STA 200 STATISTICS: A FORCE IN HUMAN JUDGMENT.
This course is concerned with the interaction of the science and art of statistics with our everyday lives emphasizing examples from the social and behavioral sciences. The student will not be required to learn mathematical formulas. Topics include the nature of statistics, uses and misuses of statistics, the scope and limitations of statistics, criteria by which published statistics may be judged, interpretation of probability and the art of decision making. Prereq: Completion of the mathematics basic skills requirement.

STA 281 PROBABILITY AND STATISTICS USING INTERACTIVE COMPUTER TECHNIQUES.
The role of chance in experimental outcomes. Simple discrete and continuous probability distributions; combinatorics; moments and expectations; normal and binomial distributions; computer simulation and simple Monte Carlo methods. Descriptive statistics, charts, and graphs, and elements of statistical inference using interactive statistical packages (e.g., SCSS and/or MINITAB). Prereq: CS 150, CS 102, or CS 221; coreq: MA 114 or 132.

STA 291 STATISTICAL METHOD.
Introduction to principles of statistics. Statistical description of sample data including frequency distributions, measures of central tendency, and measures of dispersion. Theoretical distributions, statistical estimation, and hypothesis testing. Introduction to simple linear regression and correlation. Prereq: MA 113, MA 123, or equivalent.

STA 292 DESCRIPTIVE STATISTICS.
Graphical and tabular description of data; measures of central tendency and variation, scattergrams, correlation and best-fitting lines; index numbers. Prereq: MA 113, MA 123, or equivalent.

STA 293 PROBABILITY.
Experiments and sample spaces; elementary and conditional probability; counting principles; random variables; distribution and expectation; normal and binomial distributions. Prereq: STA 292.

STA 294 SAMPLING AND INFERENCE.
Sampling; sampling behavior of X and S²; confidence intervals and tests of hypotheses about the mean and variance of a normal population: the X² and t- distributions. Prereq: STA 292 and 293.

STA 295 THE ART AND PRACTICE OF PROBABILITY.
Introduction to the structure and techniques that are the foundations of probability. Emphasis on applications to real world problems and case studies, possibly involving DNA matching, sports statistics, forecasting, lotteries and epidemics. Interface of probability and inference. Prereq: MA 113 or MA 123.

STA 320 INTRODUCTORY PROBABILITY.
Set theory; fundamental concepts of probability, including conditional and marginal probability; random variables and probability distributions (discrete and continuous); expected values and moments; moment-generating and characteristic functions; random experiments; distributions of random variables and functions of random variables; limit theorems. Prereq: MA 213 or equivalent. (Same as MA 320.)

STA 321 BASIC STATISTICAL THEORY I.
Simple random sampling; point and interval estimation; hypothesis testing. Prereq: STA/MA 320.

STA 322 STATISTICAL METHODS IN NONPARAMETRIC INFERENCE AND SURVEY SAMPLING.
Introduction to statistical methodology appropriate for data that fail to meet the assumptions of parametric inference. Familiarity with classical sampling techniques as well as modern sampling practice. Emphasis on applications to real-world problems and case studies, possibly involving questionnaire construction, random digit dialing, response bias, use of modern sampling software, categorical regression, and skewed data. Prereq: STA 291 and STA 295; or STA 321.

