ENT 110 INSECT BIOLOGY. (3)
Overview of the biology of insects. Emphasizes how this enormously abundant and important group of animals has resolved the basic challenges of survival and reproduction. Principles of physiology, behavior, ecology, and evolution are introduced using insects as examples. The roles of both beneficial and detrimental insects will be discussed.

ENT 300 GENERAL ENTOMOLOGY. (3)
Fundamentals of insect biology and relationships among insects, plants, and other organisms; identification of commonly encountered insects. Beneficial and detrimental effects of insects are discussed. Lecture, two hours; laboratory, two hours per week. Prereq: One course in introductory biology. (Same as BIO 300.)

ENT 310 INSECT PESTS OF FIELD CROPS. (3)
Identification, life histories and control of insects attacking field crops, especially those of importance in Kentucky. The damage that these insects cause, the reasons for their abundance, and alternatives in control practices will also be emphasized. Lecture, two hours per week; laboratory, two hours per week.

ENT 320 HORTICULTURAL ENTOMOLOGY. (3)
A detailed coverage of the insects and mites attacking turf, ornamentals, greenhouse plantings, vegetables and fruits, with emphasis on field recognition of the pests and their damage. Lecture, two hours per week; laboratory, two hours per week.

ENT 340 LIVESTOCK ENTOMOLOGY. (2)
Biology and behavior of insects and other pests attacking livestock, poultry, pets and wildlife. Current control methods are discussed. For students interested in livestock production, farm management, dairy science, poultry science, and preveterinary medicine, as well as general agriculture.

ENT 360 GENETICS. (3)
The basic principles of heredity as currently understood from evidence accumulated in classical, cytogenetic, molecular, and quantitative genetic experiments. Emphasis is placed on a thorough understanding of genetic principles and the relationship of genetics to all biological disciplines. Prereq: Six credits in biological sciences and one course in general chemistry. (Same as ABT/ASC 360.)

ENT 395 INDEPENDENT WORK. (1-3)
Special problems for individual students who are capable of pursuing independent investigations in the various areas of entomology. May be repeated to a maximum of six credits. Prereq: ENT 300.

ENT 399 FIELD BASED/COMMUNITY BASED EDUCATION. (1-6)
Field-based or community-based experience in entomology under supervision of a faculty member. Pass/Fail only. Prereq: Permission of faculty member and department chairperson and completion of a departmental learning agreement before registration.

ENT 402 FOREST ENTOMOLOGY. (3)
The principles of forest entomology, including the detection, collection, identification, appraisal of damage, and control of forest insect pests. Lecture, two hours; laboratory, two hours. Prereq: One year of biology or consent of instructor. (Same as FOR 402.)

ENT 460 INTRODUCTION TO MOLECULAR GENETICS. (3)
Molecular genetics is the study of the biochemical basis of heredity and focuses on the structure and expression of DNA at the molecular and cellular level. The course will provide a detailed understanding of the biochemical events involved in genome replication, prokaryotic and eukaryotic transcription, and translation of DNA, as well as RNA processing, recombination and the theoretical underpinnings of genetic engineering. Prereq: ABT/ASC/ENT 360 or BIO 304 or consent of instructor. (Same as ABT 460.)

ENT 461 INTRODUCTION TO POPULATION GENETICS. (3)
This survey course examines the population dynamics and equilibria of genes in nuclei, chloroplasts and mitochondria. Emphasis will be on biological relevance (in plants, animals, and micro-organisms), but some theoretical derivations will also be introduced. Prereq: ABT 360 (or equivalent) and one course in probability/statistics. (Same as ABT/BIO/FOR 461.)

ENT 530 INTEGRATED PEST MANAGEMENT. (3)
Principles of insect damage, populations and distributions. Various types of natural and applied control, including problems of insecticide toxicity, resistance and residues. Prereq: ENT 300 or ENT 310 or ENT 320.
ENT 550 SPIDER ECOLOGY AND BEHAVIOR. (3)
Spiders are fascinating in their own right, and also are major predators in terrestrial food webs. This course examines the ecology and behavior of spiders as model predators in systems ranging from undisturbed forests and meadows to agroecosystems and the urban landscape. While focusing on spiders, the course also intertwines two general sub-themes: (1) the advantages of employing diverse approaches (e.g. field and laboratory experiments, non-manipulative observations, and meta-analyses) in ecological and behavioral research; and (2) the strengths, and limitations, of using model organisms to develop and test theory. Prereq: One year of undergraduate biology.

