FOR 100 INTRODUCTION TO FORESTRY. (3)
A brief coverage of the general fields of forestry; development and importance; tree growth; principal forest regions and important timber species; forest management practices; utilization and products; state and federal forestry programs.

FOR 101 INTRODUCTION TO WILDLIFE CONSERVATION. (3)
An introduction to the history, concepts, and principles of wildlife biology and management. The role of wildlife in ecological systems and human-altered environments will be discussed. Lecture, two hours; laboratory, two hours per week.

FOR 110 NATURAL RESOURCE ISSUES. (1)
A communication intensive course in which students will learn to research current forestry and natural resource issues, interpret popular press and professional publications, evaluate opposing viewpoints, and discuss issues in a clear, effective and professional manner through a variety of communication media.

FOR 150 COMPUTER APPLICATIONS IN NATURAL RESOURCE PROFESSIONS. (2)
Use and application of standard computer software to solve problems. Emphasis will be placed on decision processes and algorithm construction. Additionally, students will learn to construct aesthetic graphs, diagrams, maps and other visual material and will gain experience communicating results in a variety of written formats.

FOR 200 BASICS OF GEOSPATIAL TECHNOLOGY. (2)
A basic introduction to the various types of maps and their uses, field navigation skills, and map making. The course is heavily field and laboratory based, with an emphasis on hands-on learning and practice. Both traditional technologies, such as compasses, U.S. Geological Survey maps, and aerial photographs as well as newer technologies, such as global positioning systems and geographic information system databases will be employed in carrying out course exercises.

FOR 205 FOREST AND WILDLAND SOILS AND LANDSCAPES. (4)
A study of soil-plant-landscape relationships as related to forestry and the management of natural ecosystems. Emphasis will be on properties and processes of wildland soils, and on interrelationships between soils; composition and productivity of plant communities; and the structure, form, and functioning of landscapes. Lecture, three hours; laboratory, three hours per week. Prereq: At least three credits of biology and three credits of chemistry.

FOR 219 DENDROLOGY. (4)
A study of the basic concepts of botany related to woody species and their use, along with basic soil and site characteristics in the identification of trees and forest vegetation.

FOR 221 WINTER DENDROLOGY. (1)
Identification of 100 species of trees, shrubs, and lianas based upon bark, form, twig, and bud characteristics. Laboratory; four hours per week for one-half semester. Prereq: FOR 219.

FOR 230 CONSERVATION BIOLOGY. (3)
The basic history and principles of conservation biology, including diversity, extinction, evolution, and fragmentation. Students will learn the applications of conservation biology to such topics as forest management and wetland management and study the ethical perspectives related to conservation biology, including environmental ethics, deep ecology, and the land ethic.

FOR 240 FORESTRY AND NATURAL RESOURCE ETHICS. (2)
A study of the key ethical concepts of conservation, preservation, deep ecology, land ethic, spiritualism/religion, and multiple value systems as applied to forestry and natural resource issues. Students will gain an understanding of the ethical dilemmas faced by natural resource professionals, and will be able to identify ways of handling these dilemmas, including application of professional associations' codes of ethics.

FOR 250 STATISTICS AND MEASUREMENTS I. (3)
The application of statistical concepts, computations, and software to forestry sampling and inventory problems. Land, individual tree and timber stand measurement techniques will be covered as will the design and implementation of sampling systems to derive information necessary to meet landowner objectives. Prereq: MA 109 or calculus, FOR 110, FOR 200.
FOR 260 FOREST PRODUCTS AND WOOD SCIENCE. (4)
An examination of basic material properties of wood, methods by which it is used, and issues and economic conditions in which domestic and global wood markets operate. Concepts covered include species identification, chemical and mechanical properties and their effect on utilization, utilization technologies and their linkage to silvicultural practices, and affiliated issues such as recycling, product certification, environmental concerns, and alternative products.

FOR 280 FOREST POLICY. (2)
Examine the political process as it relates to formulation, analysis, evaluation, and implementation of forest policies. Assess the impacts of various policy decisions and employ the policy process to address such forestry issues as urbanization, fragmentation, invasive species, global competition, certification, and climate change.

FOR 310 INTRODUCTION TO FOREST HEALTH AND PROTECTION. (3)
Modular course with one-third devoted to forest entomology, one-third to forest pathology, and one-third to other topics such as abiotic agents and invasive species. Identify various agents that affect forest health, assess the impacts of these agents on forest health, and learn different methods for addressing these impacts. Prereq: BIO 103 or BIO 150.

