Agricultural biotechnology encompasses cellular and molecular approaches to the manipulation and improvement of agricultural plants, animals and microorganisms, and the control of agricultural pests and diseases. The primary purpose of the baccalaureate degree program in Agricultural Biotechnology is to train students in modern cellular and molecular biology and genetic engineering. Students will be provided with a firm foundation in the principles of genetics and molecular biology of both prokaryotic and eukaryotic organisms. Each student will then specialize in an area appropriate to his or her interest and career objectives, including: microbial, fungal, plant, insect and mammalian biotechnology.

Graduates will be prepared to assume government, university, and industry positions with research and technology applications to agriculture and food production. Employment opportunities include research scientists, laboratory technicians or managers in university, government, industrial, or clinical laboratories using biotechnological tools for research and production. Examples of research areas include: gene cloning, construction of novel pest and disease resistance genes, development of new immunological and nucleic acid types of diagnostic probes for plant and animal disease, genetic engineering of microorganisms for the production of important pharmaceutical agents, and development of new bioengineered strains of microorganisms for fermentation and food production services. Students will also be prepared to enter graduate programs in agriculture, molecular biology, and the biological sciences.

Graduation Requirements
To earn a Bachelor of Science in Agricultural Biotechnology the student must complete 132 semester hours with at least a 2.0 grade-point standing. A minimum of 45 credit hours must be from upper division courses (300 and above). Remedial courses may not be counted toward the total hours required for the degree. In addition to the University Studies requirements, students must complete college, premajor, major, and specialty support requirements, including an independent research project relevant to the student’s interest in biotechnology.

Plan of Study
As an agricultural biotechnology major you are required to develop an acceptable Plan of Study during your sophomore year for your junior and senior years. The plan must be signed by your advisor and returned to the Office of Academic Programs.

If you are an upper division transfer student (from another university or from another UK college or department) then you will submit your plan during the first semester you are enrolled in the program.

Consult your academic advisor in developing your Plan of Study.

College Required Hours
GEN 100 Issues in Agriculture ... 3
Subtotal: College Required Hours .. 3

University Studies Requirements
See “University Studies Program” on page 76-77 of the 2009-2010 UK Bulletin for the complete University Studies requirements.

The courses listed below are (a) recommended by the college, or (b) required courses that also fulfill University Studies areas. Students should work closely with their advisor to complete the University Studies Program requirements.

Courses marked with an asterisk (*) may also be used to satisfy University Studies requirements.

Inference-Logic
MA 123 Elementary Calculus and Its Applications and
MA 132 Calculus for the Life Sciences ... 6
or
MA 113 Calculus ... 4

Natural Sciences
CHE 105 General College Chemistry I ... 3
CHE 107 General College Chemistry II ... 3
CHE 111 Laboratory to Accompany General Chemistry I 1
CHE 113 Laboratory to Accompany General Chemistry II 2

USP Electives
BIO 150 Principles of Biology I .. 3
BIO 152 Principles of Biology II .. 3

Premajor Requirements

Premajor Requirements Hours
*BIO 150 Principles of Biology I .. 3
*BIO 151 Principles of Biology Laboratory I 2
*BIO 152 Principles of Biology II .. 3
*BIO 153 Principles of Biology Laboratory II 2
*CHE 105 General College Chemistry I ... 3
*CHE 107 General College Chemistry II ... 3
*CHE 111 Laboratory to Accompany General Chemistry I 1
*CHE 113 Laboratory to Accompany General Chemistry II 2
CHE 230 Organic Chemistry I ... 3
CHE 231 Organic Chemistry Laboratory I 2
CHE 232 Organic Chemistry II ... 3
CHE 233 Organic Chemistry Laboratory II 2
*MA 123 Elementary Calculus and Its Applications and
*MA 132 Calculus for the Life Sciences ... 6
or
*MA 113 Calculus ... 4

Subtotal: Premajor Hours .. 45-46

2009-2010 Series
Agricultural Biotechnology • 2

Major Requirements

Biotechnology
ABT 101 Introduction to Biotechnology ... 1
*ABT 201 Scientific Method in Biotechnology ... 1
*ABT 301 Writing and Presentations in the Life Sciences 2

Microbiology
BIO 208 Principles of Microbiology .. 3
BIO 209 Principles of Microbiology Laboratory 2

Biochemistry
BCH 401G Fundamentals of Biochemistry .. 3
or
BCH 501 General Biochemistry and
BCH 502 General Biochemistry .. 6

Genetics
ABT/ASC/ENT 360 Genetics .. 3
or
BIO 304 Principles of Genetics ... 4

ABT 460 Introduction to Molecular Genetics ... 3
ABT 461 Introduction to Population Genetics .. 3

Statistics
STA 291 Statistical Method .. 3

Advanced Practical Skills
ABT 495 Experimental Methods in Biotechnology 4
or
BIO 510 Recombinant DNA Techniques Laboratory 4

Independent Study
ABT 395 Independent Study in Biotechnology .. 3
or
ABT 399 Experiential Learning in Biotechnology 3

All students are expected to undertake an independent study project in an
area of their interest for a minimum of 3 credit hours. This requirement can
be met by a research project or an internship that is agreed upon by a
student’s advisor and approved by the sBiotechnology Coordinating Com-
mittee prior to initiation of the project. Both written and oral reports are
required when the project is completed.

Subtotal: Major Hours .. 31-35

**The combination of ABT 201 and ABT 301 may be used to satisfy the
University Writing Requirement.

Specialty Support

Students must take a minimum of 21 credit hours of specialty support
courses including at least one of the courses listed below. A number of the
courses listed here may have additional prerequisites. Additional specialty
support courses will be selected according to the student’s area of interest
with approval of the academic advisor.

ASC 364 Reproductive Physiology of Farm Animals 4
BIO 315 Introduction to Cell Biology ... 3
BIO 350 Animal Physiology ... 4
BIO 430G Plant Physiology ... 4
BIO 476G General Microbial Physiology ... 3
BIO/PGY 502 Principles of Systems, Cellular and Molecular Physiology .. 5
BIO 515 General Cell Biology ... 3
BIO 550 Comparative Physiology ... 3
BIO 580 Metabolism of Microorganisms ... 4
PGY/MI 590 Cellular and Molecular Physiology 4

Subtotal: Specialty Support Hours ... 21

Electives

Electives should be selected to complete the 132 hours required for
graduation.

Subtotal: Electives ... minimum of 15

TOTAL HOURS: ... 132