | 23                 |            |  |  |  |
| Diss. Oxygen                 | 1 1                | 59           |                | 47                 |            |  |  |  |
| Cadmium                      |                    | 19           |                |                    |            |  |  |  |
| Iron                         | 70                 | 2            |                | 2                  |            |  |  |  |
| Lead                         |                    | 58           |                |                    |            |  |  |  |
| Manganese                    | 100                |              | 100            |                    |            |  |  |  |
| Mercury                      | 5                  | 100          |                | 26                 |            |  |  |  |
| Silver                       | ]                  | 100          |                |                    |            |  |  |  |
| Zinc                         | ]                  | 34           |                | 34                 |            |  |  |  |
| Fecal Coliform               |                    |              | 8              |                    | 73         |  |  |  |

# Table 26.—Water-Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in the South Elkhorn Creek Watershed. From Smoot and others (1990).

## Table 27.—Water-Quality Parameters Exceeding Standards or Guidelines (Percent of Samples) in the Eagle Creek Watershed. From Smoot and others (1990).

|                        | Federal G      | uidelines    |                | Kentucky Standards |            |
|------------------------|----------------|--------------|----------------|--------------------|------------|
|                        | Drinking Water | Aquatic Life | Drinking Water | Aquatic Life       | Recreation |
| Eagle Creek at Glencoe |                |              |                |                    | <u></u>    |
| Dissolved Solids       | 1              |              |                |                    |            |
| Total:<br>Nitrogen     |                |              |                | 1                  |            |
| Cadmium                | 1              | 35           |                | 5                  |            |
| Соррег                 | _              | 10           |                | _                  |            |
| Iron                   | 73             | 34           |                | 34                 |            |
| Lead                   | 23             | 66           | 23             |                    |            |
| Manganese              | 57             |              | 57             |                    |            |
| Mercury                | 15             | 100          |                | 57                 |            |
| Silver                 |                | 100          |                |                    |            |
| Zinc                   |                | 12           |                | 12                 |            |
| Fecal Coliform         |                |              | 2              |                    | 29         |

The data discussed above may not fully represent current conditions. Brine discharges from oil and gas operations have reportedly been reduced. Chronic problems at some waste-water treatment plants, such as the Lexington facility on Town Branch, are reportedly in the process of correction. It is clear, however, that despite the best efforts of such agencies as the Division of Water and the Kentucky Nature Preserves Commission, water-quality problems in the basin continue to be widespread and persistent.

#### **REGULATORY ACTIVITIES**

The Kentucky Division of Water is charged with protecting the quality of lakes, streams, rivers, and ground water for the entire State, and therefore most, if not all, of its activities apply to the Kentucky River Basin. In its Kentucky Environmental Management Plan, 1990-1992 (KDOW, 1989), the Division of Water outlined its responsibilities and the major issues that needed to be addressed. For each issue, a plan of action was given. This information is summarized below.

#### Responsibilities

The Division of Water operates water-quality and biological monitoring stations on streams and lakes aroundthe State. Datafromthis monitoring are usedto identify priority areas, to revise State water-quality standards, to aid in developing waste-load allocations, and to determine water-quality trends in Kentucky's surface waters.

The Division is responsible, through its Kentucky Pollutant Discharge Elimination System (KPDES), for controlling the amount of pollutants that cities, industries, and other facilities can discharge into the surface waters of the Commonwealth. Anyone who discharges to a water body must have a KPDES permit. Also, through its 401 Water Ouality Certification Program, the Division is to ensure that discharges to navigable waters comply with provisions of the Federal Clean Water Act.

The Division is responsible for nonpoint-source pollution control and the implementation of Kentucky's Nonpoint Source Pollution Control Program. Nonpointsource pollution, largely unregulated, has been identified as affecting 129 surface-water bodies, seven wetlands, and six ground-water sites in the Kentucky River Basin.

The Division is charged with ensuring that public water systems provide a safe supply of drinking water to Kentucky citizens. To achieve this goal, the Division in spects and monitors public water supplies, reviews and approves plans for treatment plants and distribution systems, trains and provides technical assistance to water plant operators, and educates and informs the public on water-supply problems.

The Division is responsible for the development, promulgation, and amendment of administrative regulations related to water quality and water resources management.

The Division's Wild Rivers Program ensures that the State's most pristine streams are preserved in their natural state.

#### Issues

Major water-quality issues identified by the Division of Water in the Management Plan were, in no particular order:

- 1. Increase staff to issue permits in a timely manner or to inspect facilities a sufficient number of times to ensure compliance with permit conditions.
- 2. Improve the control of toxins and chlorides.
- 3. Respond to the proliferation of package treatment plants and combined sewer/storm-water systems.
- 4. Assure compliance with new, more stringent drinking-water requirements.
- 5. Improve the ambient monitoring network and wild rivers programs.
- 6. Respond to Federal assistance reductions in waste water, construction grant, and nonpointsource programs.

#### Division of Water Action Plans, 1990-1992

#### Compliance and Enforcement

Compliance Sampling Inspections (CSI) consist of a thorough inspection, which includes laboratory analysis of discharge. Routine Inspections consist of a walkthrough inspection of the physical plant. Compliance Evaluation Inspections (CEI) consist of a review of the permittee's self-monitoring and reporting program and an operation and maintenance evaluation. Performance Audit Inspections (PAI) consist of an in-depth verification of a facility's self-monitoring program.

A major part of the action plan was to increase inspection and surveillance staff to work toward the following inspection goals: Major municipals and industries (waste-water treatment facilities or industries treating at least 1 million gallons a day):

Compliance Sampling Inspections: One per year Routine Inspections: Two per year

Compliance Evaluation Inspections: One per year Performance Audit Inspections: One every 5 years

*Minor municipals* (waste-water treatment facilities treating less than 1 million gallons a day):

Compliance Sampling Inspections: Every 3 years Routine Inspections: Two per year Compliance Evaluation Inspections: One per year Performance Audit Inspections: Every 5 years

*Minor industfies* (treating less than 1 million gallons a day):

Compliance Sampling Inspections: None Routine Inspections: One routine inspection, or Compliance Evaluation Inspections: One per year Performance Audit Inspections: None

Permitted oil and gas facilities: One Routine Inspection and one Compliance Evaluation Inspection per year

Registered oil and gas leases: One Routine Inspection per year

Drinking-water systems: One Comprehensive Inspection and laboratory analysis per year

#### Pre-treatment systems:

- Comprehensive audit of the municipal waste-water treatment facility pre-treatment program once every 5 years
- One pre-treatment compliance inspection per year One industrial user inspection every 5 years (20 percent of the industries on the municipal system per year)

Section 401 water-quality certification: Annual inspection

#### Wild Rivers:

Aerial survey: Four times a year Ground survey: Each wild river four times a year Permit inspection: Every 2 months

The action plan also included increasing staff to seek out unpermitted activities and to ensure timely enforcement of water cases.

#### Toxin Control Strategies

Under Section 313 of the Federal Superfund Amendments and Reauthorization Act (SARA) of 1986, 328 chemicals were listed as toxic, and 126 priority pollutants were listed in Section 304(1) of the Clean Water Act.

#### PLAN OF ACTION

- 1 . Expand the review of municipal permit applications for potential toxic components of their discharge, developing specific limits where needed, and conducting biomonitoring of the whole eff luent for toxicity.
- 2. Expand the number of pre-treatment verifications.
- 3. Provide assistance to the Compliance Audit Team regarding toxic impact discharges and the total ambient environment.

#### Controlling Chlorides

Oil and gas production was the principal industry affected by chloride regulations--oil and gas wells discharge brines in their produced water. As of February 1989, the Division of Water had issued 117 permits, with another 117 in process. Approximately 8,000 oil and gas leases remained for which permits had not been sought.

#### PLAN OF ACTION

Review, develop, and issue permits with chloride limits.

Provide additional verification and review of pretreatment facilities.

Ensure that dischargers have an opportunity t apply for Underground Injection Control (UI( permits, which would eliminate discharges by r injection.

Increase inspection staff.

#### Storm Water and Combined Sewer Permits

New Federal Environmental Protection Agency storm-water regulations to minimize impacts of urban runoff would require thousands of additional facilities to apply for surf ace-water discharge permits.

#### PLAN OF ACTION

Develop a program, based on the provisions of the Clean Water Act, that will meet all legislative requirements for controlling storm-water runoff, including:

1. Regulations for industrial and large municipal sources (population greater than 250,000);

- 2. Reviewing and processing industrial and large municipal source permit applications;
  - 3. Initiating development of regulations for smaller cities with populations between 100,000 and 250,000;
  - 4. Developing a procedure for issuing general per mits for smaller cities and certain classes of in dustries;
  - 5. Drafting and issuing individual permits for remain ing cities and industries.

#### Waste-Water Treatment Facilities

The desirability of connecting small waste-water treatment facilities to larger systems has long been recognized. In response to the proliferation of package treatment plants, the Division of Water planned to in crease its consolidation efforts.

Amendments to the Clean Water Act in 1984 gave special attention to bringing municipal sewage plants into compliance by July 1, 1988. The Municipal Coordination Section was formed to provide assistance to municipal treatment plants that were in significant noncompliance.

The Division's waste-water certification, training, and evaluation effort also needed to be expanded to accommodate the approximately 2,800 operators throughout Kentucky.

#### PLAN OF ACTION

1. Develop alternatives for selective consolidation of small waste-water plants by evaluating current statutes and regulations, establishing guidelines, and offering technical assistance to encourage consolidation.

2. Develop selected permits that will define cutoff dates and force consolidation by denying reissuance when present permits expire.

Increase the number of waste-water training workshops and evaluations.

4. Add personnel and resources for all activities.

#### Drinking-Water Management

Amendments to the Safe Drinking Water Act (SDWA) provided extensive measures to ensure the protection of drinking water. Implementing those measures required the Division to devote more personnel and resources to those activities. PLAN OF ACTION

- 1. Recommend modifications to Kentucky statutes and Natural Resources and Environmental Protection Cabinet regulations to comply with Safe Drinking Water Act amendments.
- 2. Increase staff, expand the Comprehensive Technical Assistance Program, increase number of training workshops for drinking-water operators, and expand monitoring, compliance, and enforcement system.
- Develop programs 3. to reduce lead and bacteriological and chemical contaminants in drinkina water. Enhance the supplemental fluoridation programs through increased central tracking, review, and follow-up of sampling results, and provide additional technical assistance to ensure that the public is not receiving fluoride at concentrations that could adversely aff ect their health.
  - 4. Evaluate water-treatment techniques and construction plans to ensure effectiveness in complying with regulations, particularly new maximum contaminant levels for volatile organic chemicals, synthetic organic chemicals, inorganic chemicals, and radionuclides.
- 5. Promote regional public water supplies, and assist with making public water supplies private when it is found to be advantageous.
- 6. Assist public water supplies in issuing proper notification to consumers when a situation exists that can adversely affect public health. New regulations require a more timely notice to customers, and in many cases, such as for cancer-causing contaminants, require specific wording. A 700 percent increase in the number of public notifications is anticipated.

#### Ambient Monitoring

Federal funds for monitoring activities were expected to decrease by 54 percent at a time when more monitoring stations were needed, particularly for reference streams (streams as undisturbed as possible).

In recent years, EPA has placed more emphasis on implementation of Section 401 of the Clean Water Act. The Division of Water, likewise, planned to expand its 401 programs.

The Kentucky Wild Rivers System consists of nine streams with a total of 114 stream miles. There are no restrictions on existing land use, but a permit must be obtained for any new land uses in a wild river corridor. Permits have been issued for selective timber harvesting and oil and gas development. Additional resources are required to adequately administer the wild rivers program.

