ME 101 INTRODUCTION TO MECHANICAL ENGINEERING. (3)
This course introduces the Mechanical Engineering profession including the skills and expectations required for success. Engineering applications of calculus are also presented. Prereq or concur: MA 113.

ME 151 MANUFACTURING ENGINEERING. (3)
A background course in the area of manufacturing processes and systems. Includes a study of machining operations, foundry mechanization, forging, sheet metal work, powder metal products, production molding and production machines and processes.

ME 205 COMPUTER AIDED ENGINEERING GRAPHICS. (3)
Combines freehand sketching techniques, both orthographic and pictorial, and the use of a solid modeling program to describe and define mechanical objects using current industrial standards. An introduction to basic dimensioning and tolerancing techniques is included.

ME 220 ENGINEERING THERMODYNAMICS I. (3)
Fundamental principles of thermodynamics. Prereq: PHY 231. Prereq or concur: MA 214.

ME 310 ENGINEERING EXPERIMENTATION I. (3)
An introductory course in measurement and instrumentation emphasizing measurement errors, elementary statistics, uncertainty analysis, sensors, time and frequency response of instrumentation components, signal conditioning circuitry, and digital data acquisition. Applications include the measurement of strain, pressure, temperature, flow, force, torque, and vibration. Lecture, two hours; laboratory, three hours. Prereq: ME 101, ME 330, EE 305 and engineering standing. Prereq or Co-req: ME 340.

ME 311 ENGINEERING EXPERIMENTATION II. (3)
A laboratory to instruct the student in the performance of basic mechanical engineering components and systems. Performance of experiments, application of theory and reporting. Introduction to error analysis, and design and planning of experiments. Lecture, one hour; laboratory, four hours. Prereq: ME 310, 321, 325 and engineering standing.

ME 321 ENGINEERING THERMODYNAMICS II. (3)

ME 325 ELEMENTS OF HEAT TRANSFER. (3)
Fundamental principles of conduction, convection, radiation heat transfer. Numerical methods for heat transfer problems. Design and applications of heat transfer equipment such as fins and heat exchangers. Prereq: ME 330, MA 214, and engineering standing.

ME 330 FLUID MECHANICS. (3)
Introduction to the physical properties of fluids, fluid statics. Equations of conservation of mass, momentum and energy for systems and control volumes. Dimensional analysis and similarity. Principles of inviscid and real fluid flows; flow through pipes and around bodies. Application and design of fluid handling systems. Prereq: Engineering standing, ME 220, and MA 214.

ME 340 INTRODUCTION TO MECHANICAL SYSTEMS. (3)
Modeling of mechanical, thermal, hydraulic and electrical systems, and other phenomena from a systems viewpoint. Analysis of continuous-time models for free and forced response. Laplace transforms and transfer functions. Introduction to numerical simulation. Analysis of higher-order systems. Prereq: EM 313 and engineering standing.

ME 344 MECHANICAL DESIGN. (3)
Fundamentals of design with methods of approximation. Introduction to optimum design considerations. Synthesis and problems on the design of various mechanical elements. Prereq: ME 151, EM 302, engineering standing; concur: EM 313.