ENT 561 INSECTS AFFECTING HUMAN AND ANIMAL HEALTH. (3)
Discussion of arthropod parasites and disease vectors. Topics include an overview of disease transmission and public health, epidemiology, vector biology, important arthropod groups and their control. Prereq: One year of biology. (Same as BIO 561.)

ENT 563 PARASITOLOGY. (4)
Protozoan, helminth and arthropod parasites of man and domestic animals, emphasis on etiology, epidemiology, methods of diagnosis, control measures, and life histories. Techniques for host examination and preparation of material for study. Prereq: BIO 150, 151, 152, 153 or consent of instructor. (Same as BIO 563.)

ENT 564 INSECT TAXONOMY. (4)
A study of insect taxonomy including the collection, preparation, and identification of adult insect specimens. Prereq: Consent of instructor. (Same as BIO 564.)

ENT 568 INSECT BEHAVIOR. (3)
The principles of animal behavior will be stressed using insects as examples. Physiology, mechanisms, behavioral ecology and evolution of insect behavior will be covered. Prereq: One year of biology. (Same as BIO 568.)

ENT 574 ADVANCED APPLIED ENTOMOLOGY. (4)
The objective of this course is to present the student with advanced concepts of applied entomology in a system-specific context. Each week, the insect problems associated with a different commodity/production system will be presented so as to illustrate a different broadly-based theme. Prereq: An introductory entomology course and consent of instructor.

ENT 605 EMPIRICAL METHODS IN ECOLOGY AND EVOLUTION. (2)
This course provides students with hands-on experience in a diverse array of modern research methods used by ecologists and evolutionary biologists, including techniques used in: molecular genetics, chemical ecology, behavioral studies, motion analyses, using high-speed video, image analyses for morphometrics and color, and field techniques in both aquatic and terrestrial systems. Lecture, one hour; laboratory, three hours per week. Prereq: BIO 325 or FOR 340 or ENT 665, or consent of instructor. (Same as BIO/FOR 605.)

ENT 606 CONCEPTUAL METHODS IN ECOLOGY AND EVOLUTION. (3)
This course provides students with hands-on experience in a diverse array of conceptual research techniques used by ecologists and evolutionary biologists. The focus will be on optimization methods used for predicting animal and plant behaviors and life histories, and on methods for assessing population trends and dynamics. Mathematical techniques used will include graphical analyses, matrix algebra, calculus, and computer simulations. The latter part of the course will consist of collaborative modeling projects, in which small groups of students will work with the instructor to address an important contemporary research problem and will report their results in a public talk and a project writeup. Prereq: One year of calculus and BIO 325 or FOR 340 or ENT 665, or consent of instructor. (Same as BIO/FOR 606.)

ENT 607 ADVANCED EVOLUTION. (2)
This course covers advanced topics in evolution, concentrating on questions central to the understanding of general evolutionary processes. Phenomena occurring both within populations (e.g., selection, inheritance, population subdivision) and between populations (e.g., gene flow, competition) will be addressed. Special attention will be given to modern research approaches and techniques including quantitative genetics, measurement of selection, phylogenetic analyses of comparative data and molecular systematics. Prereq: One year of calculus, genetics (BIO 304 or BIO 461) and BIO 508 or consent of instructor. (Same as BIO/FOR 607.)
ENT 608 BEHAVIORAL ECOLOGY AND LIFE HISTORIES. (2)
This course uses an evolutionary approach to examine behavior and life histories. Topics addressed include: the optimality approach, constraints on optimality, kin and group selection, predator and prey behaviors, social and mating behaviors, and life history evolution. Prereq: BIO 325 and one semester of calculus; or consent of instructor. (Same as BIO/FOR 608.)

ENT 609 POPULATION AND COMMUNITY ECOLOGY. (3)
This course discusses the processes that determine population distributions and dynamics and community structure for both plants and animals. Topics addressed include: population regulation and population stability, community diversity and stability, ecological succession, population interactions (competition, predation, mutualism), coevolution, and the effects of spatial and temporal heterogeneity on population and community patterns. Prereq: BIO 325 or FOR 340 or consent of instructor. (Same as BIO/FOR 609.)