#### PLAN OF ACTION

- 1. Use State funds to maintain a portion of the ambient monitoring system that was formerly Federally funded.
- 2. Establish three to 12 reference stream sites in each of the six physiographic regions of Kentucky (45 total). Determine conditions for chemical water quality, sediment quality, fish tissue residue, habitat condition, and biotic conditions at each reference site.
- Improve quality of Section 401 reviews. Increase on-site visits and pre-application meetings. Add staff to initiate compliance monitoring and enforcement process. Propose State laws and regulations for Section 401 to maximize the Division's control over certification, compliance monitoring, and enforcement.
- 4. Add a field position to the Wild Rivers Program to perform compliance monitoring, permit inspections, on-site public relations, post signs, collect river-use data, and sample water quality. Increase frequency of monitoring surveys, complete inventory and management plans for Bad Branch and Martins Fork, and prepare corridor maps for Cumberland, Rockcastle, Rock Creek, and Bad Branch wild rivers. Negotiate and monitor easement agreements for private lands within corridors.

#### Nonpoint Sources of Water Pollution

Kentucky's nonpoint-source pollution control program is described in two documents. The "Kentucky Nonpoint Source Pollution Assessment Report" (Kentucky Division of Water, 1989b) identifies waters in Kentucky that cannot reasonably be expected to attain or maintain water-quality standards because of nonpoint sources of pollution. The "Kentucky Nonpoint Source Management Program Report"(KDOW, 1989a) identifies Best Management Practices (BMP's) to be used to control nonpoint sources of pollution, and the programs to be used to implement those BMP's.

#### PLAN OF ACTION

1. Implement the nonpoint-source management program, including educational efforts, technical assistance, research, and BMP demonstration projects.

- 2. Develop a nonpoint-source sampling strategy and guidelines for monitoring and evaluation.
- 3. Develop a strategy to control urban nonpoint source pollution, including an education program, identifying implementation agencies, and technical assistance to communities.
- Explore regulatory options to control nonpoin source pollution Statewide or by critical areas such as Outstanding Resource Waters or domestic water-supply watersheds.

#### Regulatory Development

The Division of Water bases its actions and activities on administrative regulations. The Division administers separate regulations for waste-water discharges, drinking-water systems, dam safety and flood-plain management, water withdrawal, certification of wastewater treatment plant operators, certification of drinking-water treatment plant operators, and construction review of waste-water treatment plants.

#### PLAN OF ACTION

- 1. Provide an additional person to serve as coordinator of regulatory development.
- Define a formal procedure for the periodic review of existing administrative regulations to ensure that they meet program needs.

#### Summary of Regulatory Activities

The water-quality responsibilities of the Division of Water are extensive. The primary issue in the 1990-92 Plan was the shortage of personnel and resources to keep up with the rapidly increasing number of regulations. Permitting, monitoring, and enforcement requirements for thousands of pollutant producers and hundreds of pollutants are indeed staggering. Funding and personnel needs seem to grow exponentially. In the 1990-92 Environmental Management Plan, the projected baseline budget (just to do what was done in 1989) for fiscal year 1992 for the Division was \$10,485,300, with a staff of 202. To meet the demands of new regulations and programs, the projected fiscal year 1992 budget was \$14,858,300, with a staff of 324. The actual fiscal year 1992 budget was \$15,489,800, with 286 staff positions.

#### CONCLUSIONS

The impact of man's activities on water quality in the Kentucky River Basin appears to be widespread and growing. An increasing number of actual and potential pollutants are being identified and regulated. The Kentucky Department for Environmental Protection (KDEP) recognized that the current regulatory approach could not be indefinitely sustained (KDEP, 1989, p. A-3):

Environmental protection to date has focused on treating air and water emissions at the and-of-the-pipe or safely disposing of waste after R was produced. We are discovering that the superior approach *is* to eliminate or reduce waste *before* it is generated.

KDEP also recognized that transforming waste streams is often counterproductive. Reducing pollutants in water discharges may increase the land disposal problem. Burning wastes reduces the quantity for land disposal, but may increase toxic concentrations of solids to be disposed of, or produce unacceptable air pollutants. Waste cannot be made to disappear; it must be dispersed into the environment. If concentrations of wastes exceed the local assimilative capacity of the environment, short- or long-term degradation will result, and permanent capacity reduction may occur.

Not only must innovative waste-treatment and prevention technologies be explored, but new institutional approaches to environmental protection must be developed. Economists and environmentalists are currently exploring a variety of pollution control and prevention policies based on economic incentives (taxes, tradeable discharge rights, polluter pays). These approaches need to be examined for application in Kentucky.

Effective water-quality management must consider the quantity and location of all our waste streams-solid, liquid, and gas (air pollutants)-and the ability of the local environment to absorb those wastes. The local and regional assimilative capacity of the environment, given current or anticipated waste-treatment technology, must also be considered when deciding issues of industrial or commercial development, population growth, and land use.

A comprehensive water-quality management framework of necessity must incorporate an entire river basin. A first step in the Kentucky River Basin would be to establish general water-quality policies based on a consensus of interested parties within the basin. These policies could provide the basis for the development of water-quality management plans that would reflect both local and basin wide issues and concerns. Water resource management decisions will not be easy or always popular, but will be necessary to create an environment that will enhance the quality of life in the basin.

- Bradfield A. D., and Porter, S. D., 1990, Summary of biological investigations relating to surface-water quality in the Kentucky River Basin, Kentucky: U.S. Geological Survey Water-Resources Investigations Report 90-4051, 63 p.
- Federal Water Pollution Control Act, 1972, Public Law 92-500, 92 Congress, S-2770 (October 18,1972).
- Harker, D. F., Jr., Call, S. M., Warren, M. L., Jr., Camburn, K. E., and Wigley, P., 1979, Aquatic biota and water-quality survey of the Appalachian Province eastern Kentucky: Kentucky Nature Preserves Commission Technical Report, 1152 p.
- Jones, A. R., 1973, Inventory and classification of streams in the Kentucky River drainage: Kentucky Department of Fish and Wildlife Resources, Fishedes Bulletin 56, Frankfort, Kentucky, 119 p.
- Kentucky Department for Environmental Protection, 1989, Kentucky environmental management plan: Natural Resources and Environmental Protection Cabinet, various pagination.
- Kentucky Division of Water, 1989a, Kentucky nonpoint source pollution assessment report-1989 update: Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet, Department for Environmental Protection, 98 p.
- Kentucky Division of Water, 1989b, Kentucky nonpoint source management program, revised draft: Commonwealth of Kentucky, Natural Resources and Environmental Protection Cabinet, Department for Environmental Protection, 274 p.

- Kentucky Division of Water, 1990, 1990 Kentucky report to Congress on water quality: Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet, Department for Environmental Protection, 187 p.
- Kentucky Natural Resources and Environmental Protection Cabinet, Division of Water, 1985, Surface water standards: 401 Kentucky Administrative Regulation 5:031 as amended, 9 p.
- Kentucky Nature Preserves Commission, 1982, Recommendations for Kentucky's outstanding resource water classifications with water quality criteria for protection: Frankfort, Kentucky, 459 p.
- Miller, Wihry, and Lee, Inc., 1980, Kentucky wild rivers. Red River management plan: Kentucky Department for Natural Resources and Environmental Protection, no pagination.
- Smoot, J. L., Liebermann, T D., Evaidi, R. D., and White, K. D., 1990, Surface water-quality assessment of the Kentucky River Basin, Kentucky: Analysis of available water-quality data through 1986: U.S. Geological Survey Open-File Report 90-360, 209 p.
- U.S. Geological Survey, 1974, Hydrologic unit map-1974, Kentucky: U.S. Geological Survey, Scale 1:500,000.
- Williams, J. C., 1975, Commercial fishery investigations of the Kentucky River: Fish population studies and mussel bed surveys: Eastern Kentucky University, Department of Biological Sciences, Richmond, Kentucky, 64 p.

#### GLOSSARY

Acute toxicity--Short-termwater-quality effects that often result in the death of aquatic organisms.

Aldrin-An organic pesticide.

Alga-Aquaticone-celled or multicellular plants without true stems, roots, and leaves, but containing chlorophyll.

Aquatic-Living or growing in or on the water.

Aquatic habitat-The environment in or on the water in which an aquatic organism lives or grows.

Aquatic life-The plants oranimals living in oron thewater.

Artificial substrate-Device for sampling bottom-dwelling aquatic organisms.

Benthic diatom--Boftorr~-dwelling diatom.

Benthic invertebrate-Minute animal living on the bottom of lakes or streams or attached to stones or other submersed objects.

Benthic macroinvertebrate-Animal larger than 0.6 millimeters living on the bottom of lakes or streams or attached to stones or other submersed objects.

Benthos-Plants and animals living on the bottom of a stream or lake.

Bioaccumulation-The buildup of toxic substances in aquatic organisms.

Bioassay-Any test in which aquatic organisms are used to detect or measure the presence or eff ect of one or more substances, wastes, or environmental factors, alone or in combination, on aquatic organisms.

Chlordane-An organic pesticide.

Chronic toxicity-Long-term water-quality effects that are harmful to individual aquatic organisms and to communities of organisms.

DDT-An organic pesticide.

Diatom-Minute unicellular algae of the class Bacillariophyceae.

Dieldrin-An organic pesticide.

Epipelic-Associated with sediment. Epipelic algae dominate in sediment-laden stream beds.

Epilithic-Attached to rock. Epilithic algae typify undisturbed streams.

Epiphytic-Attached to another plant. Epiphytic diatoms exist in undisturbed streams.

Eutrophic-Having excessive nutrients, resulting in heavy growth of algae and other aquatic plants and restricting the growth of other aquatic life. Eutrophy-A condition of being nutrient rich.

Fecal coliform bacteria-A group of organisms common to the intestinal tracts of man and animals. The presence of fecal coliform bacteria in water is an indicator of pollution and of potentially dangerous bacterial contamination.

Flocculent-Having a fluffy or woolly appearance.

Halophilic-Requiring or flourishing in saline (salty) water.

Heterotrophic-Deriving nourishment from organic substances.

Invertebrate-Animal without a spine.

Iron ochre--Oxide of iron mixed with sand or clay.

Low-f low augmentation-Release of water to increase downstream f low and water quality during periods of low f low.

Macroinvertebrate-Aquatic invertebrate larger than 0.6 millimeters.

Mesotrophic-In balance with natural nutrient conditions.

Methoxychlor-An organic pesticide.

Nonpoint source-A diffuse source of pollutants not identifiable with a single point orpoints; forexample, uncontrolled runoff from disturbed land, agricultural, or urban areas.

Organic enrichment-An excess of organic matter, which reduces the amount of oxygen in the water and causes stress on aquatic life.

Pathogen-An agent that causes disease, especially a microorganism such as a bacterium or fungus.

PCB-Polychlorinated biphenyl: any of a family of industrial compounds produced by chlorination of biphenyl. An environmental pollutant that accumulates in animal tissue with resultant pathogenic and teratogenic eff ects.

Phytoplankton-Small, floating aquatic plants.

Point source-A source of potential water pollutants that can be identified with a discharge at a single point or points. All significant point-source discharges in Kentucky are subject to permitting and monitoring requirements.

Sediment-Finely divided solid material suspended in water or deposited on the bottom. Usually soil particles eroded from a watershed. Soil erosion occurs naturally, but is accelerated by man's activities (agriculture, mining, construction). Siftation-Sedimentation, the deposition of suspended soil particles on the bottom of a stream or lake.

Specific conductance-A measure of the ability of water to conduct an electrical current; depends on the quantity and types of ionized substances in the water. Freshly distilled water has a conductivity of about 1 microsiemen per centimeter (gS/cm). The conductivity of drinkable waters in the United States ranges from 50 to 1,500 ILS/ cm. Multiplied by 0.6, the specific conductance in gS/cm can be used to estimate dissolved-solids concentrations in milligrams per liter (mg/L).

Stream channelization-The alteration of a natural stream course by man to suit his various purposes.

Suspended sediment-Sediment that settles from suspension in water relatively slowly.

