November 16, 2007

Heidi Anderson, Ph.D.
Associate Provost of Faculty Affairs
Chair, Health Care Colleges Council

Dear Dr. Anderson,

Attached are forms outlining proposed changes in the course ORT 664 which is part of the Master of Science curriculum for the Orthodontics program. The request involves expanding this course from 1 credit to 2 credits. This change will allow the course director to expand the content of this course, covering current topics related to Biomechanics in more detail. We believe implementation of this change will enhance the education of our students enrolled in the Master of Science program in Orthodontics.

This change was approved by the College of Dentistry Graduate Faculty and the Master of Science Program Oversight Committee on November 6, 2007.

Thank you very much for considering this course change. If you have any questions, please contact me (323-8705; knova2@uky.edu).

Sincerely,

Sharon Turner, D.D.S., J.D.
Dean, College of Dentistry
November 6, 2007

Sharon Turner, DDS, JD
Dean
College of Dentistry

Dear Dean Turner,

Attached are forms outlining proposed changes in the course ORT 664 which is part of the Master of Science curriculum for the Orthodontics program. The request involves expanding this course from 1 credit to 2 credits. This change will allow the course director to expand the content of this course, covering current topics related to Biomechanics in more detail. We believe implementation of this change will enhance the education of our students enrolled in the Master of Science program in Orthodontics.

This change was approved by the College of Dentistry Graduate Faculty and the Master of Science Program Oversight Committee on November 6, 2007.

Thank you very much for considering this course change. If you have any questions, please contact me (323-8705; knova2@uky.edu).

Sincerely,

Karen F. Novak, DDS, MS, PhD
Director of Graduate Studies
College of Dentistry

Mohanad Al Sabbagh, DDS, MS
Graduate Program Director
Division of Periodontology

David Nash, DMD, MS, EdD
Oversight Committee
Division of Pediatric Dentistry

Cindy Beeman, DDS, PhD
Graduate Program Director
Division of Orthodontics

Jeff Okeston, DDS
Graduate Program Director
Division of Orofacial Pain

Preston Hicks, DDS, MS
Course Director ORT 664
Division of Orthodontics
UNIVERSITY OF KENTUCKY
APPLICATION FOR CHANGE IN EXISTING COURSE: MAJOR & MINOR

1. Submitted by College of Dentistry
 Department/Division offering course Orthodontics, Graduate Program
 Date 11-6-07

2. Changes proposed:
 (a) Present prefix & number ORT 664 Proposed prefix & number N/A
 (b) Present Title Biomechanics
 New Title N/A
 (c) If course title is changed and exceeds 24 characters (Including spaces), include a sensible title (not to exceed 24 characters) for use on transcripts:
 (d) Present credits: 1 Proposed credits: 2
 (e) Current lecture: laboratory ratio N/A Proposed: N/A
 (f) Effective Date of Change: (Semester & Year) Spring, 2008

3. To be Cross-listed as: N/A
 Prefix and Number
 Signature: Department Chair

4. Proposed change in Bulletin description:
 (a) Present description (including prerequisite(s)):
 Biological reactions of the periodontal and craniofacial structures during orthodontic treatment, as well as theoretical mechanical principles of tooth movement are taught in this course. Lecture, 22 hours. May be repeated to a maximum of two credits. Prereq: Admission to a postdoctoral program in the College of Dentistry.
 (b) New description:
 This is a two-credit-hour seminar course. The purpose of the course is to introduce the foundational concepts for understanding both the laws of mechanics and the typical tissue responses to force systems used in orthodontic appliances. Students will learn theory-guided approaches to planning safe, predictable and efficient orthodontic treatment. Students will be expected to read and critique background material in assigned textbooks and journal articles for seminar discussions. This course will supplement subject matter covered in the periodontal course, ORT 662.
 (c) Prerequisite(s) for course as changed: Same

5. What has prompted this proposal?
 There have been significant advances in the theory and application of skeletal anchorage devices, which have an impact in decision-making in designing biomechanical force systems in orthodontics. More time is required to address in depth the research in this topic. In addition research in the management of complex orthodontic treatment plans for adult orthodontic treatment has been evolving and needs to be added to course content.