ME 358 ECONOMIC ANALYSIS OF MECHANICAL SYSTEMS. (3)
Formulation of economic relationships. Familiarization with alternate mechanical systems and application of economic principles of selection of alternates. Prereq: ME 321, engineering standing or consent of instructor.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 380</td>
<td>TOPICS IN MECHANICAL ENGINEERING (Variable topics).</td>
<td>3</td>
<td>A lecture-recitation course on a topic of current interest. Modern developments in mechanical engineering will be stressed. Offered as a technical elective in mechanical engineering. May be repeated to a maximum of nine credits. Prereq: Variable, given when topic identified and engineering standing.</td>
</tr>
<tr>
<td>ME 395</td>
<td>INDEPENDENT WORK IN MECHANICAL ENGINEERING.</td>
<td>1-6</td>
<td>Special research and problems for individual students who wish to pursue independent investigations. May be repeated to a maximum of six credits. Prereq: Consent of department chairperson via permit.</td>
</tr>
<tr>
<td>ME 407</td>
<td>ENGINEERING ETHICS.</td>
<td>1</td>
<td>Review of the growth and development of the profession, engineering ethics, obligations to employers and peers, limits of professional responsibility, codes of ethics and enforcement, and case studies. Prereq: Registration in the College of Engineering and engineering standing.</td>
</tr>
<tr>
<td>ME 408</td>
<td>SAFETY ENGINEERING.</td>
<td>2</td>
<td>Review of general safety hazards, system engineering safety, fault free analysis, reliability, accident reconstruction and investigation. Case studies will be included. Prereq: Engineering standing and concur: ME 344.</td>
</tr>
<tr>
<td>*ME 411</td>
<td>ME CAPSTONE DESIGN I.</td>
<td>3</td>
<td>The first semester of the capstone design sequence in mechanical engineering. Topics important in product design and manufacturing are included, including consideration of economics, safety, and communication. Students will develop a project plan concerned with the design of a complex system of current interest to mechanical engineers. Students will work in small groups and emphasis will be on original work. Lecture, two hours; laboratory/independent team work, three hours per week. Prereq: Engineering standing; prereq: ME 310, ME 325, ME 340, ME 344.</td>
</tr>
<tr>
<td>ME 412</td>
<td>ME CAPSTONE DESIGN II.</td>
<td>3</td>
<td>Second semester of the capstone design sequence in mechanical engineering. Students will complete a project concerned with the design of a complex system of current interest to mechanical engineers. Students will work in small groups and emphasis will be on original work. Topics include engineering ethics, design and communication. Lecture, 1 hour; lab 4 hours per week. Prereq: ME 411 and engineering standing. Course is to be taken semester immediately following ME 411.</td>
</tr>
<tr>
<td>ME 480G</td>
<td>HEATING, VENTILATING AND AIR-CONDITIONING.</td>
<td>3</td>
<td>An introductory course emphasizing the engineering systems aspects of thermal environmental design. Principles and applications of building energy requirements and thermal comfort criteria. Prereq: ME 325 and Engineering standing or consent of instructor. (Same as AEN 480G.)</td>
</tr>
<tr>
<td>ME 501</td>
<td>MECHANICAL DESIGN WITH FINITE ELEMENT METHODS.</td>
<td>3</td>
<td>Mechanical design techniques based on the finite element method, using machine design background as the starting point. Techniques for modeling machine elements will be shown in relation to the basic FEM theory. Emphasis will be on quantifying loads, the resulting stress and deflection, and relating them to design allowables, leading to an acceptable design solution. Prereq or concur: ME 344 and ME 205; or graduate standing.</td>
</tr>
<tr>
<td>ME 503</td>
<td>LEAN MANUFACTURING PRINCIPLES AND PRACTICES.</td>
<td>3</td>
<td>Introduction of the fundamental concepts for production improvement utilizing lean manufacturing principles and practices. This course will consist of lectures, manufacturing simulation laboratory, plant tours, design projects, and assigned problems drawn from industry. Prereq: Enrollment restricted to junior-level or above students. (Same as MFS 503.)</td>
</tr>
</tbody>
</table>
ME 505 MODELING OF MANUFACTURING PROCESSES AND MACHINES. (3)
A study of the major manufacturing processes and equipment. Emphasis on mathematical and computer models of these processes, as used in automated manufacturing and control of these processes. Lecture, two hours; laboratory, two hours. Prereq: EM 302, EM 313, and engineering standing; or graduate standing with instructor consent. (Same as MFS 505.)

ME 506 MECHANICS OF COMPOSITE MATERIALS. (3)
A study of the structural advantages of composite materials over conventional materials, considering high strength-to-weight and stiffness-to-weight ratios. Fiber reinforced, laminated and particulate materials are analyzed. Response of composite structures to static and dynamic loads, thermal and environmental effects, and failure criteria are studied. Prereq: EM 302, engineering standing or consent of instructor. (Same as EM/MSE 506.)

