The College of Engineering offers programs leading to undergraduate and graduate degrees in computer science and/or the following engineering disciplines—biomedical engineering, chemical, civil, computer, electrical, materials, mechanical, and mining. Graduate training in biomedical engineering is also offered through the College of Engineering. The College also offers a highly multidisciplinary master of science in manufacturing systems engineering to address the growing need for enhancing manufacturing productivity and quality.

Creative accomplishment in the career of an engineer or computer scientist depends upon an education that stresses major ideas and fundamental concepts of engineering rather than specific technologies. The academic programs in engineering provide a sound background in the mathematical, physical, and engineering sciences blended with the social sciences and humanities to ensure a thorough education in engineering and a liberal education. Such an approach provides the best preparation for the engineer or computer scientist who must envisage and develop the technologies of the future and deal with scientific advances at present unknown.

The various curricula in the College of Engineering are broad, so that no student is limited to a narrow field of specialized knowledge but receives sufficient technical depth to provide a sound preparation for a professional career. The College of Engineering produces over 600 graduates per year. Among the alumni of the College of Engineering are those who have distinguished themselves in the major fields of industry, government, and education.

Concern for the individual is a most important feature of education in the College of Engineering. Close faculty-student relationships are a meaningful part of the educational process. The faculty, in addition to their duties related to instruction and research, serve as advisors to the student in the preparation of the academic program best matched to the student’s needs and intellectual capabilities. Students are also assigned a professional advisor who works with them on course selection and progress to degree.

Accreditation and Program Assessment

The undergraduate program in Computer Science is accredited by the Computing Accreditation Commission of ABET, www.abet.org.

The undergraduate programs in Biochemical Engineering, Chemical Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Materials Engineering, Mechanical Engineering and Mining Engineering are accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

In addition, the University of Kentucky is accredited by the Southern Association of Colleges and Schools (SACS), and therefore all degree programs and certificates including those in the College of Engineering are governed by the rules associated with that accrediting body. All programs are assessed periodically based on achievement of their self-proclaimed student learning outcomes and the results are used in the improvement of those programs and certificates.

Undergraduate Certificates in Engineering

The University of Kentucky grants the following undergraduate certificates in the College of Engineering:

- Power and Energy
- Information and requirements for this certificate are listed after the Bachelor of Science in Electrical Engineering.

The following certificates are in the process of being approved:
- Aerospace Engineering
- Biopharmaceutical Engineering
- Environmental Engineering

Undergraduate Programs in Engineering

The University of Kentucky grants the following degrees in the College of Engineering:

- Bachelor of Science in Biomedical Engineering
- Bachelor of Science in Chemical Engineering
- Bachelor of Science in Civil Engineering
- Bachelor of Science in Computer Engineering
- Bachelor of Science in Computer Science
- Bachelor of Science in Electrical Engineering
- Bachelor of Science in Materials Engineering
- Bachelor of Science in Mechanical Engineering
- Bachelor of Science in Mining Engineering

While these are the official degrees granted at the bachelor’s level in the college, the prospective student is encouraged to study the wide variety of options available through technical electives, some of which are listed following the degree requirements of each department. Technical electives are included in each curriculum to allow the student to apply the fundamentals of a particular discipline to an area of special interest during the senior year.

Students in any department interested in biomedical engineering may make special arrangements to include a limited amount of such studies in the undergraduate program. In addition, students have the option to pursue a biomedical engineering minor as described on page 239. Biomedical engineering is primarily the application of engineering principles to the solution of medical problems.

Students in a number of our engineering programs have the option to complete pre-medical requirements while pursuing the engineering degree. Interested students should contact their academic advisor.

In response to industry requests, the College of Engineering and the Gatton College of Business and Economics have joined to offer a coordinated Bachelor of Science in Engineering and Masters of Business Administration. The MBA will be taken during a student’s fifth year of study beginning in the summer and finishing the following spring semester. In addition, students in the program will be required to complete a study abroad program designed specifically for the engineering/business student. This program will be conducted immediately upon completion of the MBA course requirements and the majority of costs will be paid by the program. Admission is highly competitive and is based upon the financial resources available.

For engineering students interested in manufacturing, the University offers a dual-degree program. This program allows students pursuing a B.S. in Electrical Engineering or Mechanical Engineering to concurrently enroll in the M.S. in Manufacturing Systems Engineering. The BSEE/ MSMSE or BSME/MSMSE dual-degree pro-
grams can be completed in five years. Students in the program are strongly encouraged to be Co-op students or to do industry internships to supplement their course work with industry experience. During their junior year, students should apply to the Graduate School for admittance into the dual-degree program.

Graduate programs in the engineering fields of study are listed in The Graduate School section of this Bulletin.

Admission Policy

The minimum entry requirement for admission into the College of Engineering is:

- ACT math score of 23 or higher, or the SAT equivalent.

Four alternative admission routes include:

1. 3 or above on the Calculus AB portion of the Advanced Placement Exam;
2. Eligibility to enter MA 110 based on the UK Math Department Placement Exam;
3. Completion of the equivalent of MA 110 with a grade of C or higher;
4. Completion of the equivalent of MA 109 and MA 110/112 with a grade of C or higher.

Additionally, students must meet the minimum Kentucky statewide academic readiness requirements for Reading and Writing to be admitted to the College of Engineering:

- Reading: Students must have an ACT Reading subscore of 20 or above (or SAT subscore of 26 or above in Critical Reading);
- English/Writing: Students must have an ACT English subscore of 18 or above (or SAT of 25 or above in Writing).

International Students

Freshmen:

International freshman applicants must have both the minimum ACT/SAT scores, and must obtain a Test of English as a Foreign Language (TOEFL) score of 100 or above with no subscore under 20; or an International English Language Testing System (IELTS) score of 7.5 with no subscore under 6.0.

For Transfer Students:

In addition to the alternative routes listed above, international transfer applicants must obtain a Test of English as a Foreign Language (TOEFL) score of 71 or above; an International English Language Testing System (IELTS) score of 6.0; or completion of the first and second English composition classes (e.g., ENG 101 and 102) from another US college, i.e., institution upon review. Students who successfully complete UK’s English as a Second Language (ESL) program must retake the TOEFL and earn a minimum score of 71, or the IELTS and earn a score of 6.0.

First-Year Engineering Program

All newly admitted students will participate in the First-Year Engineering Program for their first two semesters. During this first year, they will have the opportunity to participate in hands-on engineering activities, explore all the engineering and computer science disciplines and learn about the Engineering Grand Challenges. Based on this experience, students will have the option to change their major or declare their major based on their interests.

Upon declaring their major, students will be designated as pre-major until they meet engineering standing requirements. Every student must be admitted to engineering standing in a specific program for at least the final semester before graduation.

Engineering Standing Admission

Admission to engineering standing in a degree program is necessary in order to be granted a baccalaureate degree in engineering or computer science. Specific departmental requirements for admission to engineering standing are noted below. A student must apply to the specific department for admission to engineering standing. Note: The cumulative grade-point average includes all listed college-level work taken at the University of Kentucky or elsewhere.

Students can request qualification for engineering standing after completing the required set of standing courses in the first three semesters of the published curriculum in their chosen program. Each program can specify its engineering standing requirements, but no program may specify a GPA higher than 2.50 for engineering standing.

Requirements by a program for engineering standing may include many items, such as courses counted in the first three semesters, repeat options allowed, number of applications for engineering standing allowed, restrictions on taking upper-level courses, minimum course grades, etc. A student should refer to the UK Bulletin and the undergraduate advisor in their program of choice to identify the specific requirements.

For Transfer Students: The same criteria are applied to transfer students with the equivalence of courses reviewed by the Director of Undergraduate Studies. It is important to note that if a student receives acceptance of transfer credit for one or more of the courses listed below, the grades earned will be used in the calculation for engineering standing. Transfer students who have not completed all courses listed below may be considered for admission into courses that require engineering standing on a case-by-case basis.

Biosystems Engineering: Completion of a minimum of 35 semester hours acceptable towards the degree in engineering with a minimum cumulative grade-point average of 2.50. Completion of CIS/WRD 110, MA 113, MA 114, MA 213, CHE 105 and PHY 231 with a minimum cumulative GPA of 2.50 in these courses. Completion of MSE 201 with a grade of C or better. University repeat options may be utilized as appropriate.

Chemical Engineering: Completion of CHE 105, CHE 107, CHE 111, CHE 113, MA 114, MA 213, PHY 231, CIS/WRD 110 with a minimum cumulative grade-point average of 2.50 in these courses. Completion of CME 200 with a grade of C or better. University repeat options may be applied as appropriate.

Civil Engineering: Completion of CE 106, CE 211, CHE 105, CHE 107, EGR 103, EM 221, CIS/WRD 110, MA 113, MA 114, MA 213, PHY 231, PHY 241 with a minimum cumulative grade-point average (GPA) of 2.50 in these classes and a Cor better in each of them, as well as 45 or more semester credit hours. University repeat options may be utilized. Students who do not meet this GPA requirement may request consideration based upon departmental review if this core GPA is 2.25 or greater. Students are limited to two applications for engineering standing.

Computer Engineering: Completion of a minimum of 35 semester hours acceptable towards the degree in engineering with a minimum cumulative grade-point average of 2.50. Completion of CIS/WRD 110, CS 215, CS 216, CPE 282, MA 114, MA 213, CHE 105, PHY 231, PHY 232, and with a minimum cumulative GPA of 2.50 in these courses. University repeat options may be utilized as appropriate. Students who do not meet these GPA requirements may request consideration based upon departmental review if the first two GPAs are 2.25 or greater and they receive a C or better in CS 215 and CPE 282.

Computer Science: Completion of the following courses with a grade-point average of at least 2.50: EGR 102, CS 215, CS 275, CIS/WRD 110, MA 113, MA 114, PHY 231, PHY 241.

Electrical Engineering: Completion of a minimum of 35 semester hours acceptable towards the degree in engineering with a minimum cumulative grade-point average of 2.50. Completion of MA 113, MA 114, MA 213, PHY 231, CHE 105, and CIS/WRD 110 with a minimum cumulative GPA of 2.50 in these courses. Completion of EE 211 and EE 282 with passing grades. University repeat options may be utilized as appropriate. Students who do not meet these GPA requirements may request consideration based upon departmental review if the first two GPAs are 2.25 or greater and they receive a C or better in both EE 211 and EE 282.

Materials Engineering: Completion of CHE 105, CHE 107, CHE 111, CHE 113, MA 114, MA 213, PHY 231, PHY 241, CIS/WRD 110 with a minimum cumulative grade-point average of 2.50 in these courses. Completion of MSE 201 with a grade of C or better. University repeat options may be applied as appropriate.

Mechanical Engineering: To earn engineering standing, mechanical engineering students must have completed at least 35 semester credit hours with a grade of C or better in the courses listed below. University repeat options may be utilized as appropriate.
hours applicable to the degree program with a minimum cumulative GPA of 2.50. In addition, completion of EGR 101, EGR 102, EGR 103, CIS/WRD 110 and CIS/WRD 111 (or transfer equivalent courses), CHE 105, MA 113, MA 114, MA 213, PHY 231 and PHY 241 with a minimum cumulative GPA of 2.50 in these courses.

While a student may exercise up to three official University of Kentucky Repeat Options to improve his/her cumulative grade-point average, only one can be used for the subset of classes listed above for the purpose of calculating engineering standing. Written request for exception to the allowed number of repeats should be submitted to the Director of Undergraduate Studies.

Mining Engineering: Completion of a minimum of 36 semester hours acceptable towards the degree in mining engineering with a minimum cumulative grade-point average of 2.50. Completion of CIS/WRD 110, MA 113, MA 114, MA 213, CHE 105 and PHY 231 with a minimum cumulative GPA of 2.50 in these courses. University repeat options may be utilized as appropriate. Students who do not meet these GPA requirements may request consideration based upon departmental review if both of these GPA values are 2.25 or greater.

COMBINED DEGREE PROGRAM

The College of Engineering has transfer agreements with several institutions throughout the state. These programs enable students to enroll in a pre-engineering curriculum at their respective schools and then transfer to the College of Engineering. Upon completion, they can receive two degrees, one from the school at which they originally enrolled and the other a Bachelor of Science in the appropriate field of engineering from the University of Kentucky.

COOPERATIVE EDUCATION PROGRAM

The nationally recognized engineering co-op program provides students the opportunity to gain practical work experience before graduation. By alternating semesters of academic study with semesters of paid, full-time career-related employment, participants can gain a full year of engineering work experience. Students who wish to participate in the Cooperative Education program in the College of Engineering should contact the Engineering Career Development Office or its co-op director.

To be eligible for this program, students should have a minimum grade-point average of 2.50. In addition, students should be making sufficient progress in their curriculum prior to the first work tour, which should begin after the sophomore year has been completed. Students will remain on a full-time, continuing student status while they are at work by registering for a one-hour, pass/fail course. The grade, assigned by the co-op director, is based on a self evaluation, a work report written by the student, and an evaluation completed by the immediate supervisor. In some states, co-op experience counts towards the practical experience requirement to sit for the Principles and Practice of Engineering (PE) exam.

The Cooperative Education program contributes significantly to the student’s academic motivation, career preparation, and success with job offers upon graduation. About a quarter of our graduates obtain co-op experience before graduation, and about 100 employers nationwide participate in the UK Engineering Co-op Program.