STA 335 DATA ANALYSIS FOR PHYSICISTS.
An integrated lecture and demonstration computational laboratory course in the theory and techniques of data analysis and error propagation. An emphasis is given to applications common to physical sciences: curve fitting, statistical methods of data analysis, systematic uncertainties, and both independent and correlated errors in several variables. Prereq: PHY 242. (Same as PHY 335.)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 381</td>
<td>INTRODUCTION TO ENGINEERING STATISTICS.</td>
<td>3</td>
<td>Probability; population and sample distributions; sampling; hypothesis testing; regression on one variable; quality control. Prereq: MA 213.</td>
<td></td>
</tr>
<tr>
<td>STA 417G</td>
<td>PRINCIPLES OF OPERATIONS RESEARCH II.</td>
<td>3</td>
<td>A continuation of MA 416 with topics selected from stochastic models, decision making under uncertainty, inventory models with random demand, waiting time models and decision problems. Prereq: CS/MA 416G and MA/STA 320, or consent of instructor. (Same as MA 417G.)</td>
<td></td>
</tr>
<tr>
<td>STA 422G</td>
<td>BASIC STATISTICAL THEORY II.</td>
<td>4</td>
<td>Theory of least squares; regression; analysis of variance and covariance; experimental design models; factorial experiments; variance component models. Lecture, three hours; laboratory, two hours per week. Prereq: STA 291 and STA 295; or STA 321.</td>
<td></td>
</tr>
<tr>
<td>*STA 503</td>
<td>INTRODUCTION TO STATISTICAL METHODS.</td>
<td>4</td>
<td>Summary statistics, graphical methods, point and interval estimation, hypothesis testing, experimental design, simple and multiple regression, covariance and ANOVA as a special case of regression, categorical data analysis. Lecture, three hours; laboratory, two hours per week. Prereq: Graduate standing in Statistics.</td>
<td></td>
</tr>
<tr>
<td>*STA 515</td>
<td>LINEAR AND COMBINATORIAL OPTIMIZATION.</td>
<td>3</td>
<td>Mathematical and computational aspects of linear programming and combinatorial optimization. Linear optimization is introduced by presenting solution techniques (primal and dual simplex) and studying geometric properties and duality for linear systems of inequalities. Asics of combinatorial optimization, including trees, paths, flows, matchings, and matroids, and the corresponding algorithms are presented. Prereq: A course in linear algebra or consent of instructor. (Same as MA 515.)</td>
<td></td>
</tr>
<tr>
<td>STA 524</td>
<td>PROBABILITY.</td>
<td>3</td>
<td>Sample space, random variables, distribution functions, conditional probability and independence, expectation, combinatorial analysis, generating functions, convergence of random variables, characteristic functions, laws of large numbers, central limit theorem and its applications. Prereq: MA 213 and MA 322. (Same as OR 524.)</td>
<td></td>
</tr>
<tr>
<td>*STA 525</td>
<td>INTRODUCTORY STATISTICAL INFERENCE.</td>
<td>3</td>
<td>Simple random sampling, statistics and their sampling distributions, sampling distributions for normal populations; concepts of loss and risk functions; Bayes and minimax inference procedures; point and interval estimation; hypothesis testing; introduction to nonparametric tests; regression and correlation. Prereq: STA 320 or STA 524 or consent of instructor. (Same as OR 525.)</td>
<td></td>
</tr>
<tr>
<td>STA 531</td>
<td>THEORY OF PROBABILITY.</td>
<td>3</td>
<td>Probability, spaces, conditional probability, law of total probability, Bayes Theorem, independence, random variables and their distributions, multivariate distributions, transformations, moment generating functions, Chebyshev’s inequality, modes of convergence, Slutsky’s Theorem, Borel-Cantelli, Law of large numbers, Central Theorem. Must be taken concurrently with STA 532. Prereq: MA 471G.</td>
<td></td>
</tr>
<tr>
<td>STA 532</td>
<td>THEORY OF STATISTICAL INFERENCE I.</td>
<td>3</td>
<td>Sampling distributions, sufficiency, exponential families, likelihood and information, Consistency, efficiency, point and interval estimation, Neyman-Pearson Lemma, Likelihood ratio. Must be taken concurrently with STA 531. Prereq: MA 471G.</td>
<td></td>
</tr>
<tr>
<td>STA 570</td>
<td>BASIC STATISTICAL ANALYSIS.</td>
<td>4</td>
<td>Primarily in biological, behavioral and social sciences. Introduction to methods of analyzing data from experiments and surveys; the role of statistics in research, statistical concepts and models; probability and distribution functions; estimation; hypothesis testing; regression and correlation; analysis of single and multiple classification models; analysis of categorical data. Lecture, three hours; laboratory, two hours. Prereq: MA 109 or equivalent. For graduate students; undergraduates must have consent of instructor.</td>
<td></td>
</tr>
<tr>
<td>STA 580</td>
<td>BIOSTATISTICS I.</td>
<td>3</td>
<td>Descriptive statistics, hypothesis testing, paired and unpaired tests, ANOVA, contingency tables, log rank test, and regression with biostatistics applications. Prereq: MA 109 or equivalent.</td>
<td></td>
</tr>
</tbody>
</table>
STA 600 COMMUNICATING IN STATISTICS. (0)
Pedagogical skills for teaching assistants in undergraduate statistics courses and effective communication skills for professional statisticians. Topics include: basic teaching techniques, use of writing assignments to increase understanding of statistical concepts, writing and grading effective exams, and recording and analyzing grades with the aid of software. Videotaped sessions will be conducted and critiqued. May be repeated a maximum of three times. Prereq: STAT major.

STA 601 THEORY OF STATISTICAL INFERENCE II. (3)
Elements of decision theory; properties of estimators; point and interval estimation; hypothesis-testing; sequential testing; inference from categorical data; linear regression as conditional expectation; multivariate normal distribution. Prereq: STA 531.

STA 603 INTRODUCTION TO LINEAR MODELS AND EXPERIMENTAL DESIGN. (4)
Review of topics from matrix and vector algebra; multivariate normal distribution and its properties; distribution of quadratic forms. The noncentral X^2, F and T distributions; the general linear model and related inference; elementary computational methods; applications of the theory-experimental design and covariance analysis; a. One-Way Layout, CRD, b. Two-Way Layout, RCB, c. Latin Squares - (1) Crossover designs, (2) Reversal, Double-reversal designs, (3) Other related designs, d. Factorials. Prereq: STA 503, STA 531; coreq: STA 601.