FOR 320 FOREST VALUATION AND ECONOMICS. (3)
Apply economic concepts to silvicultural practices, land values, and values affiliated with various forest uses. Apply supply and demand concepts and financial computations to identify and quantify economic consequences of silvicultural actions or management practices. Taxation and monetizing ecosystem services will be discussed. Prereq: MA 109 or Calculus.

FOR 325 ECONOMIC BOTANY: PLANTS AND HUMAN AFFAIRS. (3)
Plants have played a major role in human affairs. Course will relate plant life processes and chemistry to human uses: food crops, spices, medicinals, and materials. Major units are the origins agriculture and early domesticates, ethnobotany, and a selection of plants and plant products with major historical impacts — potato, nutmeg, pepper, chocolate, sugar cane, cotton, quinine, rubber, tobacco. Contemporary themes include herbal medicine and plant-based pharmaceuticals. Prereq: PLS 104, PLS 210, one year of introductory biology, or permission of the instructor.

FOR 330 GIS AND SPATIAL ANALYSIS. (3)
Principles and operations of Geographic Information Systems (GIS) applied to forestry and natural resources. Students will learn to collect necessary field data to create GIS maps and digital spatial data sets, perform basic spatial analysis, and integrate social and economic data to solve spatially related natural resource problems. Prereq: MA 109 or Calculus, FOR 150 and FOR 200.

FOR 340 FOREST ECOLOGY. (4)
The study of the forest as a biological community, covering ecosystem concepts such as energy flow, forest nutrition, nutrient cycling, and decomposition. Interrelationships between trees and other organisms comprising the community are also examined through concepts of disturbance, succession, population dynamics, biological and ecosystem diversity, ecosystem management, and ecosystem services. Prereq: BIO 103 or BIO 150.

FOR 350 SILVICULTURE. (4)
A study of ecologically based manipulations of forests to achieve desired management objectives. Develop and apply silvicultural prescriptions and learn the effects of these prescriptions on timber and non-timber forest benefits, forest health and biodiversity, soil, and water resources as well as their effect on broader social, economic, and ecological issues. Prereq: FOR 219 and FOR 250.

FOR 355 FOREST FIRE CONTROL AND USE. (1)
A study of fire related concepts as they relate to trees, soils, landscapes, water quality, hydrology, wildlife, timber products, ecology and silviculture. In completing this course, students will become Red Card Certified through the U.S. Forest Service. Prereq: FOR 150, FOR 219, FOR 250, FOR 370, FOR 330, FOR 340, FOR 350, PLS 366, or consent of the field semester coordinator.

FOR 356 LANDSCAPE ASSESSMENT. (5)
Students will learn to assess various landscape types through week-long, in-depth studies of five topic areas, while studying how the topics are interrelated. The topic areas are winter dendrology, wildlife, soils, hydrology, and health and protection. During the module, students will visit sites throughout Kentucky and the region. Prereq: FOR 150, FOR 219, FOR 250, FOR 370, FOR 330, FOR 340, FOR 350, PLS 366, or consent of the field semester coordinator.
FOR 357 INVENTORY AND MEASUREMENTS II. (2)
This course teaches students how to conduct forest inventories using a variety of criteria and measurements. Students will use GPS to establish area boundaries and GIS to construct area maps. They will learn how to use inventory data to determine economic value. Prereq: FOR 150, FOR 219, FOR 250, FOR 370, FOR 330, FOR 340, FOR 350, PLS 366 or consent of the field semester coordinator.

FOR 358 SILVICULTURAL PRACTICES. (3)
A study of the silvicultural practices for altering the forest canopy and regenerating the forest. Students will learn to apply these practices to meet multiple use objectives such as forest products, wildlife, health and protection, watershed, and recreation and develop silvicultural prescriptions. Prereq: FOR 150, FOR 219, FOR 250, FOR 370, FOR 330, FOR 340, FOR 350, PLS 366, or consent of the field semester coordinator.

FOR 359 FOREST OPERATIONS AND UTILIZATION. (3)
Plan and design timber harvests, mark a stand for harvest, and describe the effects of harvesting. Use herbicides and pesticides to eradicate invasive species, perform tree planting, conduct thinnings, and participate in prescribed burns. Learn timber utilization technology and determine value added in converting trees to lumber. Prereq: FOR 150, FOR 219, FOR 250, FOR 370, FOR 330, FOR 340, FOR 350, PLS 366, or consent of the field semester coordinator.

FOR 370 WILDLIFE BIOLOGY AND MANAGEMENT. (4)
Applications of basic biological concepts such as physiology, energetics, nutrition, digestive systems, and anatomy to the study of wildlife and wildlife management. In addition to basic wildlife biology, students will also learn taxonomy and identification of wildlife and the principles of wildlife management as well as applied field techniques such as trapping and radio telemetry.