Teratogenic-Causing fetal malformations.

Toxicity-The quality or degree of being poisonous or harn-dul to plant or animal life.

Turbidity-Darkness or cloudiness of water caused by suspended organic or inorganic matter.

Water-quality parameter-Any characteristic of a water that is used to describe the quality of thewater relative to certain standards; for example, the concentration of mercury in the water, the amount of sediment in the water, or the temperature, turbidity, or conductivity of the water.

### **APPENDIX A:**

# Streams, Lakes, Wetlands, and Ground Waters Affected by Nonpoint–Source Pollution. Modified from Kentucky Division of Water (1990).

|                 | Stream Name             |    | NPS | Catego | ories |    | Parameters of Concern     |                         | Uses Not Fully<br>Supported |
|-----------------|-------------------------|----|-----|--------|-------|----|---------------------------|-------------------------|-----------------------------|
| Water Body Code |                         | 1  | 2   | 3      | 4     | 5  |                           | Monitored/<br>Evaluated |                             |
| KY05100201-002  | N. Fork, Kentucky River | 40 | 80  | 51     | 55    | 21 | BACT, SED, SO4, MET       | monitored               | PCR                         |
| KY05100201-003  | Devil Creek             | 50 | 51  | 55     | 20    |    | SED, MET, SO4, CL, pH, Fe | evaluated               |                             |
| KY05100201-003  | Walkers Creek           | 55 | 21  | 23     |       |    | SED, CL                   | evaluated               |                             |
| KY05100201-004  | Frozen Creek            | 80 | 11  |        |       |    | SED                       | evaluated               |                             |
| KY05100201-004  | Boone Fk., Frozen Cr.   | 80 | 11  |        |       |    | SED                       | evaluated               |                             |
| KY05100201-005  | N. Fork, Kentucky River | 40 | 10  | 50     | 80    | 51 | BACT, SED, SO4, MET       | monitored               | PCR, WAH                    |
| KY05100201-006  | Caney Creek             | 80 |     |        |       |    | SED                       | evaluated               |                             |
| KY05100201-007  | S. Fork, Quicksand Cr.  | 10 | 51  | 80     |       |    | BACT, SED                 | monitored               | PCR                         |
| KY05100201007   | Spring Fork             | 50 |     |        |       |    | SED                       | evaluated               | WAH                         |
| KY05100201-007  | Quicksand Creek         | 10 | 51  | 55     | 65    | 80 | BACT, NUTR, SO4, SED, CL  | monitored               | PCR                         |
| KY05100201-008  | N. Fork, Kentucky River | 80 | 51  | 55     | 20    |    | SED, SO4, MET             | evaluated               |                             |
| KY05100201-009  | Troublesome Creek       | 60 | 40  | 51     | 52    | 55 | BACT, SO4, MET, SED       | monitored               | PCR                         |
| KY05100201-009  | Buckhorn Creek          | 51 | 65  |        |       |    | SED, NUTR, BACT           | evaluated               |                             |
| KY05100201009   | Lost Creek              | 50 | 80  |        |       |    | SED, NUTR, BACT           | evaluated               | WAH                         |
| KY05100201-009  | Balls Fork              | 65 | 80  | 51     | 32    |    | SED, NUTR, BACT           | evaluated               |                             |
| KY05100201010   | N. Fork, Kentucky River | 51 | 52  | 80     | 55    | 21 | SED, SO4, MET             | evaluated               |                             |
| KY05100201-011  | Big Creek               | 51 | 52  | 55     | 32    | 23 | SED, SO4, MET             | evaluated               |                             |
| KY05100201011   | Grapevine Creek         | 51 | 52  | 80     | 32    |    | SED, SO4, MET             | evaluated               |                             |
| KY05100201-012  | N. Fork, Kentucky River | 51 | 52  | 80     | 55    | 32 | SED, MET, AS, CL, SO4     | evaluated               |                             |
| KY05100201-013  | Lotts Creek             | 51 | 52  | 65     | 80    | 32 | SED, SO4, MET             | evaluated               |                             |
| KY05100201016   | Carr Fork Creek         | 51 | 52  | 80     | 57    |    | SED, SO4, MET             | evaluated               |                             |
| KY05100201-017  | N. Fork, Kentucky River | 51 | 80  | 11     | 52    | 32 | SED, AS, MET, CL          | evaluated               |                             |
| KY05100201-018  | Leatherwood Creek       | 51 | 52  | 80     | 57    | 55 | SO4, SED, MET, CL         | evaluated               |                             |
| KY05100201-019  | Turkey Creek            | 51 | 80  | 21     | 55    |    | SO4, SED, MET, CL         | evaluated               |                             |

|                 |                         |    | NPS | Catego | ories |    |                               |                         |                             |
|-----------------|-------------------------|----|-----|--------|-------|----|-------------------------------|-------------------------|-----------------------------|
| Water Body Code | Stream Name             | 1  | 2   | 3      | 4     | 5  | Parameters of Concern         | Monitored/<br>Evaluated | Uses Not Fully<br>Supported |
| KY05100201-020  | Maces Creek             | 51 | 52  | 55     | 23    | 80 | SO4, SED, MET, CL             | evaluated               |                             |
| KY05100201-021  | Rockhouse Creek         | 50 | 51  | 57     | 80    | 21 | SED, MET, SO4                 | evaluated               | WAH                         |
| KY05100201-022  | Millstone Creek         | 51 | 80  | 63     | 21    |    | SED, MET, SO4                 | evaluated               |                             |
| KY05100202-001  | Middle Fk., Ky. River   | 10 | 51  | 11     | 52    | 80 | BACT, SED, MET, SO4, CL       | monitored               | PCR, WAH-threatened         |
| KY05100202-002  | Turkey Creek            | 11 | _   |        |       |    | SED, CL, MET                  | evaluated               |                             |
| KY05100202002   | Long Creek              | 51 | 52  | 80     | 23    | 21 | SED                           | evaluated               |                             |
| KY05100202-006  | Cutshin Creek           | 50 | 51  | 80     | 55    | 52 | Oil–Grease, SED, MET, SO4, CL | evaluated               | WAH                         |
| KY05100202006   | Raccoon Creek           | 50 |     |        |       |    | Oil–Grease, SED               | evaluated               | WAH                         |
| KY05100202-007  | Middle Fk., Ky. River   | 51 | 57  | 52     | 21    | 80 | SED, MET, SO4, CL, BACT       | evaluated               |                             |
| KY05100202-008  | Rockhouse Creek         | 32 | 80  | 21     | 55    | 51 | SED, MET, SO4, CL             | evaluated               |                             |
| KY05100202-009  | Greasy Creek            | 51 | 52  | 80     | 14    | 32 | SED, MET, SO4, CL             | evaluated               |                             |
| KY05100202010   | Middle Fk., Ky. River   | 51 | 57  | 52     | 21    | 80 | SED, MET, SO4, CL, BACT       | evaluated               |                             |
| KY05100202-010  | Beech Fork              | 51 | 52  | 80     | 55    | 32 | SED, MET, SO4, CL             | evaluated               |                             |
| KY05100203-001  | South Fk., Ky. River    | 50 | 20  | 51     | 80    | 11 | SED, BACT, CL                 | monitored               | WAH-threatened              |
| KY05100203002   | Ŝexton Ĉreek            | 57 | 51  | 85     | 11    | 20 | SED, MET, SO4, CL, NUTR, BACT | evaluated               |                             |
| KY05100203-003  | Upper Buffalo Creek     | 51 |     |        |       |    | SED, MET, SO4                 | evaluated               |                             |
| KY05100203-004  | Bullskin Creek          | 20 | 51  | 52     | 80    | 55 | SED, MET, SO4, CL, NUTR       | evaluated               |                             |
| KY05100203-005  | Cow Creek               | 51 | 11  |        |       |    | SED, MET, SO4                 | evaluated               |                             |
| KY05100203-005  | Indian Creek            | 51 | 11  |        |       |    | SED, MET, SO4                 | evaluated               |                             |
| KY05100203005   | Island Creek            | 51 | 11  |        | 1     |    | SED, MET, SO4                 | evaluated               |                             |
| KY05100203-005  | Buck Creek              | 80 | 51  | 11     | 1     |    | SED                           | evaluated               |                             |
| KY05100203005   | Jones Fork              | 80 | 65  | 51     | 32    |    | SED, NUTR, BACT               | evaluated               |                             |
| KY05100203-005  | Right Fk., Beaver Creek | 51 | 65  | 80     | 32    |    | SED, NUTR, BACT               | evaluated               |                             |
| KY05100203-005  | Meadow Creek            | 80 | 32  |        |       |    | SED                           | evaluated               |                             |
| KY05100203-006  | Goose Creek             | 51 | 20  | 14     | 11    | 77 | SED, MET, SO4, CL, NUTR, BACT | evaluated               |                             |
| KY05100203-010  | Goose Creek             | 51 | 20  | 14     | 11    | 77 | SED, MET, SO4, CL, NUTR, BACT | evaluated               |                             |
| KY05100203011   | Redbird River           | 20 | 51  | 14     | 11    | 62 | SO4, SED, MET, NUTR, BACT     | evaluated               |                             |
| KY05100204-001  | Kentucky River          | 11 | 22  | 55     | 80    | 51 | CL, SED, NUTR, BACT           | evaluated               |                             |

|                 |                          | l  | NPS | Catego | ories |    |                               |                         |                                        |
|-----------------|--------------------------|----|-----|--------|-------|----|-------------------------------|-------------------------|----------------------------------------|
| Water Body Code | Stream Name              | 1  | 2   | 3      | 4     | 5  | Parameters of Concern         | Monitored/<br>Evaluated | Uses Not Fully<br>Supported            |
| KY05100204-001  | Campbell Creek           | 22 | 55  | 80     |       |    | SED, CL                       | evaluated               |                                        |
| KY05100204-002  | Drowning Creek           | 11 | 65  | 32     | 14    | 22 | SED, NUTR                     | evaluated               |                                        |
| KY05100204-004  | Red Lick Creek           | 11 | 65  | 22     | 55    | 80 | CL, SED, NUTR, BACT           | evaluated               |                                        |
| KY05100204-006  | S. Fk., Station Camp Cr. | 55 | 18  | 85     | 80    | 22 | CL, SED, MET, NUTR, SO4       | evaluated               |                                        |
| KY05100204-008  | Kentucky River           | 11 | 22  | 55     | 80    | 51 | SED, MET, NUTR, CL, SO4, BACT | evaluated               |                                        |
| KY05100204-008  | Cow Creek                | 55 | 80  |        |       |    | CL, SED                       | evaluated               |                                        |
| KY05100204-009  | Big Sinking Creek        | 50 |     |        |       |    | CL, TDS                       | monitored               | WAH                                    |
| KY05100204-009  | Billey Fork              | 50 |     |        |       |    | CL, TDS                       | monitored               | WAH                                    |
| KY05100204-009  | Millers Creek            | 50 | 55  | 22     | 11    | 80 | CL, TDS, SED, MET, NUTR, SO4  | monitored               | WAH                                    |
| KY05100204-010  | Kentucky River           | 10 | 51  | 11     | 80    | 22 | BACT, SED, MET, NUTR, SO4, CL | monitored               | PCR, WAH-threatened                    |
| KY05100204-011  | Sturgeon Creek           | 57 | 85  | 80     | 51    |    | SED, MET, NUTR, SO4           | evaluated               |                                        |
| KY05100204-013  | Red River                | 55 | 22  | 65     | 11    | 20 | CL, NUTR, SO4, BACT           | monitored               |                                        |
| KY05100204-014  | Lulbegrud Creek          | 11 | 14  | 21     | 23    | 31 | SED, BACT                     | evaluated               |                                        |
| KY05100204-015  | Hardwick Creek           | 10 | 20  |        |       |    | SED                           | evaluated               | · ···                                  |
| KY05100204-016  | Cane Creek               | 11 | 21  | 80     |       |    | SED                           | evaluated               |                                        |
| KY05100204018   | South Fork, Red River    | 55 |     |        |       |    | CL, TDS                       | evaluated               | WAH                                    |
| KY05100204-018  | Sand Lick Fork           | 55 |     |        |       |    | CL, TDS                       | evaluated               | WAH                                    |
| KY05100204-019  | Red River                | 70 | 50  | 21     | 80    |    | SED, MET                      | monitored               | WAH                                    |
| KY05100204-023  | Stillwater Creek         | 10 | 60  | 65     | 20    |    | SED, BACT                     | evaluated               |                                        |
| KY05100204-025  | Red River                | 70 | 50  | 10     | 60    | 65 | SED, MET, Fe, Mn              | monitored               | WAH                                    |
| KY05100204-025  | Lacy Creek               | 10 | 20  | 51     |       |    | SED                           | evaluated               |                                        |
| KY05100204-025  | Gillmore Creek           | 10 | 20  | 51     | 40    |    | SED, NUTR                     | evaluated               |                                        |
| KY05100205001   | Kentucky River           | 11 | 18  | 32     | 40    |    | SED, NUTR, MET                | evaluated               |                                        |
| KY05100205-002  | Whites Run Creek         | 11 | 18  | 32     | 40    |    | SED, NUTR, MET                | evaluated               |                                        |
| KY05100205-002  | Mill Creek               | 11 | 18  | 14     | 32    | 40 | SED, NUTR, MET                | evaluated               |                                        |
| KY05100205004   | Ten Mile Creek           | 80 | 10  | 65     |       |    | SED, NUTR, BACT               | evaluated               |                                        |
| KY05100205-006  | Clarks Creek             | 80 | 10  | 65     |       |    | SED, NUTR, BACT               | evaluated               | ************************************** |
| KY05100205-008  | Grassy Run               | 80 | 10  | 65     |       |    | SED, NUTR, BACT               | evaluated               |                                        |