STA 612 SEQUENTIAL ANALYSIS. (3)

STA 616 DESIGN AND ANALYSIS OF SAMPLE SURVEYS. (3)
Sampling from finite populations; estimation of sample size; stratification; ratio and regression estimators; systematic sampling; cluster sampling; multistage sampling (selection of sampling units with probability proportional to size); double sampling; response errors. Prereq: STA 531 or consent of instructor.

STA 621 NONPARAMETRIC INFERENCE. (3)
Estimation and testing when the functional form of the population distribution is unknown; rank and sign tests; tests based on permutations of observations; power of nonparametric tests; optimum nonparametric tests and estimators. Prereq: STA 601.

STA 624 APPLIED STOCHASTIC PROCESSES. (3)
Definition and classification of stochastic processes, renewal theory and applications, Markov chains, continuous time Markov chains, queueing theory, epidemic processes, Gaussian processes. Prereq: STA 524 or consent of instructor. (Same as OR 624.)

STA 626 TIME SERIES ANALYSIS. (3)
Time series and stochastic processes, auto-correlation functions and spectral properties of stationary processes; linear models for stationary processes, moving average, auto-regressive and mixed autoregressive-moving average processes; linear nonstationary models, minimum mean square error forecasts and their properties; model identification, estimation and diagnostic checking. Prereq: STA 422G or equivalent. (Same as ECO 626.)

STA 630 BAYESIAN INFERENCE. (3)
Likelihood principles, sufficiency, natural conjugate and hierarchical priors, empirical Baysian analysis for estimation and testing. Prereq: STA 601.

STA 635 SURVIVABILITY AND LIFE TESTING. (3)
STA 643 ADVANCED EXPERIMENTAL DESIGN. (3)
Advanced topics in analyses of incomplete block designs; confounding and change-over designs; data collected at several places and times; principles of design construction. Prereq: STA 603.

STA 644 ADVANCED LINEAR AND NONLINEAR MODELS. (3)

STA 653 CLINICAL TRIALS. (3)
Design and analysis of Phase I-III clinical trials, interim monitoring of trials, sample size, power, crossover trials, bioequivalency, mixed models, and meta analysis. Prereq: STA 643.

STA 661 MULTIVARIATE ANALYSIS I. (3)
Characterization and properties of the multivariate normal distribution, random samples from this distribution; multivariate analysis of variance, related distribution theory; factor analysis. Prereq: STA 603.

STA 662 RESAMPLING AND RELATED METHODS. (3)
Theory and application of the bootstrap, jackknife and other resampling methods. Prereq: STA 601, 603.

STA 665 ANALYSIS OF CATEGORICAL DATA. (3)

*STA 671 REGRESSION AND CORRELATION. (2)
Simple linear regression, elementary matrix algebra and its application to simple linear regression; general linear model, multiple regression, analysis of variance tables, testing of subhypotheses, nonlinear regression, step-wise regression; partial and multiple correlation. Emphasis upon use of computer library routines; other special topics according to the interests of the class. Lecture, three hours per week; laboratory, two hours per week for seven and one half weeks. Offered the first or second half of each semester. Prereq: STA 570 or STA 580.

STA 672 DESIGN AND ANALYSIS OF EXPERIMENTS. (2)
Review of one-way analysis of variance; planned and unplanned individual comparisons, including contrasts and orthogonal polynomials; factorial experiments; completely randomized, randomized block, Latin square, and split-plot designs: relative efficiency, expected mean squares; multiple regression analysis for balanced and unbalanced experiments, analysis of covariance. Lecture, three hours per week; laboratory, two hours per week for seven and a half weeks. Offered the first or second half of each semester. Prereq: STA 671.

*STA 673 DISTRIBUTION-FREE STATISTICAL INFERENCE AND ANALYSIS OF CATEGORICAL DATA. (2)
Inference for population quantiles, sign tests, Wilcoxon tests, Kruskal-Wallis and Friedman tests, Kendall and Spearman rank correlation. Goodness-of-fit tests for completely and partially specified distributions, rxc contingency tables, McNemar and Cochran’s Q tests for matched proportions; three dimensional tables and tests of partial and multiple associations. Lecture, three hours per week; laboratory, two hours per week for seven and a half weeks. Offered the first or second half of each semester. Prereq: STA 570 or STA 580.