ME 507 DESIGN FOR MANUFACTURING. (3)
The topics will include fundamentals of concurrent engineering, product life cycle, product specification, standardization, functional requirements and datum features, selection of materials and manufacturing processes, cost analysis, case studies on designing for quality, economy, manufacturability and productivity. Prereq: ME 344 and engineering standing. (Same as MFS 507.)

ME 510 VIBRO-ACOUSTIC DESIGN IN MECHANICAL SYSTEMS. (3)
Application of basic acoustics and vibrations to engineering problems in vibro-acoustic design. The objective is to acquaint the student with the tools used in industry for noise and vibration control and to make the student aware of the major applications of such tools in the automotive, aerospace, and consumer product industries. Prereq: ME 310, ME 340.

ME 512 MANUFACTURING SYSTEMS. (3)
This course introduces students to fundamentals of design, planning and control of manufacturing systems aided by computers. Concepts of control hardware, NC programming languages, software aspects related to NC manufacturing, programmable controllers, performance modeling of automated manufacturing systems, group technology and flexible manufacturing systems, etc. will be addressed. Prereq: Engineering standing. (Same as MFS 512.)

ME 513 MECHANICAL VIBRATIONS. (3)
The analysis of vibrational motion of structural and mechanical systems. Single-degree-of-freedom systems; free vibrations; nonperiodic excitation; harmonic excitation. Modal analysis of multiple-degree-of-freedom systems. Vibration of continuous bodies, including strings and bars (axial, torsional and flexural modes). Energy methods. Prereq: EM 313 and EM 302, engineering standing or consent of instructor. (Same as EM 513.)

ME 514 COMPUTATIONAL TECHNIQUES IN MECHANICAL SYSTEM ANALYSIS. (3)
Computer-based methods of analyzing mechanical systems are studied. The studies include the numerical solution techniques on which the analyses are based. Linear and nonlinear static and dynamic systems are analyzed. Finite element and other engineering software packages are used. Prereq: ME 340 or graduate standing.

ME 527 APPLIED MATHEMATICS IN THE NATURAL SCIENCES I. (3)
Construction, analysis and interpretation of mathematical models applied to problems in the natural sciences. Physical problems whose solutions involve special techniques in applied mathematics are formulated, various solution techniques are introduced, and the mathematical results are interpreted. Fourier analysis, dimensional analysis and scaling rules, regular and singular perturbation theory, random processes and diffusion are samples of selected topics studied in the applications. Intended for students in applied mathematics, science and engineering. Prereq: MA 432G or three hours in an equivalent junior/senior level mathematics course or consent of the instructor. (Same as EM/MA 527.)