CONTINUING EDUCATION AND EXTENSION

The College of Engineering recognizes the rapid changes occurring in modern engineering technology. Students in engineering are made aware of the need to continue their studies after graduation. One of the ways to keep abreast of advances in engineering is for graduates and other engineering practitioners to participate in continuing education programs now available through the engineering colleges throughout the country.

The responsibilities of the Technology Exchange Program within the Kentucky Transportation Center, the Lean Manufacturing Program within the Institute of Research for Technology Development at the University of Kentucky and the staff of the former Office for Informational Services and Technical Liaison (OISTL), now administratively housed in the Department of Mining Engineering, are to:

1. create and manage appropriate intensive noncredit technical courses of interest to and needed by practicing engineers;
2. develop appropriate video-based courses and materials to be of interest to practicing engineers. Such activity includes taping, live satellite uplinking, and two-way video/audio of engineering-related courses and activities, Web-based instruction; and,
3. provide assistance in extension activities with other college and University units to be of assistance to engineers throughout the state.

SCHOLARSHIPS

The College of Engineering awards merit-based scholarships to incoming freshman and transfer students as well as to students already enrolled in the College. Freshman scholarship applications are due December 1; transfer scholarship applications are due April 15 for students incoming in the fall, and November 15 for students incoming in the spring; and continuing student applications are due April 15. Awards are made for the upcoming academic year; no new awards are made for the spring semester for freshmen and continuing students.

For further information, visit www.engr.uky.edu/scholarships

ENGINEERING DEAN’S LIST

Students enrolled in the College of Engineering can make the Engineering Dean’s List for a fall or spring semester by meeting the following requirements during the semester:

- 3.6 or better semester GPA;
- 12 or more credit hours (not including duplicate credit and/or pass/fail grades);
- no E, I or F grades;
- no grades out; and
- no more than 3 hours pass/fail.

MINIMUM REQUIREMENTS FOR GRADUATION

NOTE: The following graduation requirements apply to engineering programs only. Separate graduation requirements currently apply to the Computer Science program as described in the corresponding section.

To be awarded a Bachelor of Science degree in any field of engineering, a student must:

1. complete the University and College requirements relating to writing and the UK Core;
2. complete a minimum of 128 hours, exclusive of those earned in freshman college algebra and freshman college trigonometry, with a cumulative standing of not less than 2.0 on a 4.0 scale. In all departments the course requirements exceed this 128 hour minimum.
3. be admitted to engineering standing in an engineering program for at least the final semester, and complete the requirements of that program.
4. complete a minimum of 24 credit hours of departmental courses at or above the 300 level.
5. complete all departmental courses and technical electives with a cumulative standing of 2.0 or higher.
6. complete any additional departmental graduation requirements that may be listed below.

Additional Departmental Graduation Requirements

In the B.S. program in Civil Engineering, the student must earn a C or better in each CE prefix course, except that a maximum of one D is permitted in a CE prefix course numbered 400 or higher. In addition, a C or better must be earned in EM 302.

In the Mining Engineering Department, the student must have earned a grade of C or better in the following courses that are valuable for safe operation of mines: MNG 341, Mine Ventilation; MNG 551, Rock Mechanics; MNG 591, Mine Design Project I; and MNG 592, Mine Design Project II.
Second Bachelor’s Degree Requirements
A student who has earned a bachelor’s degree in the College of Engineering may earn a second bachelor’s degree by meeting the following three conditions on the work applicable to the second degree:

1. The student must have been admitted to engineering standing in the program leading to the second degree at least for the final semester, or equivalent terms, prior to the completion of the degree requirements, and must be enrolled as a student in that degree program during the final semester or term.
2. The student must complete a minimum of 15 credit hours of departmentally approved courses at or above the 300 level.
3. To earn a second degree, a student must complete all degree requirements in that program.

ACADEMIC ADVISING
Professional staff provide academic advising and support services to entering freshman students through the Freshman Advising Center. Sophomores, juniors, and seniors are advised jointly by faculty and professional staff in the department of the student’s major.

It is the students’ responsibility to satisfy University and College requirements with consultation from their advisor.

PROBATION AND ACADEMIC SUSPENSION
Students should refer to the Academic Requirements section of this Bulletin for information concerning the College of Engineering’s probation and academic suspension rules.

Minor in Biomedical Engineering
This minor is intended for undergraduate engineering students seeking to supplement their education by applying skills learned in their respective disciplines to the field of biomedical engineering (BME). The emphasis on upper level BME courses builds upon the foundation taught in core undergraduate engineering courses. Beyond the one required course, students pursuing this minor will choose at least five elective courses in consultation with a Biomedical Engineering faculty advisor. Students and their Biomedical Engineering faculty advisor may select courses providing concentration in a particular subfield, or they may select courses providing breadth across the field of biomedical engineering.

The minor in Biomedical Engineering requires:

a) a minimum of 18 hours of course work; b) a GPA of 2.5 in these courses; and c) no grade lower than a C in any BME course. At the discretion of the BME department chair (or designee), a limited number of equivalent course substitutions (i.e., 6 credit hours) may count toward the requirements for this minor. At least 12 credits must have the BME prefix.

Required Course
BME 301 Fundamentals of Biomedical Engineering 3

Elective Courses
*Select five from among the following:
BME 395 Independent Research in Biomedical Engineering .. 1-6
BME 405 Introduction to Biomedical Signal Processing ... 3
BME 472 Human Biomechanics .. 3
BME 485 Fundamentals of Biofluid Mechanics .. 3
BME 488 Introduction to Biomaterials .. 3
BME 508 Cell Mechanics and Mechanobiology .. 3
BME 515 Modeling of Physiological Systems .. 3
BME 530 Biomedical Instrumentation .. 3
BME 540 Mechanical Modeling of Human Motion .. 3
BME 579 Neural Engineering:
- Merging Engineering with Neuroscience .. 3
- BME 580 Introduction to Biomedical Imaging .. 3
- BME 481G Topics in Biomedical Engineering .. 3
BME 599 Topics in Biomedical Engineering
 (Subtitle required) .. 3
*Up to 6 credit hours of independent research (e.g., BME 395) or special topics courses (e.g., BME 481G or BME 599) may count as electives.

BACHELOR OF SCIENCE IN BIOSYSTEMS ENGINEERING

Biostem systems engineering provides an essential link between the biological sciences and the engineering profession. This linkage is essential for the development of production and processing systems involving biological materials that preserve our natural resource base. Students have the latitude to develop an area of specialization relating to bioenvironmental engineering, food and bioprocessing, machine systems, or controlled environment engineering. The curriculum is also ideal preparation for those students wanting to pursue a graduate or professional degree in biomedical engineering or veterinary medicine through pre-biomedical engineering and pre-veterinary medicine options.

Engineers completing this program of study find employment in industries related to the production and processing of biological products. Opportunities include placement with manufacturers, consulting firms, or state and federal regulatory agencies. Biostem systems engineers may work in the areas of biomedical/ biotechnology engineering; environmental engineering; agricultural equipment; heating, ventilation and refrigeration equipment; food processing industries; livestock equipment and housing or greenhouse structures; and bioenergy.

The program educational objectives of the biosystems engineering program are based on the intellectual and professional development of our students. Graduates of the biosystems engineering program are expected within a few years of graduation to have:

- Established themselves as practicing professionals or engaged in advanced study in agricultural, biological, or environmental engineering or related area.
- Demonstrated their ability to work successfully as a responsible professional and function effectively on a professional team.

Degree Requirements
Each student must complete the following:

UK Core Requirements
See the UK Core section of this Bulletin for the complete UK Core requirements. The courses listed below are (a) recommended by the college, or (b) required courses that also fulfill UK Core areas. Students should work closely with their advisor to complete the UK Core requirements.

1. Intellectual Inquiry in Arts and Creativity
 EGR 101 Engineering Exploration I § Δ 1
 EGR 103 Engineering Exploration II Δ 2
2. Intellectual Inquiry in the Humanities
 Choose one course from approved list .. 3
3. Intellectual Inquiry in the Social Sciences
 Choose one course from approved list .. 3
4. Intellectual Inquiry in the Natural, Physical, and Mathematical Sciences
 PHY 231 General University Physics .. 4
 PHY 241 General University Physics Laboratory .. 1
5. Composition and Communication I
 CIS/WRD 110 Composition and Communication I .. 3
6. Composition and Communication II
 CIS/WRD 111 Composition and Communication II .. 3
7. Quantitative Foundations
 MA 113 Calculus I .. 4
8. Statistical Inferential Reasoning
 BAE 202 Statistical Inferences for Biostem Systems Engineering .. 3
9. Community, Culture and Citizenship in the USA
 Choose one course from approved list .. 3
10. Global Dynamics
 Choose one course from approved list .. 3
11. UK Core hours .. 33

Graduation Composition and Communication Requirement (GCCR)
WRD 204 Technical Writing .. 3
**Graduation Composition and Communication Requirement hours (GCCR) .. 3

Premajor Requirements

- BAE 200 Principles of Biostem Systems Engineering .. 3
- BIO 148 Introductory Biology I .. 3
- CE 106 Computer Graphics and Communication .. 3
- CIS/WRD 110 Composition and Communication I .. 3
- CIS/WRD 111 Composition and Communication II .. 3
- CHE 105 General College Chemistry I .. 4
- CHE 107 General College Chemistry II .. 3
- MA 113 Calculus I .. 4
- MA 114 Calculus II .. 4
- MA 213 Calculus III .. 4
- PHY 231 General University Physics .. 4
- PHY 241 General University Physics Laboratory .. 1
- EGR 101 Engineering Exploration I § Δ .. 1
- EGR 102 Fundamentals of Engineering Computing .. 2
- EGR 103 Engineering Exploration II Δ .. 2

Subtotal: Premajors hours .. 44
College of Engineering

<table>
<thead>
<tr>
<th>Major Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAE 202 Statistical Inferences</td>
<td>3</td>
</tr>
<tr>
<td>for Biosystems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BAE 301 Economic Analysis for Biosystems</td>
<td>2</td>
</tr>
<tr>
<td>BAE 305 DC Circuits and Microelectronics</td>
<td>3</td>
</tr>
<tr>
<td>BAE 400 Senior Seminar</td>
<td>3</td>
</tr>
<tr>
<td>BAE 402 Biosystems Engineering Design I</td>
<td>2</td>
</tr>
<tr>
<td>BAE 403 Biosystems Engineering Design II</td>
<td>2</td>
</tr>
<tr>
<td>BIO 152 Principles of Biology II</td>
<td>2</td>
</tr>
<tr>
<td>CE 341 Introduction to Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>EE 305 Electrical Circuits and Electronics</td>
<td>3</td>
</tr>
<tr>
<td>EM 221 Statics</td>
<td>3</td>
</tr>
<tr>
<td>EM 302 Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
<tr>
<td>EM 313 Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MA 214 Calculus IV</td>
<td>3</td>
</tr>
<tr>
<td>MA 220 Engineering Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>ME 221 Statics</td>
<td>3</td>
</tr>
<tr>
<td>CHE 107 General College Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

- Biological Science Elective | 3 |
- Supporting Elective | 3 |
- Supporting Elective† | 3 |
- Supporting Elective‡ | 3 |

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101 Engineering Exploration I</td>
<td>1</td>
</tr>
<tr>
<td>EGR 102 Fundamentals of Engineering Computing</td>
<td>2</td>
</tr>
<tr>
<td>CHE 105 General College Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CIS/WRD 110 Composition and Communication I</td>
<td>3</td>
</tr>
<tr>
<td>MA 113 Calculus I</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 103 Engineering Exploration II</td>
<td>2</td>
</tr>
<tr>
<td>MA 114 Calculus II</td>
<td>2</td>
</tr>
<tr>
<td>CIS/WRD 111 Composition and Communication II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 231 General University Physics III</td>
<td>3</td>
</tr>
<tr>
<td>PHY 241 General University Physics Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAE 200 Principles of Biosystems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BIO 148 Introductory Biology I</td>
<td>3</td>
</tr>
<tr>
<td>MA 213 Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>PHY 232 General University Physics IV</td>
<td>4</td>
</tr>
<tr>
<td>PHY 242 General University Physics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CE 106 Computer Graphics and Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAE 402 Biosystems Engineering Design I</td>
<td>2</td>
</tr>
<tr>
<td>BAE 400 Senior Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Biosystems Core or Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Biosystems Core or Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Biosystems Core or Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Biological Science Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAE 403 Biosystems Engineering Design II</td>
<td>2</td>
</tr>
<tr>
<td>ME 340 Introduction to Mechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>Biosystems Core or Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Biosystems Core or Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
</tr>
<tr>
<td>Supporting Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

BACHELOR OF SCIENCE IN CHEMICAL ENGINEERING

A foundation in mathematics, chemistry, and physics is required for the study of chemical engineering. Fundamental principles related to the transformation of matter and energy are developed in subjects including thermodynamics, fluid flow, separations, heat and mass transfer, reactor design, and chemical process design. Undergraduate electives are available in biopharmaceutical engineering, energy and fuels, environmental engineering, and materials engineering and nanotechnology. A program is also available to fulfill pre-medical requirements simultaneously with requirements for the B.S. in chemical engineering.