FOR 375 TAXONOMY OF FOREST VEGETATION. (1)
Field study of the identification and silvics of forest vegetation. One week summer field course. Prereq: FOR 205, FOR 219, and FOR 340; grade of C or better required in FOR 205 and FOR 219.

FOR 376 SILVICULTURAL PRACTICES. (2)
Field study of the relationship between specific site characteristics and yield of forest stands and the application of cultural practices to forest stands. Two week summer field course. Prereq: FOR 205, FOR 219, FOR 340, and FOR 350; grade of C or better required in FOR 205 and FOR 219.

FOR 377 FOREST SURVEYING. (1)
The application of surveying principles and techniques to forest land areas. One week summer field course. Prereq: FOR 200 and FOR 300; grade of C or better required in FOR 200.

FOR 378 FOREST MENSURATION. (2)
The application of mensurational principles and techniques in determining tree and stand volumes and growth; timber cruising; development of volume and stand tables. Two week summer field course. Prereq: FOR 200 and FOR 300; grade of C or better required in FOR 200.

FOR 379 HARVEST AND UTILIZATION OF WOOD. (2)
Study and use of harvesting and milling equipment in the harvest and manufacture of wood and wood products. Two week summer field course. Prereq: FOR 360.

FOR 399 FIELD-BASED EDUCATION IN FORESTRY. (1-6)
The use of field experience as an educational complement to classroom work. May be repeated to a maximum of 12 credits which are to be used as electives. Prereq: Permission of instructor and department chairperson. A departmental learning agreement must be completed prior to registration.
FOR 400 HUMAN DIMENSIONS OF FORESTRY AND NATURAL RESOURCES. (3)
In an issues based format, students will study societal trends and their impact on natural systems, the disconnect between society and nature, wildlife-human interactions, as well as problems related to globalization and urbanization. Prereq: Senior Standing or consent of the instructor. This is a writing-intensive (W) course approved to fulfill the upper tier of the graduation writing requirement (GWR). To receive W credit for this course, you must have successfully completed the first-year writing requirement (ENG 104 or its equivalent) and have completed at least 30 hours of course work. Forestry majors must complete this course and FOR 470 to fulfill upper tier of the GWR.

FOR 402 FOREST ENTOMOLOGY. (3)
The principles of forest entomology, including the detection, collection, identification, appraisal of damage, and control of forest insect pests. Lecture, two hours; laboratory, two hours. Prereq: One year of biology or consent of instructor. (Same as ENT 402.)

FOR 425 FOREST MANAGEMENT. (4)
The principles of sustained yield forest management, management objectives, forest regulation, allowable cut, and timing of timber harvests. Students will identify management objectives from various properties and ownership types and integrate scientific knowledge and both timber and non-timber considerations with landowner objectives to derive management decisions. Prereq: Completion of the Spring Field Semester (FOR 355, 356, 357, 358, and 359) or consent of instructor. (Same as AEC 425.)

FOR 460 FOREST HYDROLOGY AND WATERSHED MANAGEMENT. (4)
Principles and techniques involved in watershed management as it relates to the practice of forestry. Emphasis is placed on understanding the hydrologic cycle, plant-soil interactions from a land-use and landscape perspective, and the need for implementation of forestry best management practices. Prereq: CHE 104 or CHE 105, MA 109 or Calculus, FOR 200, and PLS 366.

FOR 461 INTRODUCTION TO POPULATION GENETICS. (3)
This survey course examines the population dynamics and equilibria of genes in nuclei, chloroplasts and mitochondria. Emphasis will be on biological relevance (in plants, animals, and micro-organisms), but some theoretical derivations will also be introduced. Prereq: ABT 360 (or equivalent) and one course in probability/statistics. (Same as ABT/BIO/ENT 461.)

FOR 470 INTERDEPENDENT NATURAL RESOURCE ISSUES. (3)
Culmination of the student’s study of public concerns and problems related to natural resources. Work in teams to find and verify information on diverse topics, listen to and address public concerns, communicate natural resource information to a wide range of audiences, and be effective professionals in working toward solutions. Prereq: Senior Standing. This is a writing-intensive (W) course approved to fulfill the upper tier of the graduation writing requirement (GWR). To receive W credit for this course, you must have successfully completed the first-year writing requirement (ENG 104 or its equivalent) and have completed at least 30 hours of course work. Forestry majors must complete this course and FOR 400 to fulfill the upper tier graduation writing requirements.