|                 |                       |    | NPS | Catego | ries |    |                                |                         |                             |
|-----------------|-----------------------|----|-----|--------|------|----|--------------------------------|-------------------------|-----------------------------|
| Water Body Code | Stream Name           | 1  | 2   | 3      | 4    | 5  | Parameters of Concern          | Monitored/<br>Evaluated | Uses Not Fully<br>Supported |
| KY05100205-008  | Brush Creek           | 80 | 65  | 10     |      |    | SED, NUTR, BACT                | evaluated               |                             |
| KY05100205-010  | Eagle Creek           | 11 | 12  | 14     | 22   | 20 | As, SED, Oil-Grease, BACT, MET | evaluated               |                             |
| KY05100205-012  | Big Twin Creek        | 80 | 65  | 10     |      |    | SED, NUTR, BACT                | evaluated               |                             |
| KY05100205-013  | Sulphur Creek         | 11 | 14  |        |      |    | SED                            | evaluated               |                             |
| KY05100205-013  | Drennon Creek         | 11 | 14  |        |      |    | SED                            | evaluated               |                             |
| KY05100205-013  | Caines Run            | 11 | 14  |        |      |    | SED                            | evaluated               |                             |
| KY05100205-014  | Six Mile Creek        | 11 | 14  |        |      |    | SED                            | evaluated               |                             |
| KY05100205-015  | Severn Creek          | 80 | 65  | 10     |      |    | SED, NUTR, BACT                | evaluated               |                             |
| KY05100205-016  | Sawridge Creek        | 80 | 65  | 10     |      |    | SED, NUTR, BACT                | evaluated               |                             |
| KY05100205-016  | Cedar Creek           | 80 | 65  | 10     |      |    | SED, NUTR, BACT                | evaluated               |                             |
| KY05100205-017  | Flat Creek            | 11 | 14  |        |      |    | SED                            | evaluated               |                             |
| KY05100205017   | Mill Creek            | 80 | 65  | 10     |      |    | SED, NUTR, BACT                | evaluated               |                             |
| KY05100205021   | Cane Run Creek        | 90 | 11  | 12     | 14   | 32 | MET, SED, NUTR, BACT           | monitored               | WAH                         |
| KY05100205-026  | South Elkhorn Creek   | 40 | 11  | 80     | 32   | 40 | ORG, DO, BACT, MET, LIND, SED  | monitored               | WAH, PCR                    |
| KY05100205029   | South Elkhorn Creek   | 11 | 80  | 32     | 40   |    | LIND, SED, MET, CL, DDT        | evaluated               |                             |
| KY05100205-031  | Stoney Creek          | 11 | 14  |        |      |    | SED                            | evaluated               |                             |
| KY05100205-032  | N. & S. Benson Creeks | 11 | 12  | 14     | 65   |    | SED, NUTR, BACT                | evaluated               |                             |
| KY05100205-033  | Kentucky River        | 90 | 11  | 14     | 32   | 65 | BACT, SED, NUTR                | monitored               | PCR                         |
| KY05100205034   | Glenns Creek          | 11 | 40  | 80     | 14   |    | SED, MET                       | evaluated               |                             |
| KY05100205-035  | Clear Creek           | 11 | 80  | 14     | 20   |    | SED                            | evaluated               |                             |
| KY05100205-036  | Shaker Creek          | 11 | 14  |        |      |    | SED                            | evaluated               |                             |
| KY05100205-036  | Craig Creek           | 11 | 80  | 14     | 20   |    | SED                            | evaluated               |                             |
| KY05100205-037  | Dix River             | 11 | 16  | 65     | 32   |    | SED, BACT                      | evaluated               |                             |
| KY05100205-039  | Clarks Run            | 62 | 65  | 32     | 14   |    | SED, BACT, NUTR                | evaluated               |                             |
| KY05100205040   | Spears Creek          | 14 | 32  |        |      |    | SED, BACT, NUTR                | evaluated               |                             |
| KY05100205-041  | Dix River             | 11 | 16  | 65     | 32   |    | SED, BACT                      | evaluated               |                             |
| KY05100205-042  | Harris Creek          | 11 | 12  | 14     | 13   |    | SED                            | evaluated               |                             |
| KY05100205-042  | Hanging Fork          | 11 | 80  | 18     | 65   |    | SED, BACT, NUTR                | evaluated               |                             |

|                 |                    |    | NPS | Catego | ories |    |                           |                         |                             |
|-----------------|--------------------|----|-----|--------|-------|----|---------------------------|-------------------------|-----------------------------|
| Water Body Code | Stream Name        | 1  | 2   | 3      | 4     | 5  | Parameters of Concern     | Monitored/<br>Evaluated | Uses Not Fully<br>Supported |
| KY05100205-043  | Dix River          | 11 | 80  | 18     | 65    | 61 | SED, NUTR, BACT, SO4, MET | evaluated               |                             |
| KY05100205-044  | Logan Creek        | 11 | 18  | 80     | 32    |    | SED, NUTR. BACT           | evaluated               |                             |
| KY05100205-047  | Kentucky River     | 90 | 11  | 40     | 14    | 32 | BACT, SED, NUTR           | monitored               | PCR                         |
| KY05100205-048  | Jessamine Creek    | 40 | 30  | 65     |       |    | SED, NUTR, BACT, MET      | evaluated               |                             |
| KY05100205049   | Hickman Creek      | 32 | 40  | 64     |       |    | SED, NUTR, BACT, MET      | evaluated               |                             |
| KY05100205050   | Sugar Creek        | 11 | 18  | 22     |       |    | SED, NUTR, BACT           | evaluated               |                             |
| KY05100205-051  | Paint Lick Creek   | 11 | 16  | 18     | 32    |    | SED, BACT                 | evaluated               |                             |
| KY05100205-052  | Silver Creek       | 32 | 65  | 11     | 40    |    | PEST, SED, NUTR           | evaluated               |                             |
| KY05100205053   | Tate Creek         | 32 | 65  | 40     | 11    |    | SED                       | evaluated               |                             |
| KY05100205-054  | Boone Creek        | 80 | 14  | 11     | 32    |    | SED                       | evaluated               |                             |
| KY05100205055   | Otter Creek        | 32 | 65  | 40     | 11    |    | PEST, SED, NUTR           | evaluated               |                             |
| KY05100205056   | Four Mile Creek    | 70 |     |        |       |    | SED                       | evaluated               |                             |
| KY05100205057   | Upper Howard Creek | 70 | 10  |        |       |    | ŜĒD                       | evaluated               |                             |
| KY05100205-058  | Muddy Creek        | 32 | 65  | 66     | 63    |    | SED, BACT                 | evaluated               |                             |
| KY05100205-059  | Elk Lick           | 50 | 70  |        |       |    | TDS                       | monitored               | WAH                         |
| KY05100205059   | Lower Howard Creek | 80 |     |        |       |    | SED                       | evaluated               |                             |
| KY05100205059   | Canoe Creek        | 11 | 18  | 22     |       |    | SED, NUTR, BACT           | evaluated               |                             |

|                   |                 |    | NPS | Catego | ories |    |                       |                         |                             |
|-------------------|-----------------|----|-----|--------|-------|----|-----------------------|-------------------------|-----------------------------|
| Water Body Code   | Laké Name       | 1  | 2   | 3      | 4     | 5  | Parameters of Concern | Monitored/<br>Evaluated | Uses Not Fully<br>Supported |
| LAKES             |                 |    |     |        |       |    |                       |                         |                             |
| KY05100201-015    | Carr Fork Lake  | 51 | 80  | 65     | 32    |    | SED, BACT             | monitored               | SCR                         |
| KY05100202-003    | Buckhorn Lake   | 51 | 80  | 21     | 52    | 55 | SED                   | monitored               | SCR                         |
| KY05100205-038    | Herrington Lake | 10 | 65  | 11     | 16    | 32 | NUTR, SED, BACT       | monitored               | WAH                         |
| KY05100205-052L01 | Wilgreen Lake   | 65 |     |        |       |    | NUTR                  | monitored               | WAH, SCR                    |

|                 |                   |           | NPS | Catego | ories |                                        |                         |                             |
|-----------------|-------------------|-----------|-----|--------|-------|----------------------------------------|-------------------------|-----------------------------|
| Water Body Code | Watershed         | County    | 1   | 2      | 3     | Parameters of Concern                  | Monitored/<br>Evaluated | Uses Not Fully<br>Supported |
| WETLANDS        |                   |           |     |        |       |                                        |                         |                             |
| KY05100201      | Buckhorn Creek    | Breathitt | 51  |        |       | MET, SO4, SP COND                      | evaluated               |                             |
| KY05100201      | Troublesome Creek | Репту     | 51  |        |       | SP COND, SO4, MET, Na                  | evaluated               |                             |
| KY05100201      | Carr Fork         | Knott     | 51  | 52     |       | SED, MET, SO4, Na, SP COND             | evaluated               |                             |
| KY05100201      | Squabble Creek    | Репту     | 51  | 71     | 62    | SED, SO4, MET, Na, SP COND, BACT, NUTR | evaluated               |                             |
| KY05100203      | Goose Creek       | Clay      | 51  |        |       | SED                                    | evaluated               |                             |
| KY05100203      | Buck Creek        | Owsley    | 51  | 10     |       | SED, SO4, MET                          | evaluated               |                             |
| KY05100204      | Sturgeon Creek    | Lee       | 51  | 10     |       | SED                                    | evaluated               |                             |