ME 530 GAS DYNAMICS. (3)
Consideration of the mass, energy and force balances applied to compressible fluids. Isentropic flow, diabatic flow, flow with friction, wave phenomena and one-dimensional gas dynamics. Applications to duct flows and to jet and rocket propulsion engines. Prereq: ME 321, ME 330 and Engineering standing.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 531</td>
<td>FLUID DYNAMICS I.</td>
<td>3</td>
<td>Stress at a point (introduced as a tensor of rank two). Equation of conservation of mass, rate of strain tensor, derivation of Navier-Stokes equation, source-sink flows, motion due to a doublet, vortex flow, two- and three-dimensional irrotational flow due to a moving cylinder with circulation, two-dimensional airfoils. Prereq: ME 330, MA 432G and Engineering standing.</td>
<td></td>
</tr>
<tr>
<td>ME 532</td>
<td>ADVANCED STRENGTH OF MATERIALS.</td>
<td>3</td>
<td>Unsymmetrical bending of beams, thin plates, stress analysis of thick-walled cylinders, and rotating discs. Theory of elastic energy, curved beams, stress concentration, and fatigue. Prereq: EM 302 and engineering standing. (Same as EM 531.)</td>
<td></td>
</tr>
<tr>
<td>ME 548</td>
<td>AERODYNAMICS OF TURBOMACHINERY.</td>
<td>3</td>
<td>Aerodynamic analysis and design of turbomachines (pumps, compressors and turbines). Blade element performance (deflection and losses), and models for performance prediction are present. Special topics - rotating stall and surge, and aeromechanical considerations. Prereq: ME 321 and ME 330.</td>
<td></td>
</tr>
<tr>
<td>ME 554</td>
<td>CHEMICAL AND PHYSICAL PROCESSING OF POLYMER SYSTEMS.</td>
<td>3</td>
<td>Theory and practice as related to the chemical and physical processing of polymer systems. Polymer rheology, heat transfer in polymer flows, polymer engineering properties. Polymer processing operations and materials selection; flow instabilities. Prereq: CME 330, CME 425 or ME 325; or consent of instructor. (Same as CME/MFS/MSE 554.)</td>
<td></td>
</tr>
<tr>
<td>ME 555</td>
<td>INTRODUCTION TO MICRO-/NANO-ELECTROMECHANICAL SYSTEMS.</td>
<td>3</td>
<td>This course provides an overview of micromachined structures with an emphasis on operational theory and fabrication technology. Prereq: Engineering standing or consent of instructor. (Same as EE/MSE 555.)</td>
<td></td>
</tr>
<tr>
<td>ME 556</td>
<td>INTRODUCTION TO COMPOSITE MATERIALS.</td>
<td>3</td>
<td>Applications, materials selection and design of materials. Relation between properties of constituent materials and those of composite. Processing methods for materials and for some structures. Lab focuses on preparation and testing of composite materials and their constituents. Prereq: MSE 201, 301, CHE 236, and Engineering Standing, or consent of instructor. (Same as CME/MSE 556.)</td>
<td></td>
</tr>
<tr>
<td>ME 560</td>
<td>ENGINEERING OPTICS.</td>
<td>3</td>
<td>Fundamentals of geometrical and physical optics; applications as related to problems in engineering design and research; details of some optical measurement techniques; introduction to lasers and their applications to heat transfer and combustion research; inverse analytical techniques for determining optical properties of small particles from light scattering and extinction measurements. Prereq: Engineering standing.</td>
<td></td>
</tr>
<tr>
<td>ME 563</td>
<td>BASIC COMBUSTION PHENOMENA.</td>
<td>3</td>
<td>Simultaneous application of fluid mechanics, heat and mass transfer, chemical kinetics and thermodynamics to combustion. Topics covered include chemical kinetics, chain and thermal explosions, detonation and deflagration, flammability limits, stirred reactors. Flame stabilization in high and low velocity streams, laminar and turbulent diffusion flames, droplet burning, and metal combustion. Prereq: ME 321, ME 330, ME 325 and engineering standing; or graduate standing.</td>
<td></td>
</tr>
<tr>
<td>ME 565</td>
<td>SCALE MODELING IN ENGINEERING.</td>
<td>3</td>
<td>A study of concepts of scale modeling in engineering applications. The course will include dimensionless numbers, scaling laws, and their application in engineering design and research. Prereq: ME 310, ME 321, ME 325.</td>
<td></td>
</tr>
<tr>
<td>ME 570</td>
<td>FUNDAMENTALS OF NANOELECTRONIC DEVICES AND MATERIALS.</td>
<td>3</td>
<td>Energy bonds in crystals; heterostructures; quantum wells and low dimensional systems; the two-dimensional electron gas and MODFET; transmission in nanostructures; current topics in nanoscale devices. Prereq: EE 360 and engineering standing, or consent of instructor. (Same as EE/MSE 570.)</td>
<td></td>
</tr>
</tbody>
</table>
ME 580 HEATING, VENTILATING AND AIR CONDITIONING.
A course emphasizing the use of thermodynamics, fluid mechanics, and heat transfer principles in thermal environmental design. Building energy requirements will be computed and thermal comfort criteria will be studied. Prereq: BAE 427 or ME 321 or consent of instructor. (Same as BAE 580.)

ME 585 FOURIER SERIES AND BOUNDARY VALUE PROBLEMS.
An introductory treatment of Fourier series and its application to the solution of boundary value problems in the partial differential equations of physics and engineering. Orthogonal sets of functions, Fourier series and integrals, solution of boundary value problems, theory and application of Bessel functions and Legendre polynomials. Prereq: MA 432G or equivalent. (Same as MA 485G/EM 585.)

