TRANSMITTAL

The Graduate School

351 Patterson Office Tower Lexington, KY 40506-0027 (859) 257-4613 Fax: (859) 323-1928
www.rgs.uky.edu/gs/
TO: Angel Clark Senate Council
FROM: Lissa Holland Graduate Council
The Graduate Council met on March 27, 2003, and approved the following:
COLLEGE OF ARTS \& SCIENCES
Mathematics
NEW COURSE:

MA 714 - Topics in Discrete Mathematics (3 credits)

Review of recent research in discrete mathematics. May be repeated to a maximum of nine credits. Prerequisites: Consent of the instructor.

APPLICATION FOR NEW COURSE

Submitted by College of Arts and Sciences
Date
$10 \operatorname{ct} 2002$
Department/Division offering course Mathematics
2. Proposed designation and Bulletin description of this course
a. Prefix and Number MA 714
b. Title* Topics in Discrete Mathematics
*NOTE: If the title is longer than 24 characters (including spaces), write
A sensible title (not exceeding 24 characters) for use on transcripts Topics Discrete Math
c. Lecture/Discussion hours per week 3
e. Studio hours per week
d. Laboratory hours per week
f. Credits
g. Course description

MA 714 Topics in discrete mathematics
Review of recent research in discrete mathematics. May be repeated to a maximum of nine credits. Prerequisite: Consent of instructor.
h. Prerequisites (if any)

Consent of the instructor
\qquad
May be repeated to a maximum of 3 times (if applicable)

To be cross-listed as

$$
\text { Prefix and Number } \quad \text { Signature, Chairman, cross-listing department }
$$

5. Effective Date
6. Course to be offered
 (semester and year)
7. Will the course be offered each year?
(Explain if not annually)
Summer
Spring
\qquad
8. Why is this course needed?

The interests of students and faculty in discrete mathematics are no longer exclusively
in optimization. Hence the current topics course MA715 does not meet our needs
a. By whom will the course be taught? Faculty in mathematics. Currently Carl Lee, Francois Ma
b. Are facilities for teaching the course now available?
 No

If not, what plans have been made for providing them?
10. What enrollment may be reasonably anticipated? 10 students

Will this course serve students in the Department primarily?

Will it be of service to a significant number of students outside the Department?
\checkmark Ye
Yes
If so, explain.
Some topics may be of interest to students in allied areas such as Computer Science.

Will the course serve as a University Studies Program course? \square Yes \square No
If yes, under what Area?
12. Check the category most applicable to this course

D traditional; offered in corresponding departments elsewhere;
\square relatively new, now being widely established
\square not yet to be found in many (or any) other universities
Is this course part of a proposed new program:
 If yes, which?
14. Will adding this course change the degree requirements in one or more programs?*
 If yes, explain the change(s) below
\qquad
15. Attach a list of the major teaching objectives of the proposed course and outline and/or reference list to be used.
16. If the course is a 100-200 level course, please submit evidence (e.g., correspondence) that the Community College System has been consulted.
17. Within the Department, who should be contacted for further information about the proposed course?

Name
Russell Brown, Director of Graduate Studies Phone Extension 7-3951
*NOTE: Approval of this course will constitute approval of the program change unless other program modifications are proposed.

Signatures of Approval:

[^0]*If applicable, as provided by the Rules of the University Senate

Math 714 Topics in discrete math: Hyperplane Arrangements Sample syllabus

References On Reserve

Peter Orlik and Hiroaki Terao, Arrangements of Hyperplanes, Springer-Verlag,
1992.

Course Material

For the majority of the course we will follow Orlik and Terao's book on hyperplane arrangements, augmented with more recent results discovered within the past decade.

Course Outline

Introduction to hyperplane arrangements
The intersection lattice, the lattice of regions and oriented matroids
The characteristic polynomial
Supersolvable and graphic arrangements
The module of derivations
Free arrangements
The topology of the complement of arrangements
Coxeter groups and reflection arrangements
Other topics, as time permits

Grading

Your final course grade will be determined using three components: Onethird for class participation (includes homework presentations and asking/answering questions in class), one-third for seminar talk and one-third for homework write-up.
Absences from class lectures will have a negative effect on your overall course grade.

Homework

Problems will be posed throughout the course, on the average of one per lecture. Every two weeks we will spend all or part of the Friday lecture time going over homework. Students will volunteer to present all (or part) of a given problem. Students are encouraged to discuss homework problems and
the course material with each other

Seminar

Each student will also present one seminar-style 50 minute talk about a journal article related to the course material in one of the department's seminars. An annotated list of possible papers will be distributed in class. The topic/paper you decide to speak about must be approved by the instructor.

Final Exam

In lieu of an in-class final exam, you will be asked to turn in the solutions to all of the course homework. Your solutions should be written in full sentences, using correct grammar and spelling, as one would find in a mathematical textbook or journal article. They must be typewritten using a document preparation system such as $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$.

December 19, 2002

Learning outcomes

Students will become familiar with the principal definitions, techniques, theorems and algorithms in the subject.
2. Students will be actively engaged in developing the subject by developing the proofs in exercises, implementing and analyzing algorithms and developing extensions of the principal results of the subject.
3. Students will develop the ability to communicate mathematics orally and/or in writing.

ARTS AND SCIENCES COLLEGE COUNCIL/CURRICULUM COMMITTEE
 INVESTIGATOR REPORT

INVESTIGATING BODY Area A, Steven Yates (Area, Area Chair)

DATE FOR COUNCIL REVIEW
 \qquad
 \qquad

INSTRUCTIONS: This completed form will accompany the course application to the Graduate/Undergraduate Council(s) in order to avoid needless repetition of investigation. The following questions are included as an outline only. Be as specific and as brief as possible. If the investigation was routine, please indicate this. The term "course" is used to indicate one course, a series of courses or a program, whichever is in order. Return the form to the Associate Dean, 231 Patterson Office Tower for forwarding to the other Councils). ATTACH SUPPLEMENT IF NEEDED.

List any modifications made in the course proposal as submitted originally and why
NON=
2. If no modifications were made, review considerations that arose during the investigation and the resolutions.

NONE

3 List contacts with program units on the proposal and the considerations discussed therein.

NONE
5. A\&S Area A, Natural \& Mathematical Sciences Curriculum Committee Recommendation:

6 A\&S Council Recommendation:

[^0]: *Senate Council (Chair)