Appendix A

|                                                     |                                                                                                                  |    | NPS | Catego | ories |    |                            |                         |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----|-----|--------|-------|----|----------------------------|-------------------------|
| Ground-Water Body Name                              | County or Region                                                                                                 | 1  | 2   | 3      | 4     | 5  | Parameters of Con-<br>cern | Monitored/<br>Evaluated |
| Inner Bluegrass karst aquifers                      | Anderson, Boyle, Bourbon, Clark, Fayette, Frank-<br>lin, Garrard, Jessamine, Madison, Mercer, Scott,<br>Woodford | 10 | 40  |        |       |    | bacteria, nitrates         | monitored               |
| North Fork of Kentucky River ground-<br>water basin | Lee, Breathitt, Perry                                                                                            | 51 |     |        |       |    | metals, acid               | evaluated               |
| Royal Spring aquifer                                | Scott                                                                                                            | 11 | 14  | 16     | 18    | 61 | bacteria                   | evaluated               |
| Unnamed ground-water site near Frank-<br>fort       | Franklin                                                                                                         | 90 |     |        |       |    | fuel                       | evaluated               |
| Unnamed ground-water site near Lex-<br>ington       | Fayette                                                                                                          | 90 |     |        |       |    | fuel                       | evaluated               |
| Unnamed ground-water site near Lex-<br>ington       | Fafyette                                                                                                         | 90 |     |        |       |    | organics                   | evaluated               |

## **Parameter Abbreviations**

| Agriculture                       |      | Iron                       | Fe      |
|-----------------------------------|------|----------------------------|---------|
| Total Suspended Solids            | TSS  | Specific Conductance       | SP COND |
| Sediment                          | SED  | Petroleum                  |         |
| Pesticides                        | PEST | Chlorides                  | CL      |
| Lindane                           | LIND | Total Organic Carbon       | TOC     |
| Dichloro-diphenyl-trichloroethane | DDT  | Urban                      |         |
| Nutrients (ammonia, phosphorous)  | NUTR | Arsenic                    | As      |
| Bacteria                          | BACT | Polychlorinated-biphenyls  | PCB     |
| Dissolved Oxygen                  | DO   | Total Dissolved Solids     | TDS     |
| Mining                            |      | Bromide                    | Br      |
| Acidity                           | ACID | Sodium                     | Na      |
| Manganese                         | Mn   | Calcium                    | Ca      |
| Sulfates                          | SO4  | Volatile Organic Compounds | VOC     |
| Aluminum                          | Al   | Organics                   | ORG     |
| Metals                            | MET  | Fuel (gasoline, diesel)    | FUEL    |

#### Nonpoint-Source Category Codes

#### 10 Agriculture

- 11 Non-irrigated crop production
- 12 Irrigated crop production
- 13 Specialty crop production
- 14 Pasture land
- 15 Range land
- 16 Feedlot-all types
- 17 Aquaculture
- 18 Animal management areas
- 19 Manure lagoons
- 20 Forestry
  - 21 Harvesting, reforestation
  - 22 Forest management
  - 23 Road construction
- 30 Construction
  - 31 Highway, road, bridge
  - 32 Land development
- 40 Runoff/Storm Sewers

Includes runoff from residential, commercial, industrial, and park-land areas not covered under other source categories

- 50 Resource Extraction
  - 51 Surface mining
  - 52 Subsurface mining
  - 53 Placer mining
  - 54 Dredge mining
  - 55 Petroleum activities
  - 56 Mill tailings

- 57 Mine tailings
- 60 Land Disposal
  - 61 Sludge
  - 62 Waste water
  - 63 Landfills
  - 64 Industrial land treatment
  - 65 On-site waste-water systems (septic tanks, etc.)
  - 66 Hazardous waste
- 70 Hydrologic-Habitat Modification
  - 71 Channelization
  - 72 Dredging
  - 73 Dam construction
  - 74 Flow regulation
  - 75 Bridge construction
  - 76 Vegetation removal
  - 77 Streambank modification-destabilization
  - 78 Draining-filling of wetlands
- 80 Other
  - 81 Atmospheric deposition
  - 82 Waste storage-storage tank leaks
  - 83 Highway runoff
  - 84 Spills
  - 85 In-place contaminants
  - 86 Natural
  - 87 Recreational activities
  - 88 Upstream impoundments
  - 89 Salt storage site
- 90 Unknown

## **APPENDIX B:**

Percentage of Water-Quality Measurements Not Meeting Criteria. Modified from Smoot and Others (1990).

|                |                                                 |                         |                                   |                               | Perce                               | ntage Not                            | Meeting Ir               | dicated Ĉ                  | riteria                             |                                             |                                                   |
|----------------|-------------------------------------------------|-------------------------|-----------------------------------|-------------------------------|-------------------------------------|--------------------------------------|--------------------------|----------------------------|-------------------------------------|---------------------------------------------|---------------------------------------------------|
| Site<br>Number | Station Name                                    | Number<br>Mea-<br>sured | Max.<br>Contam-<br>inant<br>Level | Max.<br>Con.<br>Level<br>Goal | Proposed<br>Max. Con.<br>Level Goal | Second-<br>ary Max.<br>Con.<br>Level | Aquatic<br>Life<br>Acute | Aquatic<br>Life<br>Chronic | Ky. Do-<br>mestic Wa-<br>ter Supply | Ky.<br>Warm–<br>Water<br>Aquatic<br>Habitat | Ky. Rec-<br>reational<br>Water,<br>Second-<br>ary |
| pH below       | v criteria                                      | <b></b>                 |                                   |                               |                                     | \$:                                  | <b>.</b>                 | <b>.</b>                   | £                                   |                                             |                                                   |
| 0.1            | Yonts Fork near Neon                            | 13                      |                                   |                               |                                     | 15                                   |                          | 15                         | Ι                                   | 8                                           | 8                                                 |
| 2.3            | Middle Fork of Kentucky River at Tallega        | 61                      |                                   |                               |                                     | 8                                    |                          | 8                          |                                     |                                             | [                                                 |
| 2.6            | South Fork of Kentucky River at Boone-<br>ville | 58                      |                                   |                               |                                     | 5                                    |                          | 5                          |                                     |                                             |                                                   |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 91                      |                                   |                               |                                     | 1                                    |                          | 1                          |                                     |                                             |                                                   |
| 3.1            | Red River near Hazel Green                      | 102                     |                                   |                               |                                     | 5                                    |                          | 5                          |                                     |                                             | <u> </u>                                          |
| 7.0            | Kentucky River above Frankfort                  | 83                      |                                   |                               |                                     | 1                                    |                          | 1                          |                                     | [                                           |                                                   |
| 9.0            | Kentucky River below Frankfort                  | 73                      |                                   |                               |                                     | 1                                    |                          | 1                          |                                     | 1                                           | 1                                                 |
| 9.3            | South Elkhorn Creek near Midway                 | 44                      | ·····                             |                               |                                     | 4                                    |                          | 4                          |                                     | 2                                           | 2                                                 |
| 10.0           | Kentucky River at Lock 2, at Lockport           | 101                     |                                   |                               |                                     | 3                                    |                          | 3                          |                                     |                                             | 1                                                 |
| pH above       | e criteria                                      |                         |                                   |                               |                                     |                                      | L                        |                            | 1                                   |                                             | <b>I</b>                                          |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 91                      |                                   |                               |                                     | 1                                    |                          |                            |                                     | I                                           | [                                                 |
| 3.2            | Red River near Bowen                            | 68                      |                                   |                               | 1                                   | 2                                    |                          | 2                          |                                     | 2                                           | 2                                                 |
| 5.0            | Kentucky River at Camp Nelson                   | 75                      |                                   |                               |                                     | 1                                    |                          |                            |                                     |                                             | İ                                                 |
| 7.0            | Kentucky River above Frankfort                  | 83                      |                                   |                               |                                     | 1                                    |                          |                            |                                     |                                             | 1                                                 |
| 9.0            | Kentucky River below Frankfort                  | 73                      |                                   |                               |                                     | 3                                    |                          |                            |                                     |                                             |                                                   |
| 10.0           | Kentucky River at Lock 2 at Lockport            | 101                     |                                   |                               |                                     | 1                                    |                          |                            |                                     |                                             | 1                                                 |
| Alkalinit      | у                                               | £                       |                                   |                               |                                     | i                                    |                          | I                          |                                     | I                                           | L                                                 |
| 2.1            | Middle Fork of Kentucky River near Hy-<br>den   | 21                      |                                   | ::                            |                                     |                                      |                          | 19                         |                                     |                                             |                                                   |

|                |                                                 |                         | Percentage Not Meeting Indicated Criteria |                                       |                                     |                                       |                                       |                            |                                     |                                            |                                                   |  |  |  |
|----------------|-------------------------------------------------|-------------------------|-------------------------------------------|---------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|----------------------------|-------------------------------------|--------------------------------------------|---------------------------------------------------|--|--|--|
| Site<br>Number | Station Name                                    | Number<br>Mea-<br>sured | Max.<br>Contam-<br>inant<br>Level         | Max.<br>Con.<br>Level<br>Goal         | Proposed<br>Max. Con.<br>Level Goal | Second-<br>ary Max.<br>Con.<br>Level  | Aquatic<br>Life<br>Acute              | Aquatic<br>Life<br>Chronic | Ky. Do-<br>mestic Wa-<br>ter Supply | Ky.<br>Warm<br>Water<br>Aquatic<br>Habitat | Ky. Rec-<br>reational<br>Water,<br>Second-<br>ary |  |  |  |
| 2.2            | Cutshin Creek at Wooton                         | 10                      |                                           |                                       |                                     |                                       |                                       | 10                         |                                     |                                            |                                                   |  |  |  |
| 2.3            | Middle Fork of Kentucky River at Tallega        | 60                      |                                           |                                       |                                     |                                       |                                       | 12                         |                                     |                                            |                                                   |  |  |  |
| 2.5            | Goose Creek at Manchester                       | 19                      |                                           |                                       | 1                                   |                                       |                                       | 37                         |                                     |                                            |                                                   |  |  |  |
| 2.6            | South Fork of Kentucky River at Boone-<br>ville | 57                      |                                           |                                       |                                     |                                       |                                       | 12                         |                                     |                                            |                                                   |  |  |  |
| 3.1            | Red River near Hazel Green                      | 99                      |                                           |                                       |                                     |                                       |                                       | 28                         |                                     |                                            |                                                   |  |  |  |
| 7.0            | Kentucky River above Frankfort                  | 81                      |                                           |                                       |                                     |                                       |                                       | 1                          |                                     |                                            |                                                   |  |  |  |
| Dissolve       | d solids, residue on evaporation at 180 degrees | s Celsius               | •                                         |                                       |                                     | · · · · · · · · · · · · · · · · · · · |                                       |                            | <b></b>                             | · · · · · · · · · · · · · · · · · · ·      | L                                                 |  |  |  |
| 2.0            | North Fork of Kentucky River at Jackson         | 52                      |                                           | ·····                                 | 1                                   | 6                                     |                                       |                            |                                     |                                            | [                                                 |  |  |  |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 80                      |                                           | <u> </u>                              |                                     | 1                                     |                                       |                            |                                     |                                            |                                                   |  |  |  |
| 5.0            | Kentucky River at Camp Nelson                   | 64                      |                                           |                                       |                                     | 2                                     |                                       |                            |                                     |                                            | [                                                 |  |  |  |
| 10.1           | Eagle Creek at Glencoe                          | 84                      |                                           | · · · · · · · · · · · · · · · · · · · |                                     | 1                                     |                                       |                            |                                     |                                            |                                                   |  |  |  |
| Fluoride,      | dissolved                                       | •                       |                                           |                                       | 4                                   | •                                     |                                       |                            | (                                   |                                            | <b></b>                                           |  |  |  |
| 9.3            | South Elkhorn Creek near Midway                 | 34                      |                                           |                                       |                                     |                                       |                                       |                            | 32                                  |                                            |                                                   |  |  |  |
| Nitrogen       | , total un-ionized ammonia                      |                         |                                           |                                       |                                     | •                                     |                                       | <b></b>                    |                                     |                                            | L                                                 |  |  |  |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 78                      |                                           |                                       |                                     |                                       | · · · · · · · · · · · · · · · · · · · |                            |                                     | 1                                          |                                                   |  |  |  |
| 9.0            | Kentucky River below Frankfort                  | 71                      |                                           |                                       |                                     |                                       |                                       |                            |                                     | 1                                          |                                                   |  |  |  |
| 9.3            | South Elkhorn Creek near Midway                 | 22                      |                                           |                                       |                                     |                                       |                                       |                            |                                     | 23                                         |                                                   |  |  |  |
| 10.1           | Eagle Creek at Glencoe                          | 83                      |                                           |                                       |                                     |                                       |                                       |                            |                                     | 1                                          |                                                   |  |  |  |
| Dissolve       | d oxygen                                        |                         |                                           |                                       |                                     |                                       |                                       |                            |                                     | • <u></u>                                  |                                                   |  |  |  |
| 9.3            | South Elkhorn Creek near Midway                 | 17                      |                                           |                                       |                                     |                                       | 18                                    | 59                         |                                     | 47                                         |                                                   |  |  |  |
| Arsenic,       | total                                           | •••                     |                                           |                                       | •                                   |                                       |                                       |                            |                                     | <b>.</b>                                   | L                                                 |  |  |  |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 75                      | 1                                         |                                       | 1                                   |                                       |                                       |                            |                                     | 1                                          |                                                   |  |  |  |
| 10.0           | Kentucky River at Lock 2 at Lockport            | 101                     | 1                                         |                                       | 1                                   |                                       |                                       |                            |                                     | 1                                          | ·                                                 |  |  |  |