6. If there are to be significant changes in the content or teaching objectives of this course, indicate changes:
 Added course objectives:
 1. Describe biomechanical approaches to the management of deep overbite and open bite occlusal discrepancies.
 2. Describe the biomechanical management of Class II and Class III occlusal discrepancies.
 3. Describe the concepts of skeletal anchorage in planning orthodontic tooth movement.
 4. Describe the diagnostic and mechanical principles of Tweed treatment protocols.
 5. Describe the finishing methods related to establishing stable arch forms and smile esthetics.
 6. Discuss periodontal implications in planning orthodontic therapy in children and adults.
 7. Describe and discuss methods and principles for planning retention, integrating the biologic rationale for various retention protocols.
7. What other departments could be affected by the proposed change?
None

8. Is this course applicable to the requirements for at least one degree or certificate at the University of Kentucky? ☒ Yes ☐ No

9. Will changing this course change the degree requirements in one or more programs?
If yes, please attach an explanation of the change. (NOTE – If “yes,” program change form must also be submitted.) ☐ Yes ☒ No

10. Is this course currently included in the University Studies Program?
If yes, please attach correspondence indicating concurrence of the University Studies Committee. ☐ Yes ☒ No
UNIVERSITY OF KENTUCKY
APPLICATION FOR CHANGE IN EXISTING COURSE: MAJOR & MINOR

11. If the course is 400G or 500 level, include syllabi or course statement showing differentiation for undergraduate and graduate students in assignments, grading criteria, and grading scales. ☐ Check here if 400G-500.

12. Is this a minor change? ☐ Yes ☐ No
(NOTE: See the description on this form of what constitutes a minor change. Minor changes are sent directly from the Dean of the College to the Chair of the Senate Council. If the latter deems the change not to be minor, it will be sent to the appropriate Council for normal processing.)

13. Within the Department, who should be consulted for further information on the proposed course change?

Name: E. Preston Hicks, Course Director Phone Extension: 3-5371

Signatures of Approval:

| Date of Approval by Department Faculty |
| 11/16/07 |

| Date of Approval by College Faculty |
| 11/16/07 |

*Date of Approval by Undergraduate Council

*Date of Approval by Graduate Council 12/18/07

*Date of Approval by Health Care Colleger Council (HCCC)

*Date of Approval by Senate Council

*Date of Approval by University Senate

*If applicable, as provided by the Rules of the University Senate.

The Minor Change route for courses is provided as a mechanism to make changes in existing courses and is limited to one or more of the following:

a. change in number within the same hundred series;
b. editorial change in description which does not imply change in content or emphasis;
c. editorial change in title which does not imply change in content or emphasis;
d. change in prerequisite which does not imply change in content or emphasis;
e. cross-listing of courses under conditions set forth in item 3.0;
f. correction of typographical errors. [University Senate Rules, Section III - 3.1]

Rev 7/06
SYLLABUS
ORT 664—Biomechanics
Spring 2008
Course Director: Dr. E. Preston Hicks

Course Description

This is a two credit-hour seminar course. The purpose of the course is to introduce the foundational concepts for understanding both the laws of mechanics and the typical tissue responses to force systems used in orthodontic appliances. Students will learn theory-guided approaches to planning safe, predictable and efficient orthodontic treatment. Students will be expected to read and critique background material in assigned textbooks and journal articles for seminar discussions. This course will supplement subject matter covered in the typodont course, ORT 662.