FOR 480 INTEGRATED FOREST RESOURCE MANAGEMENT. (5)
Capstone course. Students will be presented with a real life management scenario in a forested location in Kentucky. Working in teams, students will collect data, determine management objectives, and develop action plans for managing the forest according to the desires of the owner, subject to realistic legal, economic, ethical, and social constraints. Students will be required to produce a professional management plan and present the plan in a public forum at the end of the semester. Prereq: Completion of Field Semester, FOR 425, FOR 460, and Senior Standing.

#FOR 510 HERPETOLOGY. (4)
This is a 4-credit, advanced biology and/or wildlife course about amphibians and reptiles for both undergraduate and graduate students. Lectures and labs follow two concurrent themes: 1) a survey of amphibians and reptiles, with special emphasis on Kentucky species, and 2) a general analysis of amphibian and reptile biology, ecology, conservation and management. Prereq: All students enrolled in FOR 510 should have taken at least one college-level Biology course.

FOR 599 INDEPENDENT WORK IN FORESTRY. (1-3)
Study and independent work on selected problems related to allocation and utilization of natural resources. May be repeated to a maximum of six credits. Any combination of FOR 599 and FOR 781 cannot exceed six credits. Prereq: Senior or graduate standing and consent of instructor.
FOR 601 RESEARCH METHODS IN FORESTRY. (3)
A study of research methods, procedures, and techniques used in forestry. Major emphasis will be placed on problem analysis and methods of conducting organized research. Prereq: Graduate standing.

FOR 602 RENEWABLE NATURAL RESOURCES IN A GLOBAL PERSPECTIVE. (3)
An advanced course that examines world and transboundary issues related to renewable natural resources. Students will attend a series of lectures, discuss assigned readings, and identify issues for further study. Student research papers related to those issues will be presented and discussed in a seminar format. Prereq: Graduate standing.

FOR 605 EMPIRICAL METHODS IN ECOSYSTEM AND ECOLOGY. (2)
This course provides students with hands-on experience in a diverse array of modern research methods used by ecologists and evolutionary biologists, including techniques used in: molecular genetics, chemical ecology, behavioral studies, motion analyses, using high-speed video, image analyses for morphometrics and color, and field techniques in both aquatic and terrestrial systems. Lecture, one hour; laboratory, three hours per week. Prereq: BIO 325 or FOR 340 or ENT 665, or consent of instructor. (Same as BIO/ENT 605.)

FOR 606 CONCEPTUAL METHODS IN ECOSYSTEM AND ECOLOGY. (3)
This course provides students with hands-on experience in a diverse array of conceptual research techniques used by ecologists and evolutionary biologists. The focus will be on optimization methods used for predicting animal and plant behaviors and life histories, and on methods for assessing population trends and dynamics. Mathematical techniques used will include graphical analyses, matrix algebra, calculus, and computer simulations. The latter part of the course will consist of collaborative modeling projects, in which small groups of students will work with the instructor to address an important contemporary research problem and will report their results in a public talk and a project writeup. Prereq: One year of calculus and BIO 325 or FOR 340 or ENT 665, or consent of instructor. (Same as BIO/ENT 606.)

FOR 607 ADVANCED EVOLUTION. (2)
This course covers advanced topics in evolution, concentrating on questions central to the understanding of general evolutionary processes. Phenomena occurring both within populations (e.g., selection, inheritance, population subdivision) and between populations (e.g., gene flow, competition) will be addressed. Special attention will be given to modern research approaches and techniques including quantitative genetics, measurement of selection, phylogenetic analyses of comparative data and molecular systematics. Prereq: One year of calculus, genetics (BIO 304 or BIO 461) and BIO 308 or consent of instructor. (Same as BIO/ENT 607.)

FOR 608 BEHAVIORAL ECOLOGY AND LIFE HISTORIES. (2)
This course uses an evolutionary approach to examine behavior and life histories. Topics addressed include: the optimality approach, constraints on optimality, kin and group selection, predator and prey behaviors, social and mating behaviors, and life history evolution. Prereq: BIO 325 and one semester of calculus; or consent of instructor. (Same as BIO/ENT 608.)

FOR 609 POPULATION AND COMMUNITY ECOLOGY. (3)
This course discusses the processes that determine population distributions and dynamics and community structure for both plants and animals. Topics addressed include: population regulation and population stability, community diversity and stability, ecological succession, population interactions (competition, predation, mutualism), coevolution, and the effects of spatial and temporal heterogeneity on population and community patterns. Prereq: BIO 325 or FOR 340 or consent of instructor. (Same as BIO/ENT 609.)