|                |                                                 |                         |                                   |                               | Perce                               | ntage Not                            | Meeting Ii               | ndicated C                 | riteria                                |                                             |                                                   |
|----------------|-------------------------------------------------|-------------------------|-----------------------------------|-------------------------------|-------------------------------------|--------------------------------------|--------------------------|----------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------------|
| Site<br>Number | Station Name                                    | Number<br>Mea-<br>surod | Max.<br>Contam-<br>inant<br>Level | Max.<br>Con.<br>Levei<br>Goal | Proposed<br>Max. Con.<br>Level Goal | Second-<br>ary Max.<br>Con.<br>Level | Aquatic<br>Life<br>Acute | Aquatic<br>Life<br>Chronic | Ky. Do-<br>mestic Wa-<br>ter Supply    | Ky.<br>Warm–<br>Water<br>Aquatic<br>Habitat | Ky. Rec-<br>reational<br>Water,<br>Second-<br>ary |
| Cadmiun        | n, total recoverable                            | I                       | i                                 |                               | l                                   |                                      | L                        | L                          | I                                      |                                             |                                                   |
| 2.0            | North Fork of Kentucky River at Jackson         | 36                      |                                   |                               | 3                                   | ]                                    | 3                        | 6                          |                                        |                                             |                                                   |
| 2.3            | Middle Fork of Kentucky River at Tallega        | 35                      |                                   |                               |                                     |                                      |                          | 11                         |                                        |                                             |                                                   |
| 2.6            | South Fork of Kentucky River at Boone-<br>ville | 35                      |                                   |                               | <u> </u>                            |                                      |                          | 11                         |                                        |                                             |                                                   |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 61                      | 2                                 |                               | 7                                   |                                      | 10                       | 19                         |                                        | 2                                           |                                                   |
| 3.1            | Red River near Hazel Green                      | 68                      | 3                                 |                               | 4                                   |                                      | 6                        | 26                         |                                        | 3                                           |                                                   |
| 5.0            | Kentucky River at Camp Nelson                   | 62                      | 10                                |                               | 13                                  |                                      | 18                       | 25                         |                                        | 8                                           |                                                   |
| 7.0            | Kentucky River above Frankfort                  | 62                      | 11                                |                               | 13                                  |                                      | 16                       | 28                         |                                        | 10                                          |                                                   |
| 9.0            | Kentucky River below Frankfort                  | 55                      | 14                                |                               | 20                                  |                                      | 20                       | 33                         |                                        | 14                                          |                                                   |
| 9.3            | South Elkhorn Creek near Midway                 | 43                      |                                   |                               |                                     |                                      | 2                        | 19                         |                                        |                                             |                                                   |
| 10.1           | Eagle Creek at Glencoe                          | 74                      | 1                                 |                               | 1                                   |                                      | 1                        | 35                         |                                        | 5                                           |                                                   |
| Chromiu        | m, total recoverable                            |                         | L                                 |                               | <b></b>                             |                                      |                          |                            |                                        |                                             | <u>.</u>                                          |
| 3.1            | Red River near Hazel Green                      | 76                      | 1                                 |                               | Γ                                   |                                      |                          |                            | 1                                      |                                             |                                                   |
| Copper, t      | otal recoverable                                |                         |                                   |                               | 4                                   | ųI                                   | <b></b>                  |                            |                                        |                                             | I                                                 |
| 2.0            | North Fork of Kentucky River at Jackson         | 36                      |                                   |                               |                                     |                                      | 6                        | 8                          |                                        |                                             |                                                   |
| 2.3            | Middle Fork of Kentucky River at Tallega        | 36                      |                                   |                               |                                     |                                      | 3                        | 6                          |                                        | ······                                      |                                                   |
| 2.6            | South Fork of Kentucky River at Boone-<br>ville | 35                      |                                   |                               |                                     |                                      | 3                        | 6                          |                                        |                                             |                                                   |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 84                      |                                   |                               |                                     |                                      | 7                        | 16                         |                                        |                                             |                                                   |
| 3.1            | Red River at Hazel Green                        | 90                      |                                   |                               |                                     |                                      | 3                        | 11                         |                                        |                                             |                                                   |
| 5.0            | Kentucky River at Camp Nelson                   | 74                      |                                   |                               |                                     |                                      | 3                        | 8                          | ······································ |                                             |                                                   |
| 7.0            | Kentucky River above Frankfort                  | 82                      |                                   |                               |                                     |                                      | 17                       | 21                         |                                        |                                             |                                                   |
| 9.0            | Kentucky River below Frankfort                  | 72                      |                                   |                               |                                     |                                      | 4                        | 8                          |                                        |                                             |                                                   |
| 10.0           | Kentucky River at Lock 2 at Lockport            | 27                      |                                   |                               |                                     |                                      | 35                       | 46                         |                                        |                                             |                                                   |

47

|                |                                                 | <u> </u>                |                                   |                               | Percei                              | ntage Not 1                          | Meeting In               | dicated C                  | riteria                             |                                            |                                                   |
|----------------|-------------------------------------------------|-------------------------|-----------------------------------|-------------------------------|-------------------------------------|--------------------------------------|--------------------------|----------------------------|-------------------------------------|--------------------------------------------|---------------------------------------------------|
| Site<br>Number | Station Name                                    | Number<br>Mea-<br>sured | Max.<br>Contam-<br>inant<br>Level | Max.<br>Con.<br>Level<br>Goal | Proposed<br>Max. Con.<br>Level Goal | Second-<br>ary Max.<br>Con.<br>Level | Aquatic<br>Life<br>Acute | Aquatic<br>Life<br>Chronic | Ky. Do-<br>mestic Wa-<br>ter Supply | Ky.<br>Warm<br>Water<br>Aquatic<br>Habitat | Ky. Rec-<br>reational<br>Water,<br>Second-<br>ary |
| 10.1           | Eagle Creek at Glencoe                          | 86                      |                                   |                               |                                     |                                      | 7                        | 10                         |                                     |                                            |                                                   |
| Iron, tota     | recoverable                                     |                         |                                   |                               |                                     |                                      |                          |                            |                                     |                                            | <u>,                                    </u>      |
| 0.1            | Yonts Fork near Neon                            | 13                      |                                   |                               |                                     | 77                                   |                          | 54                         |                                     | 54                                         |                                                   |
| 1.0            | North Fork of Kentucky River at Hazard          | 18                      |                                   |                               |                                     | 100                                  |                          | 72                         |                                     | 72                                         |                                                   |
| 2.0            | North Fork of Kentucky River at Jackson         | 53                      |                                   |                               |                                     | 96                                   |                          | 58                         |                                     | 58                                         |                                                   |
| 2.1            | Middle Fork of Kentucky River near Hy-<br>den   | 21                      |                                   |                               |                                     | 100                                  |                          | 52                         |                                     | 52                                         |                                                   |
| 2.3            | Middle Fork of Kentucky River at Tallega        | 51                      |                                   |                               |                                     | 92                                   |                          | 47                         |                                     | 47                                         |                                                   |
| 2.5            | Goose Creek at Manchester                       | 19                      |                                   |                               |                                     | 100                                  |                          | 84                         |                                     | 84                                         |                                                   |
| 2.6            | South Fork of Kentucky River at Boone-<br>ville | 47                      |                                   |                               |                                     | 87                                   |                          | 28                         |                                     | 28                                         |                                                   |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 66                      |                                   |                               |                                     | 80                                   |                          | 30                         |                                     | 30                                         |                                                   |
| 3.1            | Red River near Hazel Green                      | 80                      |                                   |                               |                                     | 94                                   |                          | 35                         |                                     | 35                                         |                                                   |
| 5.0            | Kentucky River at Camp Nelson                   | 64                      |                                   |                               |                                     | 59                                   |                          | 28                         |                                     | 28                                         |                                                   |
| 7.0            | Kentucky River above Frankfort                  | 65                      |                                   |                               |                                     | 57                                   |                          | 25                         |                                     | 25                                         |                                                   |
| 9.0            | Kentucky River below Frankfort                  | 56                      |                                   |                               |                                     | 59                                   |                          | 25                         |                                     | 25                                         |                                                   |
| 9.3            | South Elkhorn Creek near Midway                 | 40                      |                                   |                               |                                     | 70                                   |                          | 2                          |                                     | 2                                          |                                                   |
| 10.0           | Kentucky River at Lock 2 at Lockport            | 27                      |                                   |                               |                                     | 96                                   |                          | 52                         |                                     | 52                                         |                                                   |
| 10.1           | Eagle Creek at Glencoe                          | 73                      |                                   |                               |                                     | 73                                   |                          | 34                         |                                     | 34                                         |                                                   |
| Lead, to       | al recoverable                                  | <b>.</b>                |                                   | -                             |                                     |                                      |                          |                            |                                     |                                            |                                                   |
| 2.0            | North Fork of Kentucky River at Jackson         | 36                      |                                   |                               | 100                                 |                                      |                          | 50                         |                                     |                                            |                                                   |
| 2.3            | Middle Fork of Kentucky River at Tallega        | 35                      |                                   |                               | 100                                 |                                      |                          | 49                         |                                     |                                            |                                                   |
| 2.6            | South Fork of Kentucky River at Boone-<br>ville | 35                      | 3                                 |                               | 100                                 |                                      | 3                        | 60                         |                                     |                                            |                                                   |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 69                      | 9                                 |                               | 100                                 |                                      | 4                        | 70                         | 9                                   |                                            |                                                   |