Course Objectives

1. List and discuss the major concepts and principles that are required to produce:
 a. safe tooth movement
 b. predictable tooth movement
 c. efficient tooth movement
2. Define the concept "system equilibrium" and discuss the implications for planning orthodontic anchorage.
3. Compare and contrast the terms "stress-strain diagram" and "load-deflection diagram."
4. Define the term "anchorage" and list the types often used in orthodontic force systems.
5. Describe all tissue reactions associated with orthodontic tooth movement and discuss implications for planning force magnitude, direction, and duration.
6. Describe soft tissue adaptations to tooth movement during the retention stage of treatment and discuss implications for timing and duration of retention.
7. Describe the principles and applications of loops in arch wire design and compare with the use of low modulus arch wire materials.
8. Define and describe biomechanical approaches common to stage 1, 2, and 3 mechanics.
9. Describe the mechanical concepts of loop designs.
10. Distinguish the biomechanical concepts between "ideal" and "optimal" arch wire forms.
11. Compare and contrast standard edgewise brackets with preadjusted brackets.
12. Describe the biomechanics of maxillary expansion and compare slow expansion protocols with rapid expansion protocols.
13. Describe the mechanics of headgear designs and discuss common orthodontic applications.
14. Describe typical biomechanical management strategies in the mixed dentition.
15. Describe biomechanical approaches to the management of deep overbite and open bite occlusal discrepancies.
16. Describe the biomechanical management of Class II and Class III occlusal discrepancies.
17. Describe the concepts of skeletal anchorage in planning orthodontic tooth movement.
18. Describe the diagnostic and mechanical principles of Tweed treatment protocols.
19. Describe the finishing methods related to establishing stable arch forms and smile esthetics.
20. Discuss periodontal implications in planning orthodontic therapy in children and adults.
21. Describe and discuss methods and principles for planning retention, integrating the biologic rationale for various retention protocols.
Instructional Methodology

This is a seminar-based course designed to shape students’ understanding of basic concepts and theories related to the planning and design of orthodontic force systems. Reading assignments for each seminar session are to provide background information for class discussions related to the scheduled topics. Much of the preparatory reading is directed to textbook sources. In addition, journal articles are assigned to focus on application of principles in the contemporary practice of orthodontics. In some sessions students will identify additional journal articles on their own to supplement the reading assignments. The last two sessions in the course will be devoted to PowerPoint presentations of biomechanical plans of the patients identified in ORT 660. The purpose of these presentations is to reinforce in practical terms the basic concepts and principles taught during the course.

Course Evaluation

Grades for this course will be determined by the quality of participation during the seminar sessions and by the results of a multiple choice examination given at the conclusion of the course. The exam will test for mastery of concepts covered in the course objectives listed above.

The final written exam will constitute 80% of the final course grade
Class participation will constitute 20% of the final course grade

Letter grade scale:
- A = 90 to 100 percentage points
- B = 80 to 89.9 percentage points
- C = 70 to 79.9 percentage points
- E = < 70 percentage points

Textbook Resources:

Attendance Policy
Attendance is required at all classes. Excused absences must be approved by the Course Director. Each unexcused absence will result in a reduction by one grade for each day missed.

Remediation:
There will be no remediation for this course. Failure of the course will result in the need to retake the entire course the next time it is offered.

Cheating and Plagiarism:
All activities in this course are conducted under the College of Dentistry
Code of Professional and Academic Responsibility and the University's Students Rights and Responsibilities publication (http://www.uky.edu/studentaffairs/code1). The College has high expectations of each student concerning their professional and academic responsibilities, including self-governance. Cheating and plagiarism will not be tolerated and will result in a failing grade. If you have questions about expected standards of behavior, it is your responsibility to discuss and clarify these questions with the Course Director.
<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Time</th>
<th>Room</th>
<th>Topic</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>D412</td>
<td>Principles of Biomechanics/Principles of Bracket and Band Placement</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>D412</td>
<td>Biologic Mechanisms of Orthodontic Tooth Movement</td>
<td>Dr. Beeman</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>D412</td>
<td>Treatment in the Mixed Dentition/Headgear</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>D412</td>
<td>Stage 1 Mechanics/Slow vs Rapid Maxillary Sutural Expansion</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>D412</td>
<td>Stage 2 Mechanics/Management of Deep Overbite Discrepancies</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>D412</td>
<td>Stage 3 Mechanics/Management of Open Bite Discrepancies</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>D412</td>
<td>Biomechanic Strategies for Non-extraction Class II Malocclusions/Extraction Space Closure</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>D412</td>
<td>Class III Management</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>D412</td>
<td>Orthodontic Skeletal Anchorage</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>D412</td>
<td>Tweed Mechanics/Concepts of Arch Form/Differential Moments</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>D412</td>
<td>Orthodontic/Periodontic Interrelationships</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>D412</td>
<td>Biomechanical Factors in Surgical Orthodontics/Biomechanic Strategies for Optimal Finishing</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>D412</td>
<td>Esthetics in Tooth Display and Smile Design/Principles of Retention</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>D412</td>
<td>Treatment Plan Presentations (2) (ORT 660 patient)</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>D412</td>
<td>Treatment Plan Presentation (1) (ORT 660 patient)/Course Review</td>
<td>Dr. Hicks</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>D412</td>
<td>Written Exam</td>
<td>Dr. Hicks</td>
</tr>
</tbody>
</table>
Reading Assignments

Session 1: Principles of Biomechanics/Principles of Band & Bracket Placement Dr. Hicks

Kuhlberg and Nanda, Biomechanics and Esthetic Strategies in Clinical Orthodontics, Chapter 1: Principles of Biomechanics, pp 1-16.