FOR 612 FOREST ECOSYSTEM DYNAMICS. (3)
The study of ecosystem structure and function with emphasis upon eastern deciduous forest ecosystems. Topics discussed will include energy flow, mineral cycling, the influence of disturbance upon ecosystem properties and dynamic processes in the development of ecosystems. Prereq: FOR 340 or BIO 451G and consent of instructor.

FOR 620 SPECIAL TOPICS IN FORESTRY (Subtitle required). (1-3)
Special topical or experimental courses in forestry for advanced graduate students. Special title required and must be approved by the chairperson of the Department of Forestry. May be repeated to a maximum of nine credits. Students may not repeat under the same subtitle. Prereq: Consent of instructor.
FOR 622 PHYSIOLOGY OF PLANTS I. (3)
A physiological/biochemical treatment of central topics in modern plant physiology. Topics will include: plant-cell biology, ion transport, water and translocation, respiration and photosynthesis. Prereq: BIO 430G or equivalent or consent of coordinator. Prereq or concur: BCH 607. (Same as BIO/PLS 622.)

FOR 623 PHYSIOLOGY OF PLANTS II. (3)
A physiological/biochemical treatment of central topics in modern plant physiology. Topics will include: plant hormones, an introduction to plant biotechnology, senescence and abscission, stress physiology, phytochrome-photomorphogenesis-phototropism nitrogen and sulfur metabolism. Prereq: BIO 430G or equivalent or consent of coordinator. Prereq or concur: BCH 607. (Same as BIO/PLS 623.)

FOR 630 WILDLIFE HABITAT ANALYSIS. (3)
The components and structure of wildlife habitats and associated wildlife communities. Univariate and multivariate statistical methods of habitat analysis will be described and applied to data collected during laboratory periods to identify important habitat characteristics for selected wildlife species. The importance of habitat complexity will be demonstrated in laboratory and field situations. Lecture, three hours; laboratory, two hours. Prereq: FOR 430 and basic courses in statistics and ecology.

FOR 662 QUANTITATIVE METHODS IN RENEWABLE AND NONRENEWABLE RESOURCE MANAGEMENT. (3)
Application of dynamic optimization methods to renewable and nonrenewable resource management. Includes problem formulation, mathematical problem solving, Matlab programming, simulations and optimal policies analysis. Case examples are used to demonstrate applicability and problem formulation in finance and general and partial equilibrium. Prereq: MA 113 and MA 162 or equivalent, and AEC 661 or equivalent. (Same as AEC 662.)

FOR 667 INVASIVE SPECIES BIOLOGY. (3)
This course will examine circumstances that allow introduced species to become invasive, how invasive species threaten our resources, and approaches to minimizing the incidence and impact of invasions. Prereq: Graduate standing or consent of instructor. (Same as BIO/ENT 667.)

FOR 695 FIELD RESEARCH IN FORESTRY. (0)
Full-time research that requires the student to remain off-campus for extended periods. Students enrolled in this course remain in full-time academic status May be repeated to a maximum of 2 semesters. Prereq: Graduate standing in the Forestry Graduate Program. For students whose research precludes them from taking courses on campus for a semester. Registration requires (a) approval of Research Contract by a committee of at least three Forestry faculty members established to consider a particular student’s Research Contract, (b) approval of Research Contract by Director of Graduate Studies, and (c) approval of Research Contract by Associate Dean for Academic Programs.

FOR 748 MASTER’S THESIS RESEARCH. (0)
Half-time to full-time work on thesis. May be repeated to a maximum of six semesters. Prereq: All course work toward the degree must be completed.

FOR 768 RESIDENCE CREDIT FOR MASTER’S DEGREE. (1-6)
May be repeated to a maximum of 12 hours. Prereq: Consent of adviser and chairperson of the department.

FOR 770 FORESTRY SEMINAR (Subtitle required). (1)
Reports and discussions on recent research and current literature. Credit is given to those who satisfactorily present papers. Required of all graduate students. Can be repeated to a maximum of three credits. Prereq: Graduate standing.

FOR 781 SPECIAL PROBLEMS IN FORESTRY. (1-3)
Advanced study of selected problem areas in forestry. May be repeated for a total of six credits; any combination of FOR 781 and FOR 791 cannot exceed six credits. Prereq: Consent of graduate adviser.

FOR 791 RESEARCH IN FORESTRY. (1-3)
Involves original research in selected areas of interest in forestry. May be repeated for a total of six credits; any combination of FOR 781 and FOR 791 cannot exceed six credits. Prereq: Consent of graduate adviser.