ME 599 TOPICS IN MECHANICAL ENGINEERING (Subtitle required).
A detailed investigation of a topic of current significance in mechanical engineering such as: computer-aided manufacturing, special topics in robotics, and current topics in heat transfer. May be repeated under different subtitles to a maximum of nine credits. A particular topic may be offered at most twice under the ME 599 number. Prereq: Variable; given when topic is identified.

PREREQUISITE FOR GRADUATE WORK: Students desiring to take any of the following courses should have a thorough working knowledge of chemistry, physics and mathematics.

ME 601 ADVANCED CAE APPLICATIONS.
This course will include development of theory for application to several topics in advanced engineering applications of computers in design. Typical topics include rolling element bearings, fluid film bearings, rotor dynamics, and elasto-plastic analysis. When appropriate, specialized computer programs will be introduced and utilized to illustrate the application of theory and numerical techniques in the areas covered. Prereq: ME 501.

ME 602 DYNAMICS OF DISTRIBUTED MECHANICAL SYSTEMS.
Applications of small-oscillation shell theory to continuous mechanical systems modeled by shells, plates, rings, arches, membranes, beams, etc. Study of natural frequencies, modeshapes, forced-vibration characteristics, system dampings, dynamic influence function, combination of subsystems, active and passive vibration controls and dampings. Prereq: ME 540 or EM 513, or consent of instructor.

ME 603 MECHANICS OF PLASTIC SOLIDS I.
Permanent changes in shape of solid materials occur as plastic deformations in many engineering applications, such as extrusion, forging and rolling. This course examines the experimental basis and fundamental theoretical framework for plastic materials. The analysis of plastic deformations in simple bending, torsion, tension and compression, and some two dimensional problems are presented. Connection between mechanics parameters, design variables and metallurgical phenomena are discussed. Limit analysis is studied. Prereq: EM 601/ ME 641, or EM/ME 651 or consent of instructor.

ME 606 SEMINAR AND PROJECT IN MANUFACTURING SYSTEMS ENGINEERING.
A project course for manufacturing systems. Course consists of seminar presentations by outside professionals and faculty and a course project on a realistic manufacturing systems assignment. Lecture, two hours; laboratory, two hours. (Same as EE/MFS 606.)

ME 607 ANALYSIS OF METAL CUTTING PROCESSES.
Advanced study of metal cutting involving the mechanics of metal cutting including cutting forces, tool-wear/tool-life and temperature analysis, surface finish and integrity, chip control, machinability assessments and advances in cutting tool technology. Prereq: ME 505. (Same as MFS/MSE 607).

ME 610 ENGINEERING ACOUSTICS.
A comprehensive study of wave propagation in fluids; derivation of the scalar wave equation and a study of its elementary solutions for time harmonic and transient waves in one, two and three dimensions. Radiation and scattering of waves at fluid and solid boundaries. Integral equation solution of the scalar velocity wave potential; numerical methods. Prereq or concur: MA 432G.

ME 611 BOUNDARY ELEMENT METHODS IN ENGINEERING.
Introduction of boundary element methods for use in solving common engineering equations, such as the Laplace equation, the Poisson equation, the wave equation, and the diffusion equation. Both the theoretical and numerical aspects of the boundary element technique are presented. Application areas include heat conduction, potential flow problems, acoustic wave propagation, general diffusion, and stress analysis. Prereq: EGR 537 or consent of instructor. (Same as EGR 611.)
ME 613 NONLINEAR OSCILLATIONS. (3)
Many physical systems exhibit some nonlinear behavior. This course presents some methods of analyzing discrete, nonlinear, dynamical systems and applies the methods to typical mechanical systems. Various kinds of nonlinear behavior, including resonance phenomena such as harmonics, parametric excitation, and discontinuous jumps in amplitude are considered. Lyapunov stability criteria and Floquet and Routhian procedures for performing stability analyses of systems are introduced, and their physical interpretations for various systems are studied. Prereq: EM/ME 513.