Graber text, Chapter 14: Bonding in Orthodontics, pp 579-659.

Study Guide by Dr. Hicks (attached to course syllabus)

Session 2: Biologic Mechanisms in Orthodontic Tooth Movement Dr. Beeman

Proffit text, Chapter 9: The Biologic Basis of Orthodontic Therapy, pp 296-325.

Session 3: Treatment in the Mixed Dentition/Headgear Mechanics Dr. Hicks

Marcotte text, Chapter 4: Headgear, pp 83-97.

Graber text, Chapter 13: Treatment of Patients in the Mixed Dentition, pp 543-77.

Each student will select and abstract one journal article published within the last 30 years on headgear design.

Session 4: Stage 1 Mechanics/Slow vs Rapid Maxillary Sutural Expansion Dr. Hicks

Proffit text, Chapter 16: The First Stage of Comprehensive Treatment: Alignment and Leveling, pp 526-51.

Proffit text, Chapter 8, pp 256-60; Chapter 13, pp 435-40; Chapter 15, pp 508-11; Chapter 16, pp 534-38

Each student will select and abstract one “evidence-based” article regarding therapeutic outcomes of maxillary expansion.

Session 5: Stage 2 Mechanics/Management of Deep Overbite Discrepancies Dr. Hicks

Proffit text, Chapter 17: The Second Stage of Comprehensive Treatment: Correction of Molar Relationship and Space Closure, pp 552-77.
Session 6: Stage 3 Mechanics/Management of Open Bite Discrepancies

Dr. Hicks

Proffit text, Chapter 18: The Third Stage of Comprehensive Treatment: Finishing, pp 578-96.

Nanda text, Chapter 8: Management of Open Bite Malocclusion, pp 156-76.

Session 7: Biomechanic Strategies for Nonextraction Class II Discrepancies/
Biomechanical Basis for Extraction Space Closure

Dr. Hicks

Session 8: Management of Class III Discrepancies

Dr. Hicks

Nanda text, Chapters 11, 12, and 13: Clinical Practice Guidelines for Developing Class III Malocclusion, pp 211-42; Treatment Strategies for Developing Class III Patients, pp 243-63; Biomechanical Aspects of a Modified Protraction Headgear, pp 264-77.

Session 9: Orthodontic Anchorage and Skeletal Implants/Bioefficiency

Dr. Hicks

Session 10: Tweed Mechanics/Concepts of Arch Form/Differential Moments

Dr. Hicks

Graber text, Chapter 16: The Tweed-Merrifield Edgewise Appliance: Philosophy, Diagnosis, and Treatment, pp 675-715.

Session 11: Orthodontic / Periodontic Interrationships

Session 12: Biomechanical Factors in Surgical Orthodontics/Biomechanical Strategies for Optimal Finishing

Nanda text, Chapters 16 and 17: Biomechanical Factors in Surgical Orthodontics, pp 310-29; Biomechanic Strategies for Optimal Finishing, pp 330-47.

Session 13: Esthetics and Smile Design/Intro Principles of Retention

Graber text, Chapter 27: Retention and Relapse, pp 1123-51.

Session 14: Case Presentations (2 patients from ORT 660 exercise)

Each presentation will include the following elements:

1. Provide a brief overview of the problem list and treatment goals identified previously in ORT 660
2. Show the biomechanical treatment sequence using the Biomechanics Planning Form, explaining the anchorage considerations derived from force diagram analysis
3. Describe wire designs for achieving for each mechanical stage of treatment (use force diagrams as necessary to show the active and reactive forces to be employed)
4. Describe retention requirements for each arch

Session 15: Case Presentation (1 patient) / Course Review

Session 16: Final Examination

Multiple choice and short answer test covering the 21 learning objectives listed in the course syllabus