The educational objectives of the chemical engineering program state that graduates will:

- Excel in their chosen career pathways, as practicing chemical engineers or through the pursuit of advanced technical or professional degrees.
- Impact their profession through effective leadership, communication, teamwork, and through creative solution strategies to address global and societal issues.
- Apply their engineering training to contribute to the health, safety, environmental and economic well-being of their communities.
- Seek out continuing education, professional development and career advancement opportunities.

Degree Requirements

The following curriculum meets requirements for the B.S. in chemical engineering, provided the student satisfies the graduation requirements listed earlier.

Each student must complete the following:

UK Core Requirements

See the UK Core section of this Bulletin for the complete UK Core requirements. The courses listed below are (a) recommended by the college, or (b) required courses that also fulfill UK Core areas. Students should work closely with their advisor to complete the UK Core requirements.

I. Intellectual Inquiry in the Arts and Creativity

- EGR 101 Engineering Exploration I | 1 |
- EGR 103 Engineering Exploration II | 2 |

II. Intellectual Inquiry in the Humanities

- Choose one course from approved list | 3 |

III. Intellectual Inquiry in the Social Sciences

- Choose one course from approved list | 3 |

IV. Intellectual Inquiry in the Natural, Physical, and Mathematical Sciences

- CHE 105 General College Chemistry I | 4 |
- CHE 111 Laboratory to Accompany General Chemistry I | 1 |

V. Composition and Communication

- CIS/WRD 110 Composition and Communication I | 3 |
- CIS/WRD 111 Composition and Communication II | 3 |
Seven Quantitative Foundations

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 113</td>
<td>Calculus I</td>
<td>4</td>
</tr>
</tbody>
</table>

Eight Statistical Inference Reasoning

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 381</td>
<td>Engineering Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

IX. Community, Culture and Citizenship in the USA

- Choose one course from approved list \[3\]

X. Global Dynamics

- Choose one course from approved list \[3\]

UK Core Hours \[33\]

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRD 204</td>
<td>Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

Graduation Composition and Communication Requirement (GCCCR)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS/WRD 110</td>
<td>Composition and Communication I</td>
<td>3</td>
</tr>
<tr>
<td>CIS/WRD 111</td>
<td>Composition and Communication II</td>
<td>3</td>
</tr>
<tr>
<td>CHE 105</td>
<td>General College Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHE 107</td>
<td>General College Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHE 111</td>
<td>Laboratory to Accompany General Chemistry I</td>
<td>1</td>
</tr>
<tr>
<td>CHE 113</td>
<td>Laboratory to Accompany General Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>MA 114</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MA 214</td>
<td>Calculus IV</td>
<td>3</td>
</tr>
<tr>
<td>PHY 231</td>
<td>General University Physics</td>
<td>4</td>
</tr>
<tr>
<td>EGR 101</td>
<td>Engineering Exploration I (\Delta)</td>
<td>1</td>
</tr>
<tr>
<td>EGR 102</td>
<td>Fundamentals of Engineering Computing</td>
<td>2</td>
</tr>
<tr>
<td>EGR 103</td>
<td>Engineering Exploration II (\Delta)</td>
<td>2</td>
</tr>
<tr>
<td>MSE 201</td>
<td>Materials Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal: **Premajor Requirements:** \[43\]

Major Requirements Hours

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 230</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 231</td>
<td>Organic Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHE 232</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHE 446G</td>
<td>Physical Chemistry for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MA 214</td>
<td>Calculus IV</td>
<td>3</td>
</tr>
<tr>
<td>PHY 232</td>
<td>General University Physics</td>
<td>4</td>
</tr>
<tr>
<td>CME 220</td>
<td>Computational Tools in Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CME 320</td>
<td>Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>CME 415</td>
<td>Separation Processes</td>
<td>3</td>
</tr>
<tr>
<td>CME 006</td>
<td>The Engineering Profession (3 semesters)</td>
<td>0</td>
</tr>
<tr>
<td>CME 330</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CME 470</td>
<td>Professionalism, Ethics and Safety</td>
<td>2</td>
</tr>
<tr>
<td>CME 420</td>
<td>Process Modeling in Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CME 425</td>
<td>Heat and Mass Transfer</td>
<td>3</td>
</tr>
<tr>
<td>CME 432</td>
<td>Chemical Engineering Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>CME 433</td>
<td>Chemical Engineering Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>CME 455</td>
<td>Chemical Engineering Process Design I</td>
<td>3</td>
</tr>
<tr>
<td>CME 595</td>
<td>Chemical Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td>CME 456</td>
<td>Chemical Engineering Process Design II</td>
<td>4</td>
</tr>
<tr>
<td>CME 462</td>
<td>Process Control</td>
<td>3</td>
</tr>
<tr>
<td>STA 381</td>
<td>Engineering Statistics – A Conceptual Approach</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal: **Major requirements:** \[60\]

In addition to the premajor and major requirements, students must complete the following:

Engineering/Science Electives

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 320</td>
<td>Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CME 200</td>
<td>Process Principles</td>
<td>3</td>
</tr>
<tr>
<td>MA 213</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>CHE 107</td>
<td>General College Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHE 113</td>
<td>Laboratory to Accompany General Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>MSE 201</td>
<td>Materials Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal: **First Semester:** \[3\]

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 102</td>
<td>Fundamentals of Engineering Computing</td>
<td>2</td>
</tr>
<tr>
<td>EGR 103</td>
<td>Engineering Exploration II (\Delta)</td>
<td>2</td>
</tr>
<tr>
<td>CIS/WRD 110</td>
<td>Composition and Communication I</td>
<td>3</td>
</tr>
<tr>
<td>MA 113</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 231</td>
<td>General University Physics</td>
<td>4</td>
</tr>
<tr>
<td>CHE 105</td>
<td>General College Chemistry I</td>
<td>1</td>
</tr>
<tr>
<td>CIS/WRD 111</td>
<td>Composition and Communication II</td>
<td>3</td>
</tr>
<tr>
<td>CHE 111</td>
<td>Laboratory to Accompany General Chemistry I</td>
<td>1</td>
</tr>
</tbody>
</table>

Subtotal: **Second Semester:** \[12\]

Sophomore Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101</td>
<td>Engineering Exploration I (\Delta)</td>
<td>1</td>
</tr>
<tr>
<td>CIS/WRD 111</td>
<td>Composition and Communication II</td>
<td>3</td>
</tr>
<tr>
<td>MA 114</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 231</td>
<td>General University Physics</td>
<td>4</td>
</tr>
<tr>
<td>CHE 105</td>
<td>General College Chemistry I</td>
<td>1</td>
</tr>
<tr>
<td>UK Core – Social Sciences</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: **Sophomore Year:** \[133\]

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 320</td>
<td>Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CME 200</td>
<td>Process Principles</td>
<td>3</td>
</tr>
<tr>
<td>MA 213</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>CHE 107</td>
<td>General College Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHE 113</td>
<td>Laboratory to Accompany General Chemistry II</td>
<td>2</td>
</tr>
<tr>
<td>MSE 201</td>
<td>Materials Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal: **Second Semester:** \[4\]

Junior Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 415</td>
<td>Separation Processes</td>
<td>3</td>
</tr>
<tr>
<td>CHE 446G</td>
<td>Physical Chemistry for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>CHE 230</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHE 231</td>
<td>Organic Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>WRD 204</td>
<td>Technical Writing*</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal: **Junior Year:** \[3\]

Senior Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 406</td>
<td>The Engineering Profession (Junior and Senior)</td>
<td>0</td>
</tr>
<tr>
<td>CME 456</td>
<td>Chemical Engineering Process Design II</td>
<td>4</td>
</tr>
<tr>
<td>CME 462</td>
<td>Process Control</td>
<td>3</td>
</tr>
<tr>
<td>CME 320</td>
<td>Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHE 111</td>
<td>Laboratory to Accompany General Chemistry I</td>
<td>1</td>
</tr>
<tr>
<td>UK Core – Global Dynamics</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: **Senior Year:** \[3\]

BACHELOR OF SCIENCE IN CHEMICAL ENGINEERING – PADUCAH

In addition to the program on the Lexington campus, students can pursue a B.S. degree in chemical engineering through the College’s Extended Campus Program in Paducah, Kentucky. The Paducah program uses the same curriculum as the main campus, but provides the opportunity for students to complete all B.S. degree requirements without having to relocate to Lexington.

Consistent with our Vision and Mission statements, the chemical engineering program at the University of Kentucky, including the Extended
Campus in Paducah, strives to meet the following specific educational objectives:

- Produce graduates who are successful in chemical engineering practice, professional and/or academic pursuits.
- Produce graduates who function independently and in teams to carry out in-depth solution strategies to chemical engineering problems.
- Produce graduates who continue to advance in their careers and participate in professional development activities.

The Paducah chemical engineering program collaborates with West Kentucky Community and Technical College to provide the foundational math and science courses, as well as the general studies course requirements. On-site UK chemical engineering faculty members teach the engineering courses. Program admission, course registration, student advising and other student services all can be completed at the Paducah site.

Degree Requirements

The curriculum requirements for the B.S. degree in chemical engineering in Paducah are identical to those on the Lexington campus. Refer to those degree requirements for the Paducah degree program. Not all electives listed for the Lexington program will be available in Paducah. The student must satisfy the College graduation requirements listed earlier.

BACHELOR OF SCIENCE IN CIVIL ENGINEERING

The student of civil engineering has a broad field of study to provide a strong foundation for entry into the profession or graduate school. Major areas include construction engineering and project management, environmental engineering, geotechnical engineering, materials engineering, structural engineering, transportation engineering, and water resources engineering.

The program educational objectives for the civil engineering program reflect the mission of the Department of Civil Engineering. They are important for successful professional practice and the ability to pursue advanced degrees. Civil Engineering graduates from the University of Kentucky will:

1. Excel in Civil Engineering or a related career.
2. Create ethical and sustainable solutions.
3. Seek professional licensure.

Degree Requirements

The following curriculum meets the requirements for B.S. in civil engineering, provided the student satisfies the graduation requirements listed earlier.

Each student must complete the following:

UK Core Requirements

See the UK Core section of this Bulletin for the complete UK Core requirements. The courses listed below are (a) recommended by the college, or (b) required courses that also fulfill UK Core areas. Students should work closely with their advisor to complete the UK Core requirements.

I. Intellectual Inquiry in Arts and Creativity

EGR 101 Engineering Exploration I 1
EGR 103 Engineering Exploration II 2

II. Intellectual Inquiry in the Humanities

Choose one course from approved list 3

III. Intellectual Inquiry in the Social Sciences

Choose one course from approved list 3

IV. Intellectual Inquiry in the Natural, Physical, and Mathematical Sciences

PHY 231 General University Physics 4
PHY 241 General University Physics Laboratory 1

V. Composition and Communication I

CIS/WRD 110 Composition and Communication I 3

VI. Composition and Communication II

CIS/WRD 111 Composition and Communication II 3

VII. Quantitative Foundations

MA 113 Calculus I 4

VIII. Statistical Inferential Reasoning

STA 381 Engineering Statistics – A Conceptual Approach or CE approved equivalent

IX. Community, Culture and Citizenship in the USA

Choose one course from approved list 3

X. Global Dynamics

Choose one course from approved list 3

UK Core hours 33

Graduation Composition and Communication Requirement (GCCR)

†WRD 204 Technical Writing 3

Graduation Composition and Communication Requirement hours (GCCR) 3

†Must have a C or better in WRD 204 to fulfill the Graduation Composition and Communication Requirement (GCCR).

Premajor Requirements

CIS/WRD 110 Composition and Communication I 3
CIS/WRD 111 Composition and Communication II 3
MA 113 Calculus I 4
MA 114 Calculus II 4
MA 213 Calculus III 4
CHE 105 General College Chemistry I 4
CHE 107 General College Chemistry II 4
PHY 231 General University Physics 4
PHY 241 General University Physics Laboratory 1
EGR 101 Engineering Exploration I 4
EGR 103 Engineering Exploration II 2
EGR 102 Fundamentals of Engineering Computing 2
EGR 103 Engineering Exploration II 2
CE 106 Computer Graphics and Communication 3
CE 211 Surveying 4
EM 221 Statics 4

Subtotal: Premajors 45

Major Requirements

EM 302 Mechanics of Deformable Solids 3
MNG 303 Deformable Solids Laboratory 1
MA 214 Calculus IV 3
PHY 232 General University Physics 4
PHY 242 General University Physics Laboratory 1

STA 381 Engineering Statistics – A Conceptual Approach

EES 220 Principles of Physical Geology 4
CE 303 Introduction to Construction Engineering 3
CE 331 Transportation Engineering 3
CE 341 Introduction to Fluid Mechanics 4
CE 351 Introduction to Environmental Engineering 3
CE 381 Civil Engineering Materials I 3
CE 382 Structural Analysis 3
CE 401 Seminar 1
CE 429 Civil Engineering Systems Design 3
CE 461G Water Resources Engineering 4
CE 471G Soil Mechanics 4

Subtotal: Major hours 50

Electives

CE Technical Design Electives 6
Engineering Science Electives 3
Structures Elective 3
CE Technical Elective 3
Supportive Elective 3
Math or Science Elective 3

Subtotal: Electives 21

TOTAL HOURS: 131

Curriculum

Freshman Year

First Semester

EGR 101 Engineering Exploration I 1
EGR 102 Fundamentals of Engineering Computing 2
CHE 105 General College Chemistry I 4
CE 106 Computer Graphics and Communication I 3
MA 113 Calculus I 4

Second Semester

CIS/WRD 111 Composition and Communication II 3
MA 114 Calculus II 4
EGR 103 Engineering Exploration II 2
PHY 241 General University Physics Laboratory 1
CHE 105 General College Chemistry I* 4
UK Core – Social Sciences 3

Sophomore Year

First Semester

CE 211 Surveying 4
CHE 107 General College Chemistry II 3
EM 221 Statics 3
MA 213 Calculus III 4
CE 106 Computer Graphics and Communication 3

Second Semester

EM 302 Mechanics of Deformable Solids 3
MNG 303 Deformable Solids Laboratory 1
MA 214 Calculus IV 3
PHY 232 General University Physics 4
PHY 242 General University Physics Laboratory 1
STA 381 Engineering Statistics – A Conceptual Approach 3

Junior Year

First Semester

WRD 204 Technical Writing* 3
EES 220 Principles of Physical Geology 4
CE 303 Introduction to Construction Engineering 3
CE 341 Introduction to Fluid Mechanics 4
CE 381 Civil Engineering Materials I 3

As part of the “Strategy for Statewide Engineering Education in Kentucky,” adopted July 17, 2000 by all the chief executive officers of Kentucky universities and endorsed by the Kentucky Council on Postsecondary Education (CPE), the vision was expressed that “access to undergraduate engineering education will expand primarily through the creation of joint programs managed by multiple postsecondary institutions.” In response, WKU and UK now jointly offer an ABET-accredited baccalaureate degree in civil engineering on the WKU campus in Bowling Green, Kentucky. By CPE definition, a joint-degree program is “a program that is mutually sponsored by two or more institutions leading to a single credential or degree, which is conferred by both or all participating institutions. All institutions share responsibility for all aspects of the program’s delivery and quality.”