ME 620 ADVANCED ENGINEERING THERMODYNAMICS I. (3)
Critical treatment of the laws of thermodynamics, relations among thermodynamic properties; stability of systems; thermodynamic processes; selected special topics. Prereq: ME 321.

ME 626 ADVANCED HEAT CONVECTION. (3)
Comprehensive study of heat convection; derivation of equations of convection of mass, momentum, and energy; boundary layer equations; classical solutions of laminar convection problems; turbulent convection; analogies between momentum and energy. Prereq: ME 325, MA 432G or concurrent.

ME 627 RADIATION HEAT TRANSFER. (3)
Principles of thermal radiation, the determination of radiation properties, and the analysis of radiation heat transfer. Results of recent radiation researches are included in the discussions. Prereq: ME 325, MA 432G or concurrent.

ME 628 BOILING AND CONDENSATION. (3)

ME 631 FLUID DYNAMICS II. (3)
A continuation of ME 531 with emphasis on viscous flow. Exact and approximate solutions, boundary layer theory. Jets, wakes, rotating systems, compressible boundary layer and hydrodynamic stability. Prereq: ME 531 or consent of instructor.

ME 634 TURBULENT FLOWS. (3)
Physical and analytical description of turbulent flows, isotropic turbulence, boundary layers and shear flows, free turbulence in jets and wakes. Measurement techniques. Prereq: ME 531; prereq or concur: ME 631.

ME 640 ADVANCED ANALYSIS AND SIMULATION OF DYNAMIC SYSTEMS. (3)
An extension of ME 540 emphasizing advanced techniques. The concept of random processes in mechanical engineering problems; nonparametric and parametric models. The use of correlation, spectral analysis and digital filtering in data analysis and model building. Prereq: ME 540.

ME 641 FOUNDATIONS OF SOLID MECHANICS. (3)
A brief review of vectors and an in-depth discussion of tensors and tensor calculus. Stress, deformation and strain. Continuum balance principles of mass, momentum and energy, the equations of motion and the energy equation. Entropy, the principles of material frame indifference and material symmetry. Various constitutive models, including elasticity (linear and/or non-linear), plasticity and viscoelasticity. Thermoelectricity, hyperelasticity, hypoelasticity, and electroelasticity may also be addressed. Prereq: EM 531 or ME 532 or consent of instructor.

ME 644 ADVANCED DYNAMICS I. (3)
Many physical systems in engineering involve rigid bodies in translation and rotation. Such motions are studied in this course by the use of Euler’s Laws. The kinematical description of the motions utilize the concept of reference frames. The inertia properties of rigid bodies, and the energy functions for rigid bodies are covered. Analytical and numerical solutions of dynamical systems of engineering interest are considered. Prereq: EM 313; prereq, or concur: MA 432G.

ME 645 ADVANCED CONTROL SYSTEM ANALYSIS. (3)
Conceptual development and study of complex systems; their synthesis and design; analysis and optimization of system parameters. Input-output relationships; formulation of mathematical models, parameters and constraints on physical systems. Prereq: ME 440 or instructor consent.
ME 647 SYSTEM OPTIMIZATION I. (3)
Introduction to linear and nonlinear optimization and their use in engineering design. Emphasis on numerical approaches and use of optimization methods for engineering systems (e.g. biological, mechanical, structural). Prereq: CS 221 or BAE 206 or equivalent; one mathematics course beyond MA 214 or equivalent. (Same as BAE 647.)

ME 651 MECHANICS OF ELASTIC SOLIDS I. (3)
Many engineering applications involve the use of materials that behave elastically when performing their designed function. This course concerns the general analysis of small deformations, stress, and stress-deformation relations for elastic bodies. The solution of typical problems frequently encountered in engineering applications, e.g., extension, bending, and torsion of elastic bars, stress concentrations and thermoelastic behavior, are studied. Some modern computational methods currently used in engineering practice are introduced. Prereq: MA 432G or consent of instructor.