ENT 625 INSECT-PLANT RELATIONSHIPS. (3)
This course examines the natural history, ecology, and evolution of insect/plant relationships. Topics include mechanisms and theory of plant defense, behavioral and physiological adaptations of herbivorous insects, pollination biology, multitrophic-level interactions, causes of insect outbreaks, and applications to managed ecosystems. Critical reading and discussion of current literature is emphasized. Prereq: Two years of college-level biology. (Same as BIO 625.)

ENT 635 INSECT PHYSIOLOGY. (4)
Study of insect physiological processes including development, digestion, reproduction, respiration, excretion, hormones and immunity. Opportunity to learn techniques used in insect physiology and molecular biology. Prereq: Consent of instructor. (Same as BIO 635.)

ENT 636 INSECT MOLECULAR BIOLOGY. (4)
Principles of insect molecular biology. Analysis of insect development, reproduction, behavior, immunity, transgenic insects and insecticide resistance at the molecular level. Hands-on experience with molecular biology techniques. Prereq: ENT/BIO 635 or consent of instructor. (Same as BIO 636.)

ENT 660 IMMATURE INSECTS. (3)
Bionomics, structure and classification of immature stages of insects; practice in their identification. Lecture, one hour; laboratory, six hours. Prereq: BIO 570 or ENT 564, or consent of instructor.

ENT 665 INSECT ECOLOGY. (3)
The biotic and physical factors influencing the distribution and abundance of insects and insect populations. Prereq: Consent of instructor. (Same as BIO 665.)

ENT 667 INVASIVE SPECIES BIOLOGY. (3)
This course will examine circumstances that allow introduced species to become invasive, how invasive species threaten our resources, and approaches to minimizing the incidence and impact of invasions. Prereq: Graduate standing or consent of instructor. (Same as BIO/FOR 667.)

ENT 680 BIOLOGICAL CONTROL. (3)
Principles related to the use of arthropods to suppress populations of arthropod pests and weeds. Includes historical perspective, ecological relationships, and contemporary issues related to the conservation and manipulation of arthropod predators, parasitoids, and herbivores. Prereq: ENT 300 or equivalent.

ENT 684 PHYLOGENETIC SYSTEMATICS. (3)
Theory and methods of phylogenetic analysis and cladistics will be explained. Applications of phylogenetic analysis, such as historical biogeography, biological classification, and testing of ecological hypotheses will be explored. (Same as BIO 684.)

ENT 695 SPECIAL TOPICS IN ENTOLOGY (Subtitle required). (3)
Special topical or experimental courses in entomology for graduate students. Special title required and must be approved by the chairperson of the Department of Entomology. A particular title may be offered twice at most under ENT 695. Students may not repeat under the same subtitle. Prereq: Will be set by instructor.
ENT 748 MASTER’S THESIS RESEARCH. (0)
Half-time to full-time work on thesis. May be repeated to a maximum of six semesters. Prereq: All course work toward the degree must be completed.

ENT 749 DISSERTATION RESEARCH. (0)
Half-time to full-time work on dissertation. May be repeated to a maximum of six semesters. Prereq: Registration for two full-time semesters of 769 residence credit following the successful completion of the qualifying exams.

ENT 767 DISSERTATION RESIDENCY CREDIT. (2)
Residency credit for dissertation research after the qualifying examination. Students may register for this course in the semester of the qualifying examination. A minimum of two semesters are required as well as continuous enrollment (Fall and Spring) until the dissertation is completed and defended.

ENT 768 RESIDENCE CREDIT FOR THE MASTER’S DEGREE. (1-6)
May be repeated to a maximum of 12 hours.

ENT 769 RESIDENCE CREDIT FOR THE DOCTOR’S DEGREE. (0-12)
May be repeated indefinitely.

ENT 770 ENTOMOLOGICAL SEMINAR. (1)
Discussion of current research problems in entomology. May be repeated to a maximum of six hours.

ENT 780 SPECIAL PROBLEMS IN ENTOMOLOGY AND ACAROLOGY. (2-3)
Investigations of chosen insect problems, including original work. Discussion and assignment of current insect subjects. May be repeated to a maximum of six credits. Prereq: Consent of instructor.

ENT 790 RESEARCH IN ENTOMOLOGY AND ACAROLOGY. (1-6)
Independent research in entomology or acarology. May be repeated to a maximum of 12 hours. Prereq: Consent of instructor.