The joint civil engineering program is one of only three such joint-degree programs in Kentucky; the others include a joint-degree program between WKU and UK in mechanical engineering, between WKU and the University of Louisville (UL) in electrical engineering.

The WKU/UK joint programs emphasize a project-oriented educational approach. Courses are provided by both WKU and UK faculty. Students are required to complete a minimum of 15 credit hours of engineering course work taught by UK engineering faculty. At present, the UK contribution is provided primarily by distance delivery via interactive television. The curriculum of the joint civil engineering program is under the direction of a joint program faculty, with equal representation from each participating institution.

The curriculum for entering students requires 137 credit hours, with the General Studies component based on the requirements of WKU. Students who complete the program will receive a B.S. degree conferred jointly by WKU and UK. Under the terms of the agreements between the degree-awarding institutions, WKU provides basic administrative support for students in the joint-degree program, including admission services, registration, and student financial aid. In addition, academic advising, laboratory and equipment support, and library and media resources are supplied by WKU.

The civil engineering curriculum approved within UK is listed below. The joint program faculty are responsible for on-going review of the curricular requirements.

Degree Requirements

Fall Semester

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 175 Univ Experience – ENGR</td>
<td>1</td>
</tr>
<tr>
<td>CE 176 CE Freshman Design</td>
<td>1</td>
</tr>
<tr>
<td>AMS 163 Architectural Drafting</td>
<td>3</td>
</tr>
<tr>
<td>MATH 136 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 111/113 The Earth and Lab</td>
<td>3</td>
</tr>
<tr>
<td>Category I World Cultures Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 160/161 Surveying I and Lab</td>
<td>3</td>
</tr>
<tr>
<td>MATH 137 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 255/256 Physics I and Lab</td>
<td>4</td>
</tr>
<tr>
<td>ENG 100 Freshman English</td>
<td>3</td>
</tr>
<tr>
<td>COMM 161 or 145 Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 303/304 Construction Mgt and Lab</td>
<td>3</td>
</tr>
<tr>
<td>MATH 221 or 222 Statics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 237 Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120/121 College Chemistry I and Lab</td>
<td>3/2</td>
</tr>
<tr>
<td>Category F Health and Wellness Elect</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 382 or 373 Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CE 410/411 Soil Mechanics and Lab</td>
<td>3</td>
</tr>
<tr>
<td>CE 342 Fluid Thermal Science</td>
<td>4</td>
</tr>
<tr>
<td>CE 370/371 Materials of Constr and Lab</td>
<td>2</td>
</tr>
<tr>
<td>STAT 301 Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Category F Health and Wellness Elect</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 316 Equipment and Methods</td>
<td>3</td>
</tr>
<tr>
<td>CE 331 UK - Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENG 300 Junior English</td>
<td>3</td>
</tr>
<tr>
<td>CE 412 Foundation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 384 Reinforced Concrete Design</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 351 or 352 Intro Environmental Eng</td>
<td>3</td>
</tr>
<tr>
<td>CE 400 Senior Design Seminar</td>
<td>1</td>
</tr>
<tr>
<td>ECON 202 Economics (Micro)</td>
<td>3</td>
</tr>
<tr>
<td>HIST 119 or 120 Western Civilization</td>
<td>3</td>
</tr>
<tr>
<td>Category B-II Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 461 Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>CE 498 Senior Project</td>
<td>3</td>
</tr>
<tr>
<td>Category B-II Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td>Category C Social and Behavior Sc Elect</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAAL HOURS

[1] Instead of CE 384 Reinforced Concrete Design, students may take CE 482 Elementary Structural Design or CE 483 UK-Elementary Structural Design if offered.

[2] A two (2) course sequence in four different civil engineering areas is required. The curriculum already includes a two (2) course sequence in structures, geotechnical engineering, and construction. Therefore, each student must select one of their technical electives to cover an additional area such as surveying, materials, environmental engineering, hydropower, or transportation.
BACHELOR OF SCIENCE IN
COMPUTER ENGINEERING

Program Educational Objectives
Computer Engineers shape the way people work, play, live, and learn in the modern world and develop the infrastructure and devices people can’t imagine living without. Computer Engineering is a dynamic and rewarding field that draws upon Electrical Engineering and Computer Science. Computer Engineers solve today’s most challenging technology problems by applying their expertise in both hardware and software systems. Leveraging everything from the world’s smallest micro-controllers to the largest server farms on the planet, Computer Engineers have revolutionized modern entertainment, medicine, telecommunications, transportation, and Information Technology. Computer Engineering graduates find employment in positions requiring Computer Science, Electrical Engineering or Computer Engineering expertise, are in high demand in virtually all industries, and are among the highest compensated specialties in engineering.

The objective of the computer engineering degree program is to prepare students for success as practicing engineers engaged in life-long learning and serving in leadership roles in their chosen career path. Specifically, within five years of graduation, the computer engineering degree program will prepare graduates to:

- Establish themselves as practicing professionals meeting or exceeding the expectations of their employers.
- Continue their professional development or pursue formal education to earn advanced degrees and/or certifications.
- Demonstrate leadership in their professional endeavors and/or in their communities.

Degree Requirements
Each student must complete the following:

UK Core Requirements
See the UK Core section of this Bulletin for the complete UK core requirements. The courses listed below are (a) recommended by the college, or (b) required courses that also fulfill UK Core areas. Students should work closely with their advisor to complete the UK Core requirements.

I. Intellectual Inquiry in Arts and Creativity
EGR 101 Engineering Exploration I §Δ 1
EGR 103 Engineering Exploration II Δ 2

II. Intellectual Inquiry in the Humanities
Choose one course from approved list 3

III. Intellectual Inquiry in the Social Sciences
Choose one course from approved list 3

IV. Intellectual Inquiry in the Natural, Physical, and Mathematical Sciences
PHY 231 General University Physics 4
PHY 241 General University Physics Laboratory 1

V. Composition and Communication I
CIS-WRD 110 Composition and Communication I 3

VI. Composition and Communication II
CIS-WRD 111 Composition and Communication II 3

VII. Quantitative Foundations
MA 113 Calculus I ... 4

VIII. Statistical Inferential Reasoning
STA 318 Engineering Statistics –
A Conceptual Approach ... 3

IX. Community, Culture and Citizenship in the USA
Choose one course from approved list 3

X. Global Dynamics
Choose one course from approved list 3

UK Core hours 33

Graduation Composition and Communication Requirement (GCCR)
CPE 490 ECE Capstone Design I 3
Graduation Composition and Communication Requirement hours (GCCR) 3

Premajor Requirements
CIS-WRD 110 Composition and Communication I 3
CIS-WRD 111 Composition and Communication II 3
CS 215 Introduction to Program Design, Abstraction, and Problem Solving Techniques 4
CS 216 Introduction to Software Engineering Techniques 3
CPE 282 Digital Logic Design ... 4
MA 113 Calculus I ... 4
MA 114 Calculus II ... 4
MA 213 Calculus III ... 4
CHE 105 General College Chemistry I 4
PHY 231 General University Physics 4
PHY 241 General University Physics Laboratory 1
PHY 232 General University Physics 4
PHY 242 General University Physics Laboratory 1
EGR 101 Engineering Exploration I §Δ 2
EGR 102 Fundamentals of Engineering Computing 2
EGR 103 Engineering Exploration II Δ 2
Subtotal: Premajor hours 48

Major Requirements
MA 214 Calculus IV ... 3
CS 270 Systems Programming ... 3
CS 275 Discrete Mathematics ... 4
CS 315 Algorithm Design and Analysis 3
EE 211 Circuits I ... 4
EE 223 AC Circuits ... 4
CPE 287 Introduction to Embedded Systems 4
EE 421G Signals and Systems ... 3
EE 461G Introduction to Electronics 3
CPE 380 Computer Organization 3
CPE 480 Advanced Computer Architecture 3
STA 381 Engineering Statistics –
A Conceptual Approach ... 3
CPE 490 ECE Capstone Design I 3
CPE 491 ECE Capstone Design II 3
Subtotal: Major hours 46

Electives
CPE Technical Elective†... 9
Hardware/Software Electives ... 6
Technical Elective†.. 6
Supportive Elective* .. 3

Subtotal: Electives 24

Total Minimum hours for Program 130

Curriculum
Freshman Year

First Semester
Hours
EGR 101 Engineering Exploration I §Δ 1
EGR 102 Fundamentals of Engineering Computing 2
MA 113 Calculus I ... 4
PHY 231 General University Physics 4
CHE 105 General College Chemistry I 4
PHY 241 General University Physics Laboratory 1
CIS-WRD 110 Composition and Communication I 3

Second Semester
EGR 103 Engineering Exploration II Δ 2
MA 114 Calculus II ... 4
CHE 105 General College Chemistry I 4
PHY 231 General University Physics 4
CIS-WRD 111 Composition and Communication II 3
CS 215 Introduction to Program Design, Abstraction, and Problem Solving Techniques 4

Sophomore Year

First Semester
Hours
MA 213 Calculus III ... 4
PHY 232 General University Physics 4
PHY 242 General University Physics Laboratory 1
CS 216 Introduction to Software Engineering Techniques 3
CPE 282 Digital Logic Design ... 4

Second Semester
MA 214 Calculus IV ... 3
EE 211 Circuits I ... 4
CPE 287 Introduction to Embedded Systems 4
CS 270 Systems Programming ... 3
CS 275 Discrete Mathematics ... 4

Junior Year

First Semester
Hours
EE 223 AC Circuits ... 4
CS 315 Algorithm Design and Analysis 3
CPE 380 Computer Organization 3
STA 381 Engineering Statistics –
A Conceptual Approach ... 3
UK Core – Humanities .. 3

Second Semester
EE 421G Signals and Systems ... 3
EE 461G Introduction to Electronics 3
Technical Elective†.. 3
CPE 480 Advanced Computer Architecture 3
CPE Elective .. 3
UK Core – Science and Social Sciences 3

Senior Year

First Semester
Hours
CPE 490 ECE Capstone Design I*** 3
CPE Elective†.. 3
Technical Elective†.. 3
Supportive Elective* .. 3
UK Core – Citizenship 3

Second Semester
CPE 491 ECE Capstone Design II**† 3
Hardware Elective € .. 3
Software Elective ~ ... 3
CPE Elective†.. 3
UK Core – Global Dynamics 3

§ Transfer students who declare a major will take EGR 112, Engineering Exploration for Transfer Students, in place of EGR 101.
BACHELOR OF SCIENCE IN COMPUTER SCIENCE

The computer science program prepares students to identify computational problems in all areas of modern life, to design, implement, and analyze algorithmic solutions, and to build software for a variety of applications. Through required, elective and special topics courses students are exposed to the foundations and current practices of computing and algorithms, software engineering, programming languages, operating systems, graphics and multimedia, scientific computing and numerical analysis, databases, artificial intelligence and networks. The program’s educational objective is to equip graduates to succeed in their chosen career path. Specifically, within three to five years after graduation:

- Those employed in industry or entrepreneurial endeavors will demonstrate professional advancement through expanded leadership responsibility, significant technical accomplishment, or other recognition of their contributions.
- Those who continue their formal education will achieve an advanced degree or other technical certification.

In addition, graduates will appreciate the preparation received in the program as it relates to their chosen careers, to their role as educated citizens in a global society, and to continued learning.

For more information, please visit the department Web site at: www.cs.uky.edu

Degree Requirements

Each student must complete the following:

UK Core Requirements

See the **UK Core** section of this Bulletin for the complete **UK Core requirements.** The courses listed below are (a) required courses that also fulfill the GCCR and senior design requirements, the student must receive approval from the DUS to select an additional technical elective that supports the proposed CS 499 project.

