Computer Engineering

Computer engineering involves modeling, design, implementation, testing, evaluation and integration of computer hardware and software to create computing systems. Computer engineers use both hardware concepts from electrical engineering and system software concepts from computer science. Graduates will be well prepared to work in areas such as digital logic design, computer organization/architecture and design, algorithm design and analysis, embedded systems, compilers, and operating systems. Elective options in the curriculum offer preparation in software engineering, databases, dependable systems, networking and communications, VLSI, graphics, image processing, visualization, artificial intelligence, and control systems. The program is offered through a partnership between the Department of Electrical and Computer Engineering and the Department of Computer Science.

Degree Requirements

In addition to fulfilling UK Core and College of Engineering requirements, students must complete the computer engineering curriculum. The following curriculum meets the requirements for the B.S. degree.

Freshman Year

First Semester

- MA 113 Calculus I ... 4
- EE 101 Creativity and Design in Electrical and Computer Engineering or CS 100 The Computer Science Profession ... 1-3
- CIS/WRD 110 Composition and Communication I 3
- CHE 105 General College Chemistry I ... 4
- CS 115 Introduction to Computer Programming 3
- UK Core – Humanities .. 3

Second Semester

- MA 114 Calculus II ... 4
- PHY 211 General University Physics ... 4
- PHY 241 General University Physics Laboratory 1
- CIS/WRD 111 Composition and Communication II 3
- UK Core – Arts and Creativity .. 3

Sophomore Year

First Semester

- CS 215 Introduction to Program Design, Abstraction, and Problem Solving ... 4
- MA 213 Calculus III ... 4
- EE 211 Circuits I ... 4
- PHY 232 General University Physics ... 4
- PHY 242 General University Physics Laboratory 1
- EE 281 Logical Design Laboratory ... 2

Second Semester

- MA 214 Calculus IV ... 3
- CS 275 Discrete Mathematics ... 4
- CS 216 Introduction to Software Engineering 3
- EE/CS 380 Microcomputer Organization ... 3
- UK Core – Social Sciences ... 3

Junior Year

First Semester

- EE 221 Circuits II ... 3

- EE 222 Electrical Engineering Laboratory I 2
- CS 315 Algorithm Design and Analysis ... 3
- EE 385 Introduction to Embedded Systems 3
- UK Core – Citizenship - USA ... 3
- STA 381 Introduction to Engineering Statistics 3

Second Semester

- EE 461G Introduction to Electronics .. 3
- CS 470G Introduction to Operating Systems 3
- EE 480/CS 480G Advanced Computer Architecture** 3
- UK Core – Statistical/Inferential Reasoning 3
- EE 421G Signals and Systems ... 3

Senior Year

First Semester

- CS 441G Compilers for Algorithmic Languages** 3
- EE/CS Technical Electives†† ... 6
- Supportive Elective* ... 3
- Technical Elective† ... 3

Second Semester

- CS 499 Senior Design Project† .. 3
- EE/CS Technical Electives†† ... 6
- Supportive Elective* ... 3
- UK Core – Global Dynamics ... 3

*Supportive elective is to be chosen from any University courses, excluding more elementary versions of required courses, such as precalculus mathematics or PHY 211.

**EE 480/CD 480G is only taught in the spring semester. CS 441G is only taught in the fall semester.

†Technical elective may be selected from upper-division engineering, mathematics, statistics, computer science, physics, or other technically-related fields excluding more elementary version of required courses. EE 490 and EE 491 fulfill the technical elective, senior design and the Graduation Writing Requirement. To be selected in consultation with academic advisor.

††EE/CS technical electives are senior level courses in either the computer science or electrical engineering disciplines. These include 400-level CS courses and 500-level CS and EE courses with emphasis in the computer engineering area and excluding EE 595. To be selected in consultation with academic advisor.

Recommended EE/CS Technical Electives:

- CS 405G Introduction to Database Systems
- CS 415G Combinatorics and Graph Theory
- CS 416G Principles of Operations Research I
- CS 422 Numerical Solutions of Equations
- CS 450G Fundamentals of Programming Languages
- CS 463G Introduction to Artificial Intelligence
- CS 471G Networking and Distributed Operating Systems
- CS 485G Topics in Computer Science (Subtitle required)
- EE 512 Digital Communication Systems
- EE 560 Semiconductor Device Design
- EE 564 Digital Electronic Circuits
- EE 572 Digital Control of Dynamic Systems
- EE 582 Hardware Description Languages and Programmable Logic
- EE 584 Introduction of VLSI Design and Testing
- EE 585 Fault Tolerant Computing
- EE 586 Communication and Switching Networks
- EE 587 Microcomputer Systems Design
- EE 599 Term Project

University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097, call 404-679-4500, or online at http://www.sacscoc.org for questions about the accreditation of University of Kentucky.