ME 652 MECHANICS OF ELASTIC SOLIDS II. (3)
Continuation of EM 651 with more attention to the fundamental structure of and important historical and contemporary contributions to elastic theory. Extensive use of modern computational methods that were introduced in the first course will provide familiarity with the solution of larger scale, industrially important elasticity problems. Application of the boundary integral equation method (BIE) will be emphasized. Some use also will be made of the finite element method, primarily for comparison with BIE. Instruction will include “hands-on” experience with digital-computer program packages. Prereq: EM 651 or consent of instructor.

ME 653 METHODS OF APPLIED DIFFERENTIAL EQUATIONS. (3)
Integrals of nonlinear partial differential equations; similarity variables and other transformations; perturbation methods; weighted residual methods; numerical methods; selected topics. Prereq: MA 432G or consent of instructor.

ME 690 ADVANCED ALGORITHMS FOR COMPUTATIONAL FLUID DYNAMICS. (4)
Theory and implementation of main algorithms widely used for solving multi-dimensional partial differential equations arising in engineering applications such as fluid dynamics, heat and mass transfer, semiconductor simulation, etc. Numerical solution of steady and time-dependent linear partial differential equations on rectangular domains via finite difference techniques. Linearization methods for treatment of nonlinear problems. Numerical grid generation for transforming irregular domains into rectangular computational grids. Prereq: MA 537, or consent of instructor, and competence with a high-level programming language.

ME 691 CFD I - INCOMPRESSIBLE FLOWS. (3)
This course will cover a control-volume CFD approach for the conservation of momentum, heat and mass transfer. The emphasis will be on the discretization of the transport equations in general coordinates and its application in both structured and unstructured grid arrangements. Modern numerical schemes and pressure solution algorithms will also be covered. An introduction of turbulence modeling will be provided. At the end of the lecture, the students not only are able to understand the basics of commercial software but also will be able to write a general coordinate code for fluid flow, heat and mass transfer applications. Prereq: ME 531.

ME 692 CFD II - COMPRESSIBLE FLOWS. (3)
This second course shall focus on the solution of the compressible Navier-Stokes equations. The Van-Leer’s and Roe’s approaches will be discussed to derive the discretization equations. Modern shock capturing schemes, such as FCT, TVD and ENO will be introduced. The solution techniques such as ADI, DDADI and line-relaxation will be used to solve the system of equations. Multi-grid acceleration techniques will be introduced to speed up the rate of convergence. Finally, the parallelization of CFD codes using shared and distributed computers will be discussed. Prereq: ME 531 and ME 691.

ME 699 TOPICS IN MECHANICAL ENGINEERING (Subtitle required). (3)
A detailed investigation of a topic of current significance in mechanical engineering. May be repeated to a maximum of nine credits under different subtitles. A particular topic may be offered at most twice under the ME 699 number. Prereq: Variable; given when topic is identified.

ME 748 MASTER’S THESIS RESEARCH. (0)
Half-time to full-time work on thesis. May be repeated to a maximum of six semesters. Prereq: All course work toward the degree must be completed.
ME 749 DISSERTATION RESEARCH. (0)
Half-time to full-time work on dissertation. May be repeated to a maximum of six semesters. Prereq: Registration for two full-time semesters of 769 residence credit following the successful completion of the qualifying exams.

ME 767 DISSERTATION RESIDENCY CREDIT. (2)
Residency credit for dissertation research after the qualifying examination. Students may register for this course in the semester of the qualifying examination. A minimum of two semesters are required as well as continuous enrollment (Fall and Spring) until the dissertation is completed and defended.

ME 768 RESIDENCE CREDIT FOR MASTER'S DEGREE. (1-6)
May be repeated to a maximum of 12 hours.

ME 769 RESIDENCE CREDIT FOR DOCTOR'S DEGREE. (0-12)
May be repeated indefinitely.

ME 780 SPECIAL PROBLEMS IN MECHANICAL ENGINEERING. (3)
This course consists of individual work in one of the various fields of mechanical engineering. May be repeated three times for a maximum of 12 credits. Prereq: Approval of instructor.

ME 790 RESEARCH IN MECHANICAL ENGINEERING. (1-9)
Work may be taken in any field of mechanical engineering, subject to the approval of the director of graduate studies. May be used to satisfy pre-qualifying examination residency credit. May be repeated to a maximum of 18 hours.