- Technical elective may be selected from upper-division engineering, mathematics, statistics, computer science, physics, or other technically-related fields excluding more elementary courses approved by the Director of Undergraduate Studies for Computer Engineering.

- **Graduation Composition and Communication Requirement (GCCR) course.**

Computer Science Electives

Choose 12 credit hours in CS courses at the 300-level or above with at least three courses from the following list:

- CS 335 Graphics and Multimedia
- CS 378 Introduction to Cryptology
- CS 405G Introduction to Database Systems
- CS 441G Compilers for Algorithmic Languages
- CS 450G Fundamentals of Programming Languages
- CS 466G Machine Learning
- CS 463G Introduction to Artificial Intelligence

Electives

Choose 12 credit hours from the following:

- MA 214 Calculus IV or any 300-level or higher classes selected from computer science, electrical engineering, mathematics, the College of Business and Economics, or by advisor’s approval.

Technical Electives

Any additional University of Kentucky degree requirements, including foreign language.

Premajor Requirements

- CHE 105 General College Chemistry
- CS 275 Discrete Mathematics
- CS 280 Design of Logic Circuits
- CS 335 Graphics and Multimedia
- CS 375 Logic and Theory of Computing
- CS 463G Introduction to Artificial Intelligence
- CS 466G Machine Learning
- MA 213 Calculus III
- MA 214 Calculus IV
- PHY 231 General University Physics
Second Semester

EGR 103 Engineering Exploration II Δ.......................... 2
CIS/WRD 111 Composition and Communication II........ 3
MA 114 Calculus II.. 4
PHY 231 General University Physics
or
CHE 105 General College Chemistry I *........................ 4
PHY 241 General University Physics Laboratory ‡........ 1
CS 215 Introduction to Program Design,
Abstraction, and Problem Solving Techniques............. 4

Sophomore Year

First Semester

CS 216 Introduction to Software Engineering Techniques.... 3
CS 275 Discrete Mathematics..................................... 4
EE 280 Design of Logic Circuits................................. 3
MA 213 Calculus III... 4
UK Core – Social Sciences.. 3

Second Semester

CS 270 Systems Programming.................................... 3
CS 315 Algorithm Design and Analysis.......................... 3
Technical Elective [T].. 3
UK Core – Humanities.. 3
Science Elective [S]... 3

Junior Year

First Semester

CS/MA 321 Introduction to Numerical Methods
or
MA 322 Matrix Algebra and Its Applications............... 3
CS 371 Introduction to Computer Networking................. 3
Computer Science Elective [C].................................... 3
Computer Science Elective [C].................................... 3
STA 381 Engineering Statistics –
A Conceptual Approach... 3

Second Semester

CS 375 Logic and Theory of Computing......................... 3
Computer Science Elective [C].................................... 3
Computer Science Elective [C].................................... 3
Technical Elective [T].. 3
UK Core – Citizenship - US...................................... 3
Natural Science Elective [N].......................... 3

Senior Year

First Semester

CS 498 Software Engineering for Senior Project............. 3
Computer Science Elective [C].................................... 3
Technical Elective [T].. 3
UK Core – Global Dynamics..................................... 3
Free Elective [E].. 4

Second Semester

CS 499 Senior Design Project*................................. 3
Computer Science Elective [C].................................... 3
Non-Technical Elective [E]....................................... 3
Technical Elective [T].. 3
Free Elective [E].. 3
§ Transfer students who declare a major will take EGR 112,
Engineering Exploration for Transfer Students, in place of
EGR 101.
Δ Students must complete both EGR 101 and EGR 103 to fulfill
the UK Core Arts and Creativity requirement.
* Based on advisor consult.
‡ Only if enrolled in PHY 231.
[T] Technical Elective (12 credit hours) – include any 300-level
and above courses in computer science, electrical engineering,
mathematics and business and economics. MA 214 is also an
acceptable technical elective. Cooperative education credit
may be used to satisfy this requirement.

£E Elective (10 credit hours) – including one Free Elective and
Non-Technical Elective. At least two of the electives (6 credits)
cannot be in computer science, mathematics, science or engi-
neering. Free elective (3 credits) can be any course that earns
college credit and is not a more elementary version of a regular
course. Note: At least 128 credit hours; a foreign language
requirement.

Graduation Composition and Communication Requirement
(GCCR) course.

Minor in Computer Science

The minor in Computer Science requires a minimum of 19-20 hours of course work in CS, to
include:

CS 115 Introduction to Computer Programming
or
CS 116 Introduction to Computer Programming
or
EGR 102 Fundamentals of Engineering Computing 2-3
CS 215 Introduction to Program Design,
Abstraction, and Problem Solving............................. 4
CS 216 Introduction to Software
Engineering Techniques ... 4
CS 275 Discrete Mathematics..................................... 4
CS 315 Algorithm Design and Analysis........................ 3
or equivalent, plus 3 additional hours of upper-division
courses (300 or higher) in computer science. A GPA of at least
2.5 across these courses is required. At least 10 of the credit
hours required to complete the minor must be earned at the
University of Kentucky.

BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

The electrical engineering undergraduate de-
gree program seeks to produce graduates who
are trained in the theory and practice of electrical
and computer engineering and are well prepared
to handle the professional and leadership chal-
lenges of their careers. The program allows
students to specialize in high performance and
embedded computing, microelectronics and nano-
technology, power and energy, signal processing
and communications, high frequency circuits and
fields, and control systems, among others.

The objective of the electrical engineering
degree program is to prepare students for success
as practicing engineers engaged in life-long learn-
ing and serving in leadership roles in their chosen
career path. Specifically, within five years of
graduation, the electrical engineering degree pro-
gram will prepare graduates to:

- Establish themselves as practicing profes-
sionals meeting or exceeding the expecta-
tions of their employers.
- Continue their professional development or
pursue formal education to earn advanced
degrees and/or certifications.
- Demonstrate leadership in their professional
everends and/or in their communities.

The electrical engineering undergraduate pro-
gram has identified curriculum tracks as rec-
ommended groups of courses for undergraduate
students interested in a particular area of elec-
trical engineering. Each track consists of a list
of three recommended electives (typically EE Tech-
nical Electives) and possibly a recommended lab
elective. A student will be considered to have
completed a track if these course requirements
have been satisfied with a grade of C or better.

Students are not required to participate in a
track. Tracks are intended for students as a guide
of classes to take in a particular area. Student
transcripts will not explicitly mention completion
of a track. However, any student completing a
track will receive an official recognition of this
completion from the department.

The current set of tracks are:

Electric Power and Energy
EE Technical Electives EE 537 and EE 538,
and one of the following: EE 518, EE 531, or EE
539. Also, EE 416G as a Lab Elective.

Signals and Systems
Any three of the following EE Technical Elec-
tives: EE 511, EE 512, EE 513, EE 571, EE 572, EE 586.
Also, EE 422G as a Lab Elective.

Digital Systems
EE Technical Electives EE 582 and EE 584,
and one of the following: EE 585, EE 586, EE 587,
EE 589. Also, EE 281 as a Lab Elective.

High Frequency Circuits and Fields
EE Technical Electives EE 522 and EE 523,
and one of the following additional: EE 523, EE
525, EE 527.

Degree Requirements
Each student must complete the following:

UK Core Requirements
See the UK Core section of this Bulletin for the complete
UK Core requirements. The courses listed below are (a)
recommended by the college, or (b) required courses that also
fulfill UK Core areas. Students should work closely with their
advisor to complete the UK Core requirements.

I. Intellectual Inquiry in Arts and Creativity
EGR 101 Engineering Exploration I § Δ........................ 1
EGR 103 Engineering Exploration II Δ.......................... 2

II. Intellectual Inquiry in the Humanities
Choose one course from approved list 3

III. Intellectual Inquiry in the Social Sciences
Choose one course from approved list 3

IV. Intellectual Inquiry in the Natural, Physical,
and Mathematical Sciences
PHY 231 General University Physics........................... 4
PHY 241 General University Physics Laboratory 1

V. Composition and Communication I
CIS/WRD 110 Composition and Communication I 3

VI. Composition and Communication II
CIS/WRD 111 Composition and Communication II 3
Curriculum

Freshman Year

First Semester

- **Hours**
- EGR 101 Engineering Exploration I \(\Delta \) 1
- EGR 102 Fundamentals of Engineering Computing 2
- CIS/WRD 110 Composition and Communication I 3
- MA 113 Calculus I 4
- PHY 241 General University Physics Laboratory 1
- MA 114 Calculus II 4
- MA 213 Calculus III 4
- PHY 241 General University Physics Laboratory 1
- PHY 242 General University Physics Laboratory 4
- EE 211 Circuits I 4
- EE/CPE 282 Digital Logic Design 4
- EGR 101 Engineering Exploration I \(\Delta \) 1
- EGR 102 Fundamentals of Engineering Computing 2
- EGR 103 Engineering Exploration II \(\Delta \) 4

Second Semester

- **Hours**
- EGR 103 Engineering Exploration II \(\Delta \) 2
- MA 114 Calculus II 4
- CHE 105 General College Chemistry I 4
- PHY 231 General University Physics 4
- PHY/WRD 111 Composition and Communication II 3
- CS 215 Introduction to Program Design, Abstraction, and Problem Solving 4

Sophomore Year

First Semester

- **Hours**
- MA 213 Calculus III 4
- PHY 232 General University Physics 4
- PHY 242 General University Physics Laboratory 4
- EE 223 AC Circuits 4
- EE/CPE 287 Introduction to Embedded Systems 4
- UK Core – Social Sciences 3
- UK Core – Humanities 3

Second Semester

- **Hours**
- EE 415G Electromechanics 3
- EE 421G Signals and Systems 3
- Electro EE Laboratory [L] 2
- EE 461G Introduction to Electronics 3
- MA 320 Introductory Probability 3
- STA 381 Engineering Statistics – A Conceptual Approach 3
- Technical Elective [E] 3

Junior Year

First Semester

- **Hours**
- EE 468G Introduction to Engineering Electromagnetics 4
- EE 490 ECE Capstone Design I 3
- EE 491 ECE Capstone Design II 3
- MA 214 Calculus IV 3
- MA 320 Introductory Probability 3
- or STA 381 Engineering Statistics – A Conceptual Approach 3

Second Semester

- **Hours**
- EE 468G Introduction to Engineering Electromagnetics 4
- Electro EE Laboratory [L] 2
- Technical Elective [T] 3
- Engineering/Science Elective [E] 3
- UK Core – Citizenship - USA 3

Senior Year

First Semester

- **Hours**
- EE/CPE 490 ECE Capstone Design I 3
- EE Technical Electives 6
- Math/Statistics Elective [M] 3
- UK Core – Global Dynamics 3

Second Semester

- **Hours**
- EE/CPE 491 ECE Capstone Design II 3
- EE Technical Electives 6
- Engineering/Science Elective [E] 3
- Supportive Elective 3
- UK Core – Statistical Inferential Reasoning 3

Electives

- Engineering/Science Electives [E] 6
- Math/Statistics Elective [M] 3
- Technical Elective [T] 6
- EE Technical Electives 12
- Supportive Elective 3

Total Hours: 131

Notes:
- \(\Delta \) Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement.
- *Supportive elective is to be chosen from any University courses, excluding more elementary versions of required courses, such as pre-calculus mathematics or PHY 211. EE students are strongly encouraged to partially or completely fulfill this requirement by enrolling and participating in experiences credits such as: EGR 399 – Coop; EAP 599 – Education Abroad; EE 391 – UG Research Experience; EE 396; Community or Campus Experiential Learning; EGR 390 – Experiential learning in Engineering or CS. EXP 396 – Experiential Education; EGR 549 – Energy Experiences; or other experiences courses approved by the Director of Undergraduate Studies for Electrical Engineering.
- [M] Math/Statistics Elective: Any upper-division (300-level or higher) math or statistics course excluding MA 308 and MA 310 (3 credit hours total).
- [E] Engineering/Science Electives: Any engineering, physics, computer science, or math course at the 200-level or higher, other than an electrical engineering course and excluding MA 308, MA 310, and more elementary versions of required courses (6 credit hours total). Cooperative education credit may not be used to satisfy this requirement.
- [T] Technical elective may be selected from upper-division (300-level or higher) engineering, mathematics, statistics, computer science, physics, or other technically-related fields excluding MA 308, MA 310, EE 305, and more elementary versions of required courses, to be selected in consultation with the academic advisor. (6 credit hours total). Cooperative education credit may not be used to satisfy this requirement.
- EE/CPE 490 is only taught in the fall semester. EE/CPE 491 is only taught in the spring semester.
- \(\oplus \) Junior Year and \(\Delta \) Senior Year

Major Requirements

- MA 113 Calculus I 4
- MA 114 Calculus II 4
- MA 213 Calculus III 4
- PHY 241 General University Physics 4
- PHY 242 General University Physics Laboratory 4
- EE 223 AC Circuits 4
- EE/CPE 282 Digital Logic Design 4
- EE/CPE 287 Introduction to Embedded Systems 4
- UK Core – Social Sciences 3
- UK Core – Humanities 3

Premajor Requirements

- CIS/WRD 110 Composition and Communication I 3
- CIS/WRD 111 Composition and Communication II 3
- CHE 105 General College Chemistry I 4
- CS 215 Introduction to Program Design, Abstraction, and Problem Solving 4
- MA 113 Calculus I 4
- MA 114 Calculus II 4
- MA 213 Calculus III 4
- PHY 231 General University Physics 4
- PHY 241 General University Physics Laboratory 1
- PHY 242 General University Physics Laboratory 4
- EE 211 Circuits I 4
- EE 282 Digital Logic Design 4
- EGR 101 Engineering Exploration I \(\Delta \) 1
- EGR 102 Fundamentals of Engineering Computing 2
- EGR 103 Engineering Exploration II \(\Delta \) 4

Subtotal: Premajor hours 49

Total Hours: 131
College of Engineering

EE 572 Digital Control of Dynamic Systems
EE 582 Hardware Description Languages and Programmable Logic
EE 584 Introduction of VLSI Testing and Design
EE 585 Fault Tolerant Computing
EE 586 Communication and Switching Networks
EE 587 Microcomputer Systems Design
EE 588 Real-Time Computer Systems
EE 589 Advanced VLSI
EE 599 Topics in Electrical Engineering (Subtitle required)

Undergraduate Certificate in Power and Energy

Requirements for the Undergraduate Certificate in Power and Energy

The purpose of the Power and Energy Undergraduate Certificate is to provide students with a formalized recognition of an emphasis in power and energy as part of their undergraduate degree program. The certificate consists of a series of foundational courses, supplemented with a broad array of elective courses related to power and energy. The elective courses cover a wide variety of areas, including fundamentals, conventional and emerging technologies, smart grid systems, distributed generation, power system protection, energy storage, solar power, biofuels, and others. This certificate is an important part of the new Power and Energy Institute of Kentucky (PEIK), created through a recent grant from the US Department of Energy.

