Acute Pulmonary Embolism
Stavros Konstantinides, M.D.

A 62-year-old man presented with a 5-day history of progressively worsening dyspnea and orthopnea after returning from a 3-day business trip to the Far East. On physical examination, the heart rate was 102 beats per minute, and the blood pressure 110/60 mm Hg. The arterial oxygen saturation was 86% while the patient was breathing ambient air. The neck veins were distended. There was no heart murmur. The lungs were clear, and the extremities appeared normal. The D-dimer level was 5.13 mg per liter (normal level, less than 0.5), and the troponin T level was less than 0.01 μg per liter. A computed tomographic (CT) scan showed multiple thrombi in the pulmonary arteries and a dilated right ventricle. How should this case be managed?

The Clinical Problem
Acute pulmonary embolism is a major cause of complications and death associated with surgery, injury, and medical illnesses, and it may occur after long-distance air travel. Venous thromboembolism is responsible for up to 15% of all in-hospital deaths, and it also accounts for 20 to 30% of deaths associated with pregnancy and delivery in the United States and Europe. Overall, the annual incidence of pulmonary embolism has been reported to range between 23 and 69 cases per 100,000 population.1,2 Case fatality rates vary widely depending on the severity of the disease3,4; at an average case fatality rate within 2 weeks of diagnosis of approximately 11%,5 the Surgeon General estimates that venous thromboembolism accounts for at least 100,000 deaths each year.6

Strategies and Evidence
Diagnostic Approach to Suspected Pulmonary Embolism
The predisposing factors for and diagnostic evaluation of suspected pulmonary embolism have recently been reviewed in the Journal.7 Individual symptoms such as dyspnea, chest pain, or cough; clinical signs such as tachypnea, tachycardia, or evidence of deep-vein thrombosis; and routine laboratory findings, including hypoxemia and hypocapnia, have low sensitivity and specificity for the diagnosis. Electrocardiographic and radiographic findings also have low sensitivity and specificity, although they are helpful in strengthening (or weakening) the clinical suspicion. Scores derived from explicit prediction rules that combine clinical findings at presentation with predisposing factors have proved useful in determining the clinical or pretest probability of pulmonary embolism. Use of the Wells score8 or of the Geneva score9 is recommended, since these scores may guide a further diagnostic workup and improve the interpretation of diagnostic test results (Fig. 1; and Table 1 in the Supplementary Appendix, available with the full text of this article at www.nejm.org).13

For patients who have a low or moderate pretest probability of pulmonary embolism, D-dimer testing is recommended as the next step in establishing a diagnosis.
A d-dimer level below 0.5 mg per liter, as assessed with the use of a highly sensitive enzyme-linked immunosorbent assay, reliably rules out the presence of circulating fibrin and thus essentially rules out a diagnosis of venous thromboembolism. Negative d-dimer results may eliminate the need for further diagnostic testing in almost 30% of patients with suspected pulmonary embolism. However, a d-dimer test should not be used in patients with a high clinical probability of pulmonary embolism, since the negative predictive value of this test is low for these patients. Furthermore, d-dimer testing can be omitted as a diagnostic step in patients who are older than 80 years of age, are hospitalized, or have cancer, as well as in pregnant women, because d-dimer concentrations are frequently (and nonspecifically) elevated in such patients.

IMAGING OF THE LEG VEINS AND PULMONARY ARTERIES

A compression ultrasonographic examination detects proximal deep-vein thrombosis in about 20% of patients with pulmonary embolism, and the rate of detection is twice as high when the distal veins are also examined. A positive result essentially establishes the diagnosis of venous thromboembolism and can obviate the need for additional imaging studies. Furthermore, when performed in combination with single-detector CT angiography, leg-vein ultrasonography enhances the sensitivity of that procedure.

Currently, most centers perform multidetector CT, which can reliably be used as a single imaging test to diagnose or rule out pulmonary embolism in the majority of cases (Fig. 1). Multidetector CT also provides potentially useful prognostic information by permitting an assessment of the size of the right ventricle. CT-based algorithms, which have been validated in prospective trials of the management of pulmonary embolism, emphasize the need to consider the findings of this test in conjunction with an assessment of clinical probability and the results of d-dimer testing (Fig. 1). This strategy successfully guides management decisions in almost 98% of patients; the 3-month risk of a recurrence of venous thromboembolism among patients in whom this evaluation rules out pulmonary embolism is as low as 1%. Combining CT pulmonary angiography and CT venography in a single procedure is generally not recommended, since that combination increases exposure to radiation without significantly enhancing the specificity or negative predictive value of CT angiography.

Ventilation–perfusion lung scanning remains an alternative to CT angiography when injection of a contrast dye is a concern. A normal scan can rule out the disease, but the scan is normal in no more than about a third of patients with suspected pulmonary embolism, whereas inconclusive findings are frequent. Therefore, a lung scan is generally not recommended as a single diagnostic test to confirm the presence of pulmonary embolism. The use of selective pulmonary angiography has declined and is currently reserved for cases in which catheter-based treatment is an option. Currently, magnetic resonance imaging does not have adequate