*STA 675 SURVEY SAMPLING. (2)
Simple random sampling and stratified random sampling, ratio and regression estimators, cluster sampling, systemic sampling, and multi-stage sampling. Specific problems associated with running a survey: non-response, call-backs, questionnaire construction, mail questionnaires, and area sampling. Lecture, three hours per week; laboratory, two hours per week for seven and a half weeks. Offered the first or second half of each semester. Prereq: STA 570 or STA 580.
STA 676 QUANTITATIVE INHERITANCE IN PLANT POPULATIONS. (3)
After a brief review of population genetics theory, the course is divided into two sections which cover methods of estimating genetic variances and selection methods in population improvement. The course will focus on handling and interpretation of actual data sets through data analysis and discussion of current literature. Prereq: STA 570, STA 671, and STA 672. (Same as PLS 676.)

STA 677 APPLIED MULTIVARIATE METHODS. (3)
Survey of multivariate statistical techniques. The multivariate normal distribution; the general linear model; general procedures for parameter estimation and hypothesis testing in the multivariate case; Hotelling’s T^2, multivariate analysis of variance and covariance; structural models for the covariance matrix; utilization of existing computer programs. Prereq: STA 671 and 672.

STA 679 DESIGN AND ANALYSIS OF EXPERIMENTS II. (3)

#STA 681 BIOSTATISTICS II. (3)
Students will learn statistical methods used in public health studies. This includes receiver operator curves, multiple regression logistic regression, confounding and stratification, the Mantel-Haenszel procedure, and the Cox proportional hazardous model. Lecture, two hours; laboratory, two hours per week. Prereq: STA 580 or equivalent. (Same as SPH 630.)

STA 690 SEMINAR IN STATISTICS. (1)
May be repeated to a maximum of three credits.

STA 692 STATISTICAL CONSULTING. (3)
Basic principles of statistical consulting including how to manage a consulting session, how to formulate and solve problems and how to express results both orally and in writing. Students will be expected to analyze data from a current consulting project. Lecture, two hours; laboratory, two hours per week. Coreq: STA 643 or 644 or consent of instructor.

STA 695 SPECIAL TOPICS IN STATISTICAL THEORY (Subtitle required). (1-3)
To be selected by staff. May be repeated to a maximum of nine credits. Prereq: STA 601.

STA 700 FOUNDATIONS OF PROBABILITY AND INFEERENCE. (3)
Measures on the real line and probability spaces, Lebesque measure, properties of distribution functions and random variables, integrals and expectations. Prereq: MA 471G.

#STA 701 ADVANCED STATISTICAL INFEERENCE I. (3)
Basic concepts of decision theory, sufficiency and completeness; completeness of multiparametric exponential family; unbiasedness and invariance of decision rules; Bayes, minimax and invariant estimators; testing of hypotheses and optimality properties. Prereq: STA 700 and STA 601.

STA 702 ADVANCED STATISTICAL INFEERENCE II. (3)
UMP and UMP unbiased tests for multiparametric exponential families; locally best tests; invariance and permutation tests, UMP invariant tests for linear hypotheses; asymptotic aspects of classical statistics, ML estimation and concepts of efficiency; sequential probability ratio test; confidence set, UMA unbiased and invariance confidence sets. Prereq: STA 701.

#STA 703 ADVANCED PROBABILITY. (3)
Probability spaces, extension theorem, random variables; independence, conditional probability, conditional expectation; laws of large numbers, law of the iterated logarithm; convergence in distribution; characteristic functions; central limit theorems; martingales. Prereq: STA 700 and STA 532.

STA 704 ADVANCED PROBABILITY - STOCHASTIC PROCESSES. (3)
Random functions; jump Markov processes; processes with independent increments; stationary stochastic processes; diffusion processes; limit theorems; applications of stochastic processes. Prereq: STA 703.
STA 705 ADVANCED COMPUTATIONAL INFERENCE. (3)

STA 707 ADVANCED DATA ANALYSIS. (3)
Theory and data analysis involving likelihood functions, mixed models, missing responses. Prereq: STA 643.

STA 709 ADVANCED SURVIVAL ANALYSIS. (3)

*STA 715 READINGS IN STATISTICS AND PROBABILITY (Subtitle required). (1-6)
Supervised reading and discussion of a selected research topic. May be repeated to a maximum of nine credits. Prereq: STA 701 and STA 703 and consent of instructor.

STA 748 MASTER'S THESIS RESEARCH. (0)
Half-time to full-time work on thesis. May be repeated to a maximum of six semesters. Prereq: All course work toward the degree must be completed.

STA 749 DISSERTATION RESEARCH. (0)
Half-time to full-time work on dissertation. May be repeated to a maximum of six semesters. Prereq: Registration for two full-time semesters of 769 residence credit following the successful completion of the qualifying exams.

STA 768 RESIDENCE CREDIT FOR THE MASTER'S DEGREE. (1-6)
May be repeated to a maximum of 12 hours.

STA 769 RESIDENCE CREDIT FOR THE DOCTOR'S DEGREE. (0-12)
May be repeated indefinitely.