Structure

The Director of the Power and Energy Undergraduate Certificate is responsible for admitting students into the certificate, approving each student’s curriculum for completing the certificate, and notifying the Registrar when certificate requirements have been completed. Students completing the certificate will receive a paper certificate and the certification will also be posted on the student’s official transcript. The certification will not appear on the student’s diploma.

Entrance Requirements

To be accepted into the University of Kentucky Power and Energy Undergraduate Certificate, the student must be pursuing an undergraduate degree and have completed at least 24 credits with a UK cumulative GPA of at least 2.50. A transfer student can be accepted into the certificate if he/she has completed at least 24 credits with a weighted cumulative GPA from all other institutions of at least 2.50.

Exit Requirements

- The student must earn a C or better in each course used to satisfy the certificate.
- The student must complete a 3-credit breadth component. The breadth component requires that a student take courses in at least two disciplines, with a minimum of 3 credits completed in the second discipline.
- The certificate will be awarded to students who complete the certificate curriculum and also complete an undergraduate degree.
- No more than 9 credits of the Power and Energy Undergraduate Certificate can be used as required courses in the student’s major, minor, or other certificate. Courses used to satisfy the certificate can be used as electives (including technical electives) in a student’s degree program.
- Courses applied to the Power and Energy Undergraduate Certificate cannot also be applied to the Power and Energy Graduate Certificate.
- The Power and Energy Undergraduate Certificate Director must approve the certificate curriculum for each student.

Power and Energy Undergraduate Certificate Curriculum

The structure of the certificate curriculum is shown below:

Required Course (3 credits)
EGR 240 Global Energy Issues 3

Core Elective (3 credits)
Choose one of the following courses:
EGR 540 Power Economics and Public Policy 3
EGR 542 Electric Power Generation Technologies 3
EGR 546 Electric Power System Fundamentals 3

Power and Energy Electives (9 credits)
Choose three courses from the approved list of Power and Energy Electives. The selected courses must be approved by the Director of the Power and Energy Undergraduate Certificate to ensure that the selections maintain a thematic consistency and fulfill the certificate breadth requirement. A partial list of approved power and energy courses is provided below. Additional courses will be added as they are approved for the power and energy certificate curriculum.

MATERIALS ENGINEERING

The materials engineer is responsible for the selection, preparation and application of existing materials and for the development of new and improved materials. Materials engineers study the relationships between atomic and/or molecular constitution, microstructure and physical properties including mechanical, thermal, electrical, and optical behavior. Classes of materials include metals, ceramics, polymers, and electronic materials.

The educational objectives of the materials engineering program state that graduates will:

- Excel in their chosen career pathways, as practicing materials engineers or through the pursuit of advanced technical or professional degrees.
- Impact their profession through effective leadership, communication, teamwork, and through creative solution strategies to address global and societal issues.
- Apply their engineering training to contribute to the health, safety, environmental and economic well-being of their communities.
- Seek out continuing education, professional development and career advancement opportunities.

Degree Requirements

The following curriculum meets requirements for the B.S. in materials engineering, provided the student satisfies the graduation requirements listed earlier. Each student must complete the following:

UK Core Requirements

See the UK Core section of this Bulletin for the complete UK Core requirements. The courses listed below are (a) recommended by the college, or (b) required courses that also fulfill UK Core areas. Students should work closely with their advisor to complete the UK Core requirements.
I. Intellectual Inquiry in Arts and Creativity
EGR 101 Engineering Exploration I § Δ
EGR 102 Fundamentals of Engineering Computing

II. Intellectual Inquiry in the Humanities
Choose one course from approved list

III. Intellectual Inquiry in the Social Sciences
Choose one course from approved list

IV. Intellectual Inquiry in the Natural, Physical, and Mathematical Sciences
CHE 105 General College Chemistry I
CHE 111 Laboratory to Accompany General Chemistry I

V. Composition and Communication I
CIS/WRD 110 Composition and Communication I

VI. Composition and Communication II
CIS/WRD 111 Composition and Communication II

VII. Quantitative Foundations
MA 113 Calculus I

VIII. Statistical Inferential Reasoning
STA 381 Engineering Statistics – A Conceptual Approach

IX. Community, Culture and Citizenship in the USA
Choose one course from approved list

X. Global Dynamics
Choose one course from approved list

UK Core hours

Graduation Composition and Communication Requirement (GCCR)
MSE 407 Materials Laboratory I

Graduation Composition and Communication Requirement (GCCR)

Premajor Requirements
CIS/WRD 110 Composition and Communication I
CIS/WRD 111 Composition and Communication II
CHE 105 General College Chemistry I
CHE 107 General College Chemistry II
CHE 111 Laboratory to Accompany General Chemistry I
CHE 113 Laboratory to Accompany General Chemistry II
MA 113 Calculus I
MA 114 Calculus II
MA 213 Calculus III

Physics Courses
PHY 231 General University Physics
PHY 241 General University Physics Laboratory
MSE 201 Materials Science
MSE 202 Materials Science Laboratory

EGR 101 Engineering Exploration I § Δ
EGR 102 Fundamentals of Engineering Computing

Subtotal: Premajor hours

Major Requirements
CHE 236 Survey of Organic Chemistry
CME 200 Process Principles
EM 221 Statics
MA 214 Calculus IV
PHY 232 General University Physics
MSE 301 Materials Science II
MSE 351 Materials Thermodynamics
EM 302 Mechanics of Deformable Solids
EE 305 Electrical Circuits and Electronics
PHY 361 Principles of Modern Physics
MSE 401G Metal and Alloys
MSE 402G Electronic Materials and Processing
MSE 403G Ceramic Engineering and Processing
MSE 404G Polymeric Materials

MSE 407 Materials Laboratory I

MSE 408 Materials Laboratory II

MSE 436 Material Failure Analysis
MSE 480 Materials Design
MSE 535 Mechanical Properties of Materials
MSE 538 Metals Processing
MSE 585 Materials Characterization Techniques

STA 381 Engineering Statistics – A Conceptual Approach

Subtotal: Major hours

Technical Electives
Total of 6 credit hours must be chosen. Technical electives are to be selected from a technical discipline, with approval from the Director of Undergraduate Studies. At least 3 credit hours must come from a course with an MSE prefix. MSE 395 (Research) may count for one elective, but not both. Recommended technical electives include but are not limited to:
MSE 395 Independent Work in Materials Engineering
MSE 506 Mechanics of Composite Materials
MSE 531 Powder Metallurgy
MSE/CME 554 Chemical and Physical Processing of Polymer Systems
MSE 556 Introduction to Composite Materials
MSE 569 Electronic Packaging Systems and Manufacturing Processes
MSE 599 Topics in Materials Science and Engineering (Subtitle required)
CHE 580 Topics in Chemistry
CME 542 Electric Power Generation Technologies
CME 599 Topics in Chemical Engineering
MA 322 Matrix Algebra and Its Applications
MA 422 Numerical Solutions of Equations
MA 432G Methods of Applied Mathematics
ME/MFS 503 Lean Manufacturing Principles and Practices

MSE 436 Material Failure Analysis
MSE 408 Materials Laboratory II

Subtotal: Technical Electives

Supportive Elective
The supportive elective can be any course that carries college credit and is not a more elementary version of a required course. The student completing 3 co-op tours (EGR 399) may count the co-op experience toward the supportive elective.

Subtotal: Supportive Elective

TOTAL HOURS:

Curriculum

Freshman Year
First Semester
EGR 101 Engineering Exploration I § Δ
EGR 102 Fundamentals of Engineering Computing
CHE 105 General College Chemistry I

PHY 231 General University Physics

CHE 111 Laboratory to Accompany General Chemistry I

CIS/WRD 110 Composition and Communication I

MA 113 Calculus I

Second Semester
EGR 103 Engineering Exploration II Δ
CIS/WRD 111 Composition and Communication II
MA 114 Calculus II

PHY 231 General University Physics

CHE 105 General College Chemistry I

PHY 241 General University Physics Laboratory

UK Core – Social Sciences

Sophomore Year
First Semester
MSE 201 Materials Science
MSE 202 Materials Science Laboratory
MA 213 Calculus III
CHE 107 General College Chemistry II

Second Semester
MSE 301 Materials Science II
MSE 351 Materials Thermodynamics
MA 214 Calculus IV
PHY 232 General University Physics
CHE 236 Survey of Organic Chemistry

Junior Year
First Semester
MSE 401G Metal and Alloys
MSE 404G Polymeric Materials
CME 200 Process Principles
EM 302 Mechanics of Deformable Solids
STA 381 Engineering Statistics – A Conceptual Approach
UK Core – Humanities

Second Semester
MSE 402G Electronic Materials and Processing
MSE 403G Ceramic Engineering and Processing
MSE 407 Materials Laboratory II
MSE 353 Mechanical Properties of Materials
PHY 361 Principles of Modern Physics

Senior Year
First Semester
MSE 408 Materials Laboratory II
MSE 436 Material Failure Analysis
MSE 585 Materials Characterization Techniques
EE 305 Electrical Circuits and Electronics
Technical Elective** (MSE prefix)
UK Core – Citizenship, USA

Second Semester
MSE 480 Materials Design
MSE 538 Metals Processing
Technical Elective***
Supportive Elective**
UK Core – Global Dynamics

§ Transfer students who declare a major will take EGR 112, Engineering Exploration for Transfer Students, in place of EGR 101.

Δ Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement.

Based on advisor consult.

**Only if enrolled in PHY 231.

*Supportive elective is any university course, excluding more elementary versions of required courses, such as precalculus mathematics or PHY 211.

**Choose from the list of Technical Electives above.

***Graduation Composition and Communication Requirement (GCCR) course.
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

The training of the mechanical engineer is the broadest among the several fields of engineering. The mechanical engineer uses the techniques of mathematics combined with a specialized knowledge of the thermal and energy sciences, solid and fluid mechanics, and the properties of materials. This information is supplemented by an understanding of manufacturing processes, the design and control of systems, and the economics of the technological community.

Our graduates will be able to apply knowledge of mathematics, science and mechanical engineering to the solution of problems, particularly in the areas of thermodynamics and energy systems; heat transfer; fluid mechanics; mechanical systems and controls; mechanical design; finite element methods and computer-aided graphics; manufacturing; instrumentation; and experimental method.

Consistent with the Vision and Mission statements of the University of Kentucky and the College of Engineering, the undergraduate program in mechanical engineering will prepare our graduates for successful practice or academic pursuits in mechanical engineering. We expect our graduates to attain the following Program Educational Objectives within a few years of graduation:

1. Our graduates will be employed in mechanical engineering or a variety of related fields as professionals, or attend graduate and professional schools in their career paths.
2. Our graduates will continue their education and professional growth by supporting or participating in professional societies, licensure programs, short courses, or other professional development activities.

Degree Requirements

Each student must complete the following:

UK Core Requirements

See the UK Core section of this Bulletin for the complete UK Core requirements. The courses listed below are (a) recommended by the college, or (b) required courses that also fulfill UK Core areas. Students should work closely with their advisor to complete the UK Core requirements.