48

|                |                                                 |                         |                                   |                               | Perce                               | ntage Not I                          | Meeting In               | dicated C                  | riteria                             |                                             |                                                   |
|----------------|-------------------------------------------------|-------------------------|-----------------------------------|-------------------------------|-------------------------------------|--------------------------------------|--------------------------|----------------------------|-------------------------------------|---------------------------------------------|---------------------------------------------------|
| Site<br>Number | Station Name                                    | Number<br>Mea-<br>sured | Max.<br>Contam-<br>inant<br>Level | Max.<br>Con.<br>Level<br>Goal | Proposed<br>Max. Con.<br>Level Goal | Second-<br>ary Max.<br>Con.<br>Level | Aquatic<br>Life<br>Acute | Aquatic<br>Life<br>Chronic | Ky. Do-<br>mestic Wa-<br>ter Supply | Ky.<br>Warm–<br>Water<br>Aquatic<br>Habitat | Ky. Rec-<br>reational<br>Water,<br>Second-<br>ary |
| 3.1            | Red River near Hazel Green                      | 75                      | 7                                 |                               | 100                                 |                                      | 4                        | 58                         | 7                                   |                                             |                                                   |
| 5.0            | Kentucky River at Camp Nelson                   | 66                      | 12                                |                               | 100                                 |                                      | 12                       | 81                         | 12                                  |                                             |                                                   |
| 7.0            | Kentucky River above Frankfort                  | 71                      | 13                                |                               | 100                                 |                                      | 8                        | 68                         | 13                                  |                                             |                                                   |
| 9.0            | Kentucky River below Frankfort                  | 63                      | 22                                |                               | 100                                 |                                      | 19                       | 73                         | 22                                  | 811                                         |                                                   |
| 9.3            | South Elkhorn Creek near Midway                 | 43                      |                                   |                               | 100                                 |                                      |                          | 58                         |                                     |                                             |                                                   |
| 10.0           | Kentucky River at Lock 2 at Lockport            | 25                      |                                   |                               | 100                                 |                                      |                          | 96                         |                                     |                                             |                                                   |
| 10.1           | Eagle Creek at Glencoe                          | 75                      | 23                                |                               | 100                                 |                                      | 19                       | 66                         | 23                                  |                                             |                                                   |
| Mangane        | se, total recoverable                           | •                       |                                   |                               |                                     | •                                    |                          |                            |                                     |                                             | 1                                                 |
| 0.1            | Yonts Fork near Neon                            | 13                      |                                   |                               | 1                                   | 100                                  |                          |                            | 100                                 |                                             |                                                   |
| 1.0            | North Fork of Kentucky River at Hazard          | 18                      |                                   |                               |                                     | 94                                   |                          |                            | 94                                  |                                             | 1                                                 |
| 2.0            | North Fork of Kentucky River at Jackson         | 53                      |                                   |                               |                                     | 94                                   |                          |                            | 94                                  |                                             |                                                   |
| 2.1            | Middle Fork of Kentucky River near Hy-<br>den   | 21                      |                                   |                               |                                     | 86                                   |                          |                            | 86                                  |                                             |                                                   |
| 2.3            | Middle Fork of Kentucky River at Tallega        | 50                      |                                   |                               |                                     | 96                                   |                          |                            | 96                                  |                                             |                                                   |
| 2.5            | Goose Creek at Manchester                       | 19                      |                                   |                               |                                     | 100                                  |                          |                            | 100                                 |                                             |                                                   |
| 2.6            | South Fork of Kentucky River at Boone-<br>ville | 47                      |                                   |                               |                                     | 92                                   |                          |                            | 92                                  |                                             |                                                   |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 64                      |                                   |                               |                                     | 94                                   |                          |                            | 94                                  |                                             |                                                   |
| 3.1            | Red River near Hazel Green                      | 79                      |                                   |                               | 1                                   | 99                                   |                          |                            | 99                                  |                                             |                                                   |
| 5.0            | Kentucky River at Camp Nelson                   | 62                      |                                   |                               |                                     | 76                                   |                          |                            | 76                                  |                                             |                                                   |
| 7.0            | Kentucky River above Frankfort                  | 64                      |                                   |                               |                                     | 56                                   |                          |                            | 56                                  |                                             |                                                   |
| 9.0            | Kentucky River below Frankfort                  | 55                      |                                   |                               |                                     | 64                                   |                          |                            | 64                                  |                                             |                                                   |
| 9.3            | South Elkhorn Creek near Midway                 | 41                      |                                   |                               |                                     | 100                                  |                          |                            | 100                                 |                                             |                                                   |
| 10.0           | Kentucky River at Lock 2 at Lockport            | 27                      |                                   | 1                             |                                     | 96                                   |                          |                            | 96                                  |                                             |                                                   |
| 10.1           | Eagle Creek at Glencoe                          | 74                      |                                   |                               |                                     | 57                                   |                          |                            | 57                                  |                                             | 1                                                 |

Water Quality in the Kentucky River Basin

|                | [                                               |                         | Percentage Not Meeting Indicated Criteria |                               |                                         |                                      |                          |                            |                                     |                                             |                                                   |  |  |
|----------------|-------------------------------------------------|-------------------------|-------------------------------------------|-------------------------------|-----------------------------------------|--------------------------------------|--------------------------|----------------------------|-------------------------------------|---------------------------------------------|---------------------------------------------------|--|--|
| Site<br>Number | Station Name                                    | Number<br>Mea-<br>sured | Max.<br>Contam-<br>inant<br>Level         | Max.<br>Con.<br>Level<br>Goal | Proposed<br>Max. Con.<br>Level Goal     | Second-<br>ary Max.<br>Con.<br>Level | Aquatic<br>Life<br>Acute | Aquatic<br>Life<br>Chronic | Ky. Do-<br>mestic Wa-<br>ter Supply | Ky.<br>Warm–<br>Water<br>Aquatic<br>Habitat | Ky. Rec-<br>reational<br>Water,<br>Second-<br>ary |  |  |
| Mercury,       | total recoverable                               | •                       |                                           |                               | • · · · · · · · · · · · · · · · · · · · |                                      |                          |                            |                                     |                                             |                                                   |  |  |
| 2.0            | North Fork of Kentucky River at Jackson         | 37                      | 5                                         |                               | 3                                       |                                      | 5                        | 100                        |                                     | 30                                          |                                                   |  |  |
| 2.3            | Middle Fork of Kentucky River at Tallega        | 35                      |                                           |                               |                                         |                                      |                          | 100                        |                                     | 14                                          |                                                   |  |  |
| 2.6            | South Fork of Kentucky River at Boone-<br>ville | 35                      | 3                                         |                               | 3                                       |                                      | 3                        | 100                        |                                     | 17                                          |                                                   |  |  |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 68                      | 10                                        |                               | 9                                       |                                      | 9                        | 100                        |                                     | 56                                          |                                                   |  |  |
| 3.1            | Red River near Hazel Green                      | 71                      | 4                                         |                               | 3                                       |                                      | 3                        | 100                        |                                     | 54                                          |                                                   |  |  |
| 5.0            | Kentucky River at Camp Nelson                   | 58                      | 9                                         |                               | 5                                       |                                      | 7                        | 100                        |                                     | 50                                          |                                                   |  |  |
| 7.0            | Kentucky River above Frankfort                  | 70                      | 10                                        |                               | 6                                       |                                      | 9                        | 100                        |                                     | 64                                          |                                                   |  |  |
| 9.0            | Kentucky River below Frankfort                  | 56                      | 7                                         |                               | 4                                       |                                      | 7                        | 100                        |                                     | 64                                          |                                                   |  |  |
| 9.3            | South Elkhorn Creek near Midway                 | 43                      | 5                                         |                               | 5                                       | 1                                    | 5                        | 100                        |                                     | 26                                          |                                                   |  |  |
| 10.0           | Kentucky River at Lock 2 at Lockport            | 24                      |                                           |                               |                                         |                                      |                          | 100                        |                                     | 60                                          |                                                   |  |  |
| 10.1           | Eagle Creek at Glencoe                          | 60                      | 15                                        |                               | 8                                       |                                      | 13                       | 100                        |                                     | 57                                          |                                                   |  |  |
| Silver, to     | tal recoverable                                 | . <b>I</b>              |                                           |                               |                                         |                                      |                          |                            |                                     |                                             |                                                   |  |  |
| 2.0            | North Fork of Kentucky River at Jackson         | 21                      |                                           |                               |                                         |                                      |                          | 100                        |                                     |                                             |                                                   |  |  |
| 2.6            | South Fork of Kentucky River at Boone-<br>ville | 21                      |                                           |                               |                                         |                                      |                          | 67                         |                                     |                                             |                                                   |  |  |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 30                      |                                           |                               |                                         |                                      |                          | 80                         |                                     |                                             |                                                   |  |  |
| 3.1            | Red River near Hazel Green                      | 31                      |                                           |                               |                                         |                                      |                          | 100                        |                                     |                                             |                                                   |  |  |
| 5.0            | Kentucky River at Camp Nelson                   | 29                      |                                           |                               |                                         |                                      |                          | 100                        |                                     |                                             |                                                   |  |  |
| 7.0            | Kentucky River above Frankfort                  | 30                      |                                           |                               |                                         |                                      |                          | 100                        |                                     |                                             |                                                   |  |  |
| 9.0            | Kentucky River below Frankfort                  | 30                      |                                           |                               |                                         |                                      |                          | 100                        |                                     |                                             |                                                   |  |  |
| 9.3            | South Elkhorn Creek near Midway                 | 28                      |                                           |                               |                                         |                                      |                          | 100                        |                                     |                                             |                                                   |  |  |
| 10.0           | Kentucky River at Lock 2 at Lockport            | 15                      |                                           |                               |                                         |                                      |                          | 9                          |                                     |                                             |                                                   |  |  |
| 10.1           | Eagle Creek at Glencoe                          | 31                      |                                           |                               |                                         |                                      |                          | 100                        |                                     |                                             |                                                   |  |  |

Appendix B

50

|                |                                                 |                         |                                   |                               | Perce                               | ntage Not                            | Meeting Ir               | dicated C                  | riteria                             |                                            |                                                   |
|----------------|-------------------------------------------------|-------------------------|-----------------------------------|-------------------------------|-------------------------------------|--------------------------------------|--------------------------|----------------------------|-------------------------------------|--------------------------------------------|---------------------------------------------------|
| Site<br>Number | Station Name                                    | Number<br>Mea-<br>sured | Max.<br>Contam-<br>inant<br>Level | Max.<br>Con.<br>Level<br>Goal | Proposed<br>Max. Con.<br>Level Goal | Second-<br>ary Max.<br>Con.<br>Level | Aquatic<br>Life<br>Acute | Aquatic<br>Life<br>Chronic | Ky. Do-<br>mestic Wa-<br>ter Supply | Ky.<br>Warm<br>Water<br>Aquatic<br>Habitat | Ky. Rec-<br>reational<br>Water,<br>Second-<br>ary |
| Zinc, tota     | al recoverable                                  |                         |                                   |                               |                                     | •                                    |                          |                            |                                     |                                            |                                                   |
| 2.0            | North Fork of Kentucky River at Jackson         | 34                      |                                   |                               |                                     |                                      |                          | 18                         |                                     | 18                                         |                                                   |
| 2.3            | Middle Fork of Kentucky River at Tallega        | 33                      |                                   |                               |                                     |                                      |                          | 15                         |                                     | 15                                         |                                                   |
| 2.6            | South Fork of Kentucky River at Boone-<br>ville | 33                      |                                   |                               |                                     |                                      |                          | 12                         |                                     | 12                                         |                                                   |
| 3.0            | Kentucky River at Lock 14 at Heidelberg         | 61                      |                                   |                               |                                     |                                      |                          | 20                         |                                     | 20                                         |                                                   |
| 3.1            | Red River near Hazel Green                      | 70                      |                                   |                               |                                     |                                      |                          | 3                          |                                     | 3                                          |                                                   |
| 5.0            | Kentucky River at Camp Nelson                   | 64                      |                                   |                               |                                     |                                      |                          | 8                          |                                     | 8                                          |                                                   |
| 7.0            | Kentucky River above Frankfort                  | 65                      |                                   |                               |                                     |                                      |                          | 14                         |                                     | 14                                         |                                                   |
| 9.0            | Kentucky River below Frankfort                  | 56                      |                                   |                               |                                     | 1                                    |                          | 9                          |                                     | 9                                          |                                                   |
| 9.3            | South Elkhorn Creek near Midway                 | 41                      |                                   |                               |                                     |                                      |                          | 34                         |                                     | 34                                         |                                                   |
| 10.0           | Kentucky River at Lock 2 at Lockport            | 27                      |                                   |                               |                                     |                                      |                          | 37                         |                                     | 37                                         |                                                   |
| 10.1           | Eagle Creek at Glencoe                          | 65                      | 1                                 |                               |                                     |                                      | 2                        | 12                         |                                     | 12                                         |                                                   |