I. Intellectual Inquiry in Arts and Creativity

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 103 Engineering Exploration II</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>ME 411 ME Capstone Design I</td>
<td></td>
</tr>
</tbody>
</table>

II. Intellectual Inquiry in the Humanities

Choose one course from approved list

III. Intellectual Inquiry in the Social Sciences

Choose one course from approved list

IV. Intellectual Inquiry in the Natural, Physical, and Mathematical Sciences

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 231 General University Physics</td>
<td></td>
</tr>
<tr>
<td>PHY 241 General University Physics Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

V. Composition and Communication I

CIS/WRD 110 Composition and Communication I

VI. Composition and Communication II

CIS/WRD 111 Composition and Communication II

VII. Quantitative Foundations

MA 113 Calculus I

VIII. Statistical Inferential Reasoning

STA 210 Making Sense of Uncertainty:

- An Introduction to Statistical Reasoning
- STA 381 Engineering Statistics

IX. Global Dynamics

Choose one course from approved list

UK Core hours

33

Graduation Composition and Communication Requirement (GCCR)

WRD 204 Technical Writing

Graduation Composition and Communication Requirement hours (GCCR)

3

Premajor Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS/WRD 110 Composition and Communication I</td>
<td></td>
</tr>
<tr>
<td>CIS/WRD 111 Composition and Communication II</td>
<td></td>
</tr>
<tr>
<td>CHE 105 General College Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHE 106 General College Chemistry II</td>
<td></td>
</tr>
<tr>
<td>MA 113 Calculus I</td>
<td></td>
</tr>
<tr>
<td>MA 114 Calculus II</td>
<td></td>
</tr>
<tr>
<td>MA 213 Calculus III</td>
<td></td>
</tr>
<tr>
<td>PHY 231 General University Physics</td>
<td></td>
</tr>
<tr>
<td>PHY 232 General University Physics</td>
<td></td>
</tr>
<tr>
<td>PHY 241 General University Physics Laboratory</td>
<td></td>
</tr>
<tr>
<td>PHY 242 General University Physics Laboratory</td>
<td></td>
</tr>
<tr>
<td>EGR 101 Engineering Exploration I</td>
<td></td>
</tr>
<tr>
<td>EGR 102 Fundamentals of Engineering Computing</td>
<td></td>
</tr>
<tr>
<td>EGR 103 Engineering Exploration II</td>
<td></td>
</tr>
<tr>
<td>ME 205 Computer Aided Engineering Graphics</td>
<td></td>
</tr>
<tr>
<td>EM 221 Statics</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: Premajor hours: 46

Major Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 214 Calculus IV</td>
<td></td>
</tr>
<tr>
<td>ME 220 Engineering Thermodynamics I</td>
<td></td>
</tr>
<tr>
<td>ME 251 Introduction to Materials and Manufacturing Processes</td>
<td></td>
</tr>
<tr>
<td>EM 302 Mechanics of Deformable Solids</td>
<td></td>
</tr>
<tr>
<td>EM 313 Dynamics</td>
<td></td>
</tr>
<tr>
<td>EE 305 Electrical Circuits and Electronics</td>
<td></td>
</tr>
<tr>
<td>ME 310 Engineering Experimentation I</td>
<td></td>
</tr>
<tr>
<td>ME 311 Engineering Experimentation II</td>
<td></td>
</tr>
<tr>
<td>ME 321 Engineering Thermodynamics II</td>
<td></td>
</tr>
<tr>
<td>ME 325 Elements of Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>ME 330 Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>ME 340 Introduction to Mechanical Systems</td>
<td></td>
</tr>
<tr>
<td>ME 344 Mechanical Design</td>
<td></td>
</tr>
<tr>
<td>ME 411 ME Capstone Design I</td>
<td></td>
</tr>
<tr>
<td>ME 412 ME Capstone Design II</td>
<td></td>
</tr>
<tr>
<td>ME 440 Design of Control Systems</td>
<td></td>
</tr>
<tr>
<td>ME 501 Mechanical Design with Finite Element Methods</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: Major hours: 51

Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math Elective</td>
<td></td>
</tr>
<tr>
<td>Supportive Elective</td>
<td></td>
</tr>
<tr>
<td>Technical Electives</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: Elective hours: 15

Curriculum

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101 Engineering Exploration I</td>
<td></td>
</tr>
<tr>
<td>EGR 102 Fundamentals of Engineering Computing</td>
<td></td>
</tr>
<tr>
<td>PHY 231 General University Physics</td>
<td></td>
</tr>
<tr>
<td>CHE 105 General College Chemistry I</td>
<td></td>
</tr>
<tr>
<td>PHY 241 General University Physics Laboratory</td>
<td></td>
</tr>
<tr>
<td>CIS/WRD 110 Composition and Communication II</td>
<td></td>
</tr>
<tr>
<td>MA 113 Calculus I</td>
<td></td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 103 Engineering Exploration II</td>
<td></td>
</tr>
<tr>
<td>CHE 105 General College Chemistry I</td>
<td></td>
</tr>
<tr>
<td>PHY 231 General University Physics</td>
<td></td>
</tr>
<tr>
<td>CIS/WRD 111 Composition and Communication II</td>
<td></td>
</tr>
<tr>
<td>MA 114 Calculus II</td>
<td></td>
</tr>
<tr>
<td>UK Core* – Social Sciences</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 232 General University Physics</td>
<td></td>
</tr>
<tr>
<td>PHY 242 General University Physics Laboratory</td>
<td></td>
</tr>
<tr>
<td>MA 213 Calculus III</td>
<td></td>
</tr>
<tr>
<td>CHE 107 General College Chemistry II</td>
<td></td>
</tr>
<tr>
<td>UK Core* – Humanities</td>
<td></td>
</tr>
<tr>
<td>ME 205 Computer Aided Engineering Graphics</td>
<td></td>
</tr>
<tr>
<td>EM 221 Statics</td>
<td></td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 220 Engineering Thermodynamics I</td>
<td></td>
</tr>
<tr>
<td>ME 251 Introduction to Materials and Manufacturing Processes</td>
<td></td>
</tr>
<tr>
<td>MA 214 Calculus IV</td>
<td></td>
</tr>
<tr>
<td>EM 313 Dynamics</td>
<td></td>
</tr>
<tr>
<td>UK Core* – Humanities</td>
<td></td>
</tr>
<tr>
<td>CHE 107 General College Chemistry II</td>
<td></td>
</tr>
<tr>
<td>UK Core* – Statistical Inferential Reasoning</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 302 Mechanics of Deformable Solids</td>
<td></td>
</tr>
<tr>
<td>EE 305 Electrical Circuits and Electronics</td>
<td></td>
</tr>
<tr>
<td>ME 330 Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>ME 340 Introduction to Mechanical Systems</td>
<td></td>
</tr>
<tr>
<td>WRD 204 Technical Writing**</td>
<td></td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 310 Engineering Experimentation I</td>
<td></td>
</tr>
<tr>
<td>ME 321 Engineering Thermodynamics II</td>
<td></td>
</tr>
<tr>
<td>ME 325 Elements of Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>ME 344 Mechanical Design</td>
<td></td>
</tr>
<tr>
<td>Mathematics Elective***</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 411 ME Capstone Design I</td>
<td></td>
</tr>
<tr>
<td>ME 311 Engineering Experimentation II</td>
<td></td>
</tr>
<tr>
<td>ME 440 Design of Control Systems</td>
<td></td>
</tr>
<tr>
<td>ME 501 Mechanical Design with Finite Element Methods</td>
<td></td>
</tr>
<tr>
<td>Technical Elective**</td>
<td></td>
</tr>
</tbody>
</table>

University of Kentucky

2017-2018 Undergraduate Bulletin

250
Second Semester

ME 412 ME Capstone Design II .. 3
Technical Elective? ... 6
Technical Elective? ... 6
Supportive Elective .. 3
UK Core* – Citizenship – US ... 3
UK Core* – Global Dynamics .. 3
§ Transfer students who declare a major will take EGR 112, Engineering Exploration for Transfer Students, in place of EGR 101.

Δ Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement.

* Based on advisor consult.
† Only if enrolled in PHY 231.
‡ To be selected from UK Core courses in consultation with the academic advisor.
**Graduation Composition and Communication Requirement (GCCR) course.

***Mathematics Elective – choose one course from approved list.
† Technical Electives – choose 9 hours from approved list.

Mathematics Elective

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 320 Introductory Probability</td>
<td>3</td>
</tr>
<tr>
<td>MA 321 Introduction to Numerical Methods</td>
<td>3</td>
</tr>
<tr>
<td>MA 322 Matrix Algebra and Its Applications</td>
<td>3</td>
</tr>
<tr>
<td>MA 416G Introduction to Optimization</td>
<td>3</td>
</tr>
<tr>
<td>MA 43G Methods of Applied Mathematics</td>
<td>1</td>
</tr>
<tr>
<td>MA 433G Introduction to Complex Variables</td>
<td>3</td>
</tr>
<tr>
<td>MA 481G Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>STA 381 Engineering Statistics – A Conceptual Approach</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal: Mathematics Elective .. 3

Supportive Elective

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 320 Introductory Probability</td>
<td>3</td>
</tr>
<tr>
<td>MA 321 Introduction to Numerical Methods</td>
<td>3</td>
</tr>
<tr>
<td>MA 322 Matrix Algebra and Its Applications</td>
<td>3</td>
</tr>
<tr>
<td>MA 416G Introduction to Optimization</td>
<td>3</td>
</tr>
<tr>
<td>MA 43G Methods of Applied Mathematics</td>
<td>1</td>
</tr>
<tr>
<td>MA 433G Introduction to Complex Variables</td>
<td>3</td>
</tr>
<tr>
<td>MA 481G Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>STA 381 Engineering Statistics – A Conceptual Approach</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal: Supportive Elective .. 3

Technical Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAE 502 Modeling of Biological Systems</td>
<td>3</td>
</tr>
<tr>
<td>BME 501 Foundations of Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 530 Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>EGR 599 Topics in Engineering (Variable Topics)</td>
<td>3</td>
</tr>
<tr>
<td>ME 380 Topics in Mechanical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 395 Independent Work in Mechanical Engineering</td>
<td>1-3</td>
</tr>
<tr>
<td>ME/MFS 503 Lean Manufacturing Principles and Practices</td>
<td>3</td>
</tr>
<tr>
<td>ME/MFS 505 Modeling of Manufacturing Processes and Machines</td>
<td>3</td>
</tr>
<tr>
<td>ME/MSE 506 Mechanics of Composite Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME/MFS 507 Design for Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>ME 510 Vibro-Acoustic Design in Mechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME/MFS 512 Manufacturing Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 513 Mechanical Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>ME 514 Computational Techniques in Mechanical System Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ME 515 Rotordynamics of Turbomachinery</td>
<td>3</td>
</tr>
<tr>
<td>ME 516 Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 527 Advanced Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME 528 Aerodynamics of Turbomachinery</td>
<td>3</td>
</tr>
<tr>
<td>ME 549 Power Generation</td>
<td>3</td>
</tr>
<tr>
<td>ME 555 Introduction to Micro-/Nano-Electromechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME/MSE 556 Introduction to Composite Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME 560 Engineering Optics</td>
<td>3</td>
</tr>
<tr>
<td>ME 563 Basic Combustion Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>ME 565 Scale Modeling in Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME/BAE 580 Heating, Ventilating and Air-Conditioning</td>
<td>3</td>
</tr>
<tr>
<td>ME 599 Topics in Mechanical Engineering (Subtitle required)</td>
<td>3</td>
</tr>
<tr>
<td>MFS 599 Topics in Manufacturing Systems Engineering (Subtitle required)</td>
<td>3</td>
</tr>
<tr>
<td>MSE 201 Materials Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal: Technical Electives: 9

TOTAL HOURS: 130

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING – PADUCAH

In addition to the program on the Lexington campus, students can pursue a B.S. degree in mechanical engineering through the College’s Extended Campus Program in Paducah, Kentucky. The Paducah program uses the same curriculum as the main campus, but provides the opportunity for students to complete all B.S. degree requirements without having to relocate to Lexington.

Consistent with the Vision and Mission statements of the University of Kentucky, the mechanical engineering program at the UK Extended Campus in Paducah strives to meet the following educational objectives:

The mechanical engineering program will prepare our students for successful practice or academic pursuits in mechanical engineering.

1. Our graduates will practice mechanical engineering in a variety of fields as professionals and/or be recruited to graduate and professional schools in their career paths.
2. Our graduates will communicate effectively, work in diverse teams, address the challenges of a global society, and exhibit leadership, ethics, and creativity in their work places.
3. Our graduates will value continuing education and professional growth by supporting or participating in professional societies, licensure programs, short courses, or other professional development activities.

The Paducah mechanical engineering program collaborates with West Kentucky Community and Technical College to provide the basic math and science courses, as well as the general studies course requirements. On-site UK mechanical engineering faculty members teach the engineering courses. Program admission, course registration, student advising and other student services can all be completed at the Paducah site.

Degree Requirements

The curriculum requirements for the B.S. degree in mechanical engineering in Paducah are identical to those on the Lexington campus. Refer to those degree requirements for the Paducah degree program. Not all the technical electives listed for the Lexington program will be available in Paducah. The student must satisfy the College graduation requirements listed earlier.

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

Joint-Degree Program Offered by Western Kentucky University (WKU) and the University of Kentucky (UK)

As part of the “Strategy for Statewide Engineering Education in Kentucky,” adopted July 17, 2000 by all the chief executive officers of Kentucky universities and endorsed by the Kentucky Council on Postsecondary Education (CPE), the vision was expressed that “access to undergraduate engineering education will expand primarily through the creation of joint programs managed by multiple postsecondary institutions.” In response, WKU and UK now jointly offer an ABET-accredited baccalaureate degree in mechanical engineering on the WKU campus in Bowling Green, Kentucky. By CPE definition, a joint-degree program is “a program that is mutually sponsored by two or more institutions leading to a single credential or degree, which is conferred by both or all participating institutions. All institutions share responsibility for all aspects of the program’s delivery and quality.”

The joint mechanical engineering program is one of only four such joint-degree programs in Kentucky; the others include a joint-degree program between WKU and UK in civil engineering, between WKU and the University of Louisville (UL) in electrical engineering, and between Murray State University and UL in electrical and telecommunications engineering.

The WKU/UK joint programs emphasize a project-oriented educational approach. Courses are provided by both WKU and UK faculty. Students are required to complete a minimum of 16 credit hours of engineering course work taught by UK engineering faculty. At present, the UK contribution is provided primarily by distance delivery via interactive television. The curriculum of the joint mechanical engineering program is under the direction of a joint program faculty, with equal representation from each participating institution. The curriculum for entering students requires 127.5 credit hours, with the General Studies component based on the requirements of WKU. Students who complete the program will receive a B.S. degree conferred jointly by WKU and UK. Under the terms of the agreements between the degree-awarding institutions, WKU provides basic administrative support for students in the joint-degree program, including admission services,
registration, and student financial aid. In addition, academic advising, laboratory and equipment support, and library and media resources are supplied by WKU.

The mechanical engineering curriculum of the joint program is listed below. The joint program faculty are responsible for on-going review of the curricular requirements.

Curriculum

Freshman Year

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 176 Freshman Design</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 116/116 Intro Coll. Chem/LAB</td>
<td>4</td>
</tr>
<tr>
<td>MATH 136 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>ENG 100 Freshman English</td>
<td>3</td>
</tr>
<tr>
<td>COMM 161 Business Speaking</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 180 Freshman Design</td>
<td>3</td>
</tr>
<tr>
<td>MATH 137 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 255/256 Intro. Mech. & LAB (4, 1)</td>
<td>5</td>
</tr>
<tr>
<td>EM 221 UK Statics</td>
<td></td>
</tr>
<tr>
<td>Category F Elective 1 of 2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Sophomore Year

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 331 Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>ME 240/241 Mats./Mech. & LAB (3, 1)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 265/266 Intro E&M & LAB (4, 5)</td>
<td>1</td>
</tr>
<tr>
<td>Category F Elective 2 of 2</td>
<td></td>
</tr>
<tr>
<td>ENG 200 Introduction to Literature</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 237 Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>EM 313 UK Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>HIST 119/120 Western Civilization</td>
<td>3</td>
</tr>
<tr>
<td>ME 200 Sophomore Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 347 Mechanics LAB</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Junior Year

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 220 Eng. thermo I</td>
<td>3</td>
</tr>
<tr>
<td>ME 310 Eng. Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>ME 344 UK Mechanical Design</td>
<td>3</td>
</tr>
<tr>
<td>MATH/SCIENCE ELECTIVE</td>
<td></td>
</tr>
<tr>
<td>Category B Elective 1 of 2</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 300 Junior Design</td>
<td>2</td>
</tr>
<tr>
<td>ME 330/332 Fluid Mechanics/LAB</td>
<td>3</td>
</tr>
<tr>
<td>EE 210 Circuits/Networks 1</td>
<td>3.5</td>
</tr>
<tr>
<td>Category C Elective 1 of 2</td>
<td></td>
</tr>
<tr>
<td>Foreign Lang. Modern Language</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Senior Year

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 325/333 Heat Transfer/LAB</td>
<td>3</td>
</tr>
<tr>
<td>ME 400 Mech. Engr. Design</td>
<td>2</td>
</tr>
<tr>
<td>ME --- ME Tech Elective 1 of 4</td>
<td>3</td>
</tr>
<tr>
<td>ME --- ME Tech Elective 2 of 4</td>
<td>3</td>
</tr>
<tr>
<td>ENG 300 Junior English</td>
<td>3</td>
</tr>
<tr>
<td>Category E Elective 1 of 1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 412 ME Senior Project</td>
<td>3</td>
</tr>
<tr>
<td>ME --- ME Tech Elective 3 of 4</td>
<td>3</td>
</tr>
<tr>
<td>ME --- ME Tech Elective 4 of 4</td>
<td>3</td>
</tr>
<tr>
<td>Category B Elective 2 of 2</td>
<td>3</td>
</tr>
<tr>
<td>Category C Elective 2 of 2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

TOTAL HOURS 127.5

This curriculum applies to students entering in fall 2013 or later. Currently enrolled students may complete a “Request to Change or Extend Catalog Term/Year” form found on the ICAP main page.

Students are admitted as a Pre-Major in Mechanical Engineering. In order to transition from Pre-Major to Major and to graduate with a degree in Mechanical Engineering, students must satisfy the requirements below. All courses listed below must have a grade of C or better.

Written and Oral Communication

ENG 100 or equivalent credit

Engineering Design

ME 176 Mech Engineering Freshman Design

Mathematics and Science

MATH 136 Calculus I or equivalent credit

Engineering Science

ME 240/241 Materials and Methods of Mfg

TOTAL HOURS 43-44

These Pre-Major eligibility requirements MUST be completed before enrolling ME 300 Junior Design. Check iCAP for progress towards meeting these requirements.

After satisfying the requirements to transition from Pre-Major to Major in Mechanical Engineering, the student must also earn a grade of C or better in the following courses required of the major: ME 303, ME 200, 220, 310, 330, 347, and MATH 331.

Each Mechanical Engineering student’s transcript must include at least 16 hours of credit in the major taught by UK faculty members.

UK faculty are scheduled to deliver the following courses to the ME Joint Program: EM 221, EM 313, ME 321, ME 344, ME 416, and a range of technical electives. ME 489 (fall) or 499 (spring)

Each Mechanical Engineering student must also take at least one mathematics/science elective, for a total of a minimum of 32 hours of mathematics and science beginning at MATH 136. This elective must be chosen from the following list:

ME Program Mathematics and Science Electives

PH 280 Introduction to Environmental Science (Equivalent to AGRI 280, CHEM 280, ENV 280, and GEOG 280)

ASTR 214 General Astronomy

BIOL 120/121 Biological Concepts: Cells Metabolism and Genetics

BIOL 122/123 Biological Concepts: Evolution, Diversity, and Ecology

BIOL 207/207C General Microbiology

CHEM 222/223 College Chemistry II

GEOG 121 Meteorology

GEOL 111 The Earth

GEOL 112 Earth History

PHYS 316 Computational Physics

PHYS 318 Data Acquisition Using Labview

PHYS 320 Introductory Modern Physics

MATH 305 Introduction to Mathematical Modeling

MATH 307 Introduction to Linear Algebra

MATH 310 Introduction to Discrete Mathematics

MATH 370 Applied Techniques in Mathematics

STAT 301 Introductory Probability and Applied Statistics

Consult the WKU Undergraduate Catalog and ICAP for category B, C, E, and F electives. Categories A and D are covered by the plan of study shown. Review the WKU Undergraduate Catalog for current policies concerning the foreign language course.

BACHELOR OF SCIENCE IN MINING ENGINEERING

Mining engineering requires the broadest knowledge of sciences and other fields of engineering in its practice after graduation. The curriculum below prepares the student for a career in the field of mining.

The program educational objectives of the undergraduate program in mining engineering take into consideration the university mission and the constituents’ needs by producing graduates who, in their first few years after graduation, will be able to:

- Advance in their careers, adapting to new situations and emerging problems, through the application of general purpose engineering skills and the core technical disciplines, analytical procedures, and design practices of the mining engineering profession.
- Function ethically in a variety of professional roles such as mine planner, designer, production manager, mineral processing engineer, consultant, technical support representative and regulatory specialist.
- Pursue advanced degrees in mineral-related fields and also those fields that support the mineral industries such as business and law.
- Utilize professional skills such as effective communication, teamwork, and leadership.
- Demonstrate an understanding of the critical role mining engineers play in society with respect to health, safety, and the environment in tangible ways such as achieving professional licensure.

Visit our Web page at: www.engr.uky.edu/mng

Degree Requirements

Each student must complete the following:

UK Core Requirements

See the UK Core section of this Bulletin for the complete UK Core requirements. The courses listed below are (a) recommended by the college, or (b) required courses that also fulfill UK Core areas. Students should work closely with their advisor to complete the UK Core requirements.

1. Intellectual Inquiry in Arts and Creativity

 EGR 103 Engineering Exploration I 1

 EGR 103 Engineering Exploration II 2

2. Social and Behavioral Sciences

 BIOL 170 General Biology 3

 PSYCH 115 General Psychology 4

 SOC 105 Introduction to Sociology 5

College of Engineering

University of Kentucky

2017-2018 Undergraduate Bulletin

252
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 102</td>
<td>Fundamentals of Engineering Computing</td>
<td>2</td>
</tr>
<tr>
<td>MNG 291</td>
<td>Elements of Mine Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 330</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 220</td>
<td>Engineering Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>EM 313</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>EM 302</td>
<td>Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
<tr>
<td>MA 113</td>
<td>Principles of Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td>PHY 231</td>
<td>General University Physics</td>
<td>4</td>
</tr>
<tr>
<td>MA 110</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MA 114</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MA 213</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MNG 201</td>
<td>Mining Engineering Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>PHY 231</td>
<td>General University Physics</td>
<td>4</td>
</tr>
<tr>
<td>MNG 335</td>
<td>Introduction to Mine Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MNG 311</td>
<td>Mine Ventilation</td>
<td>3</td>
</tr>
<tr>
<td>MNG 351</td>
<td>Underground Mine Design</td>
<td>3</td>
</tr>
<tr>
<td>MNG 371</td>
<td>Professional Development of Mining Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MNG 435</td>
<td>Mine Systems Engineering and Economics</td>
<td>4</td>
</tr>
<tr>
<td>MNG 463</td>
<td>Surface Mine Design</td>
<td>3</td>
</tr>
<tr>
<td>BAE 535</td>
<td>Mine 564 Environmental Control System Design and Reclamation</td>
<td>3</td>
</tr>
<tr>
<td>MNG 551</td>
<td>Rock Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>MNG 591</td>
<td>Mine Design Project I</td>
<td>1</td>
</tr>
<tr>
<td>MNG 592</td>
<td>Mine Design Project II</td>
<td>1</td>
</tr>
<tr>
<td>EES 220</td>
<td>Principles of Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td>EM 221</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>EM 320</td>
<td>Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
<tr>
<td>EM 313</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 220</td>
<td>Engineering Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>ME 330</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MNG 211</td>
<td>Mine Surveying</td>
<td>2</td>
</tr>
<tr>
<td>MNG 291</td>
<td>Elements of Mine Design</td>
<td>3</td>
</tr>
<tr>
<td>MNG 301</td>
<td>Minerals Processing</td>
<td>3</td>
</tr>
<tr>
<td>MNG 302</td>
<td>Minerals Processing Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MNG 303</td>
<td>Deformable Solids Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MNG 311</td>
<td>Electrical Circuits and Mining Machinery</td>
<td>3</td>
</tr>
<tr>
<td>MNG 322</td>
<td>Mine Safety and Health</td>
<td>3</td>
</tr>
<tr>
<td>MNG 330</td>
<td>Explosives and Blasting</td>
<td>2</td>
</tr>
<tr>
<td>MNG 332</td>
<td>Mine Plant Machinery</td>
<td>3</td>
</tr>
<tr>
<td>MNG 335</td>
<td>Introduction to Mine Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MNG 341</td>
<td>Mine Ventilation</td>
<td>3</td>
</tr>
<tr>
<td>MNG 351</td>
<td>Underground Mine Design</td>
<td>3</td>
</tr>
<tr>
<td>MNG 371</td>
<td>Professional Development of Mining Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MNG 435</td>
<td>Mine Systems Engineering and Economics</td>
<td>4</td>
</tr>
<tr>
<td>MNG 463</td>
<td>Surface Mine Design</td>
<td>3</td>
</tr>
<tr>
<td>MNG 551</td>
<td>Rock Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>MNG 591</td>
<td>Mine Design Project I</td>
<td>1</td>
</tr>
</tbody>
</table>

UK Core – Humanities

Major Requirements

Graduation Composition and Communication Requirement (GCCR)

Preliminary Requirements

Premajor Requirements

Electives

Curriculum

Freshman Year

First Semester

EGR 101 Engineering Exploration I
EGR 102 Fundamentals of Engineering Computing
CHE 105 General College Chemistry I

Second Semester

EGR 103 Engineering Exploration II
CHE 105 General College Chemistry I

Sophomore Year

First Semester

EES 220 Principles of Physical Geology

Second Semester

EES 230 Principles of Geology I

Junior Year

First Semester

ME 330 Fluid Mechanics

Second Semester

ME 301 Minerals Processing

Senior Year

First Semester

MNG 322 Mine Safety and Health

Second Semester

MNG 392 Mine Design Project II

Technical Electives: Students are required to select their technical elective from the departmental courses listed below:

- EGR 511: Power Systems Design
- MNG 511: Advanced Blast Design and Technology
- MNG 541: Computer Design of Mine Ventilation Systems
- MNG 552: Ground Control Software and Analysis
- MNG 561: Mine Construction Engineering
- MNG 575: Coal Preparation Design
- MNG 580: Mineral Processing Plant Design
- MNG 599: Topic in Mining Engineering

University of Kentucky 2017-2018 Undergraduate Bulletin

253