|                |                                                       |                    | Percentage Not Meeting<br>Indicated Criteria |                                    |                                      |  |  |  |  |
|----------------|-------------------------------------------------------|--------------------|----------------------------------------------|------------------------------------|--------------------------------------|--|--|--|--|
| Site<br>Number | Station Name                                          | Number<br>Measured | Ky. Domestic Water<br>Supply                 | Ky. Recreational<br>Water, Primary | Ky. Recreational<br>Water, Secondary |  |  |  |  |
| Coliform, fec  | al, membrane filtered, M-FC medium at 44.5 degrees Ce | lsius              |                                              |                                    |                                      |  |  |  |  |
| 2.0            | North Fork of Kentucky River at Jackson               | 26                 | 35                                           | 92                                 | 58                                   |  |  |  |  |
| 2.3            | Middle Fork of Kentucky River at Tallega              | 25                 | 4                                            | 24                                 | 8                                    |  |  |  |  |
| 2.6            | South Fork of Kentucky River at Booneville            | 25                 |                                              | 40                                 | 12                                   |  |  |  |  |
| 3.0            | Kentucky River at Lock 14 at Heidelberg               | 61                 | 3                                            | 49                                 | 15                                   |  |  |  |  |
| 3.1            | Red River at Hazel Green                              | 59                 | 7                                            | 66                                 | 15                                   |  |  |  |  |
| 5.0            | Kentucky River at Camp Nelson                         | 62                 | 6                                            | 23                                 | 6                                    |  |  |  |  |
| 7.0            | Kentucky River above Frankfort                        | 64                 |                                              | 22                                 | 3                                    |  |  |  |  |
| 9.0            | Kentucky River below Frankfort                        | 61                 | 2                                            | 36                                 | 8                                    |  |  |  |  |
| 9.3            | South Elkhorn Creek near Midway                       | 26                 | 8                                            | 73                                 | 15                                   |  |  |  |  |
| 10.0           | Kentucky River at Lock 2 at Lockport                  | 12                 | 17                                           | 75                                 | 25                                   |  |  |  |  |
| 10.1           | Eagle Creek at Glencoe                                | 68                 | 2                                            | 29                                 | 10                                   |  |  |  |  |
| Coliform, fee  | cal, 0.7 micrometer, membrane filtered                | I                  | • <u></u>                                    |                                    |                                      |  |  |  |  |
| 10.0           | Kentucky River at Lock 2 at Lockport                  | 80                 | 11                                           | 50                                 | 28                                   |  |  |  |  |
| Streptococci   | , fecal, membrane filtered. KF agar                   |                    |                                              |                                    |                                      |  |  |  |  |
| 10.0           | Kentucky River at Lock 2 at Lockport                  | 76                 | 16                                           | 47                                 | 20                                   |  |  |  |  |

## **APPENDIX C:** Selected Kentucky Surface–Water–Quality Criteria

| Constituent or Property                     | Domestic Water Supply | Warm–Water Aquatic<br>Habitat | Cold–Water Aquatic<br>Habitat         | Recreational Waters |  |
|---------------------------------------------|-----------------------|-------------------------------|---------------------------------------|---------------------|--|
| mmonia, total un-ionized, mg/L              |                       | 0.05                          |                                       |                     |  |
| Arsenic, total, µg/L as As                  |                       | 50                            |                                       |                     |  |
| Barium, total, µg/L as Ba                   | 1,000                 |                               |                                       |                     |  |
| Beryllium, total, µg/L as Be                |                       | 11 (soft)<br>1,100 (hard)     |                                       |                     |  |
| Cadmium, total, µg/L as Cd                  |                       | 4 (soft)<br>12 (hard)         |                                       |                     |  |
| Chloride, dissolved, mg/L as Cl             | 250                   | 600                           |                                       |                     |  |
| Chromium, total, µg/L as Cr                 | 50                    | 100                           |                                       |                     |  |
| Copper, total, in µg/L as Cu                | 1,000                 |                               |                                       |                     |  |
| Cyanide, total, µg/L as Cn                  |                       | 5                             | · · · · · · · · · · · · · · · · · · · |                     |  |
| Dissolved oxygen, mg/L                      |                       | <4                            | <5                                    |                     |  |
| Dissolved solids, total, mg/L               | 750                   |                               |                                       |                     |  |
| Fecal coliform bacteria, colonies/100 ml    | 2,000                 |                               |                                       | 200*, 1,000**       |  |
| Fluoride, dissolved, mg/L as F              | 1                     |                               |                                       |                     |  |
| Iron, total, µg/L as Fe                     |                       | 1,000                         |                                       |                     |  |
| Lead, total, µg/L as Pb                     | 50                    |                               |                                       |                     |  |
| Manganese, total, µg/L as Mn                | 50                    |                               |                                       |                     |  |
| Mercury, total, µg/L as Hg                  |                       | 0.2                           |                                       |                     |  |
| Nitrogen, total nitrate, mg/L as N          | 10                    |                               |                                       |                     |  |
| pH, standard units                          |                       | 6.0–9.0                       |                                       | 6.0-9.0             |  |
| Selenium, total, in µg/L as Se              | 10                    |                               |                                       |                     |  |
| Silver, total, µg/L as Ag                   | 50                    | •                             |                                       |                     |  |
| Sulfate, dissolved, mg/L as SO <sub>4</sub> | 250                   |                               |                                       |                     |  |
| Temperature, degrees Celsius                |                       | <31.7                         | ***                                   |                     |  |
| Zinc, total, µg/L as Zn                     |                       | 47                            |                                       |                     |  |

53

Notes:

Standards used for evaluation in Smoot and others (1990). Source: Kentucky Natural Resources and Environmental Protection Cabinet (1985).

mg/L = milligrams per liter

 $\mu g/L = micrograms per liter$ 

< = less than

mL = milliliters

\* = primary contact recreation

\*\* = secondary contact recreation

\*\*\* = not to exceed natural seasonal variations

soft = water has an equivalent concentration of calcium carbonate of 0 to 75 milligrams per liter

hard = water has an equivalent concentration of calcium carbonate of over 75 milligrams per liter

Warm-water aquatic habitat criteria apply where none are established for cold-water aquatic habitat.

## APPENDIX D: Selected EPA Water–Quality Criteria for Fresh–Water Aquatic Life

| Constituent of Property                                                    | Aquatic Life Acute <sup>1</sup> Aquatic Life Chron |            |  |  |  |
|----------------------------------------------------------------------------|----------------------------------------------------|------------|--|--|--|
| Alkalinity, mg/L as CaCO3                                                  |                                                    | <20        |  |  |  |
| Ammonia, total, mg/L                                                       | Criteria pH and temperature dependent              |            |  |  |  |
| Arsenic, total trivalent, µg/L as As                                       | 360                                                | 190        |  |  |  |
| Cadmium, total, µg/L as Cd                                                 | 3.9*                                               | 1.1*       |  |  |  |
| Chromium, total, µg/L as Cr<br>Chromium, hexavalent<br>Chromium, trivalent | 16<br>1,700*                                       | 11<br>210* |  |  |  |
| Copper, total, in µg/L as Cu                                               | 18*                                                | 12*        |  |  |  |
| Cyanide, total, µg/L as Cn                                                 | 0.22                                               | 0.0052     |  |  |  |
| Dissolved oxygen, mg/L                                                     | <3-4                                               | <5.5       |  |  |  |
| Iron, total, µg/L as Fe                                                    | 1.1.000.00                                         | 1,000      |  |  |  |
| Lead, total, µg/L as Pb                                                    | 82*                                                | 3.2*       |  |  |  |
| Mercury, total, µg/L as Hg                                                 | 2.4 0.012                                          |            |  |  |  |
| Nickel, total, µg/L as Ni                                                  | 1,800*                                             | 96*        |  |  |  |
| pH, standard units                                                         |                                                    | 6.5–9.0    |  |  |  |
| Phenol, µg/L                                                               | 10,200**                                           | 2,560**    |  |  |  |
| Phthalate esters, µg/L                                                     | 940**                                              | 9**        |  |  |  |
| Selenium, total, in µg/L as Se                                             | 260                                                | 35         |  |  |  |
| Silver, total, µg/L as Ag                                                  | 4.1*                                               | 0.12       |  |  |  |
| Temperature, degrees Celsius                                               | Species-dependent criteria                         |            |  |  |  |
| Zinc, total, µg/L as Zn                                                    | 320* 47                                            |            |  |  |  |

Notes:

Standards used for evaluation in Smoot and others (1990). Source: U.S. Environmental Protection Agency (1986a). mg/L = milligrams per liter

 $\mu g/L = micrograms per liter$ 

< = less than

\* = hardness level of 100 mg used to calculate criteria

.

**\*\*** = lowest observed effect level

<sup>1</sup> Highest 1-hour average concentration that should not cause unacceptable toxicity to aquatic organisms during short-term exposure.

<sup>2</sup> Highest 4-day average concentration that should not cause unacceptable toxicity to aquatic organisms during long-term exposure.

#### Appendix E

## APPENDIX E: Selected EPA Drinking–Water Standards. After Smoot and others (1990).

| Constituent or Property                                                                                                                                                                                                  | MCL  | MCLG | PMCL  | PMCLG | SMCL    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------|---------|
| Arsenic, total, µg/L as As                                                                                                                                                                                               | 50   |      |       | 50    |         |
| Barium, total, µg/L as Ba                                                                                                                                                                                                | 1000 |      |       | 1,500 |         |
| Cadmium, total, µg/L as Cd                                                                                                                                                                                               | 10   |      |       | 5     |         |
| Chloride, dissolved, mg/L as CL                                                                                                                                                                                          |      |      |       |       | 250     |
| Chromium, total, µg/L as Cr                                                                                                                                                                                              | 50   |      |       | 120   |         |
| Copper, total, in µg/L as Cu                                                                                                                                                                                             |      |      | 1,300 | 1,300 | 1,000   |
| Dissolved solids, total, mg/L                                                                                                                                                                                            |      |      |       |       | 500     |
| Fluoride, dissolved, mg/L as F                                                                                                                                                                                           | 4    | 4    |       |       | 2       |
| Iron, total, µg/L as Fe                                                                                                                                                                                                  |      |      |       |       | 300     |
| Lead, total, µg/L as Pb                                                                                                                                                                                                  | 50   |      | 5     | 0     |         |
| Manganese, total, µg/L as Mn                                                                                                                                                                                             |      |      |       |       | 50      |
| Mercury, total, µg/L as Hg                                                                                                                                                                                               | 2    |      |       | 3     |         |
| Nitrogen, total nitrate, mg/L                                                                                                                                                                                            | 10   |      |       | 10    |         |
| Nitrite, total nitrite, mg/L                                                                                                                                                                                             |      |      |       | 1     |         |
| pH, standard units                                                                                                                                                                                                       |      |      |       |       | 6.5–8.5 |
| Selenium, total, in µg/L as Se                                                                                                                                                                                           | 10   |      |       | 45    |         |
| Silver, total, µg/L as Ag                                                                                                                                                                                                | 50   |      |       |       |         |
| Sulfate, dissolved, mg/L as SO <sub>4</sub>                                                                                                                                                                              |      |      |       |       | 250     |
| Zinc, total, µg/L as Zn                                                                                                                                                                                                  |      |      |       |       | 5,000   |
| 2,4–D, total, µg/L                                                                                                                                                                                                       | 0.1  |      |       | 0.07  |         |
| Notes:<br>MCL = maximum contaminant level<br>MCLG = maximum contaminant level goal<br>PMCL = proposed MCL<br>PMCLG = proposed MCLG<br>SMCL = secondary MCL<br>µg/L = micrograms per liter<br>mg/L = milligrams per liter |      |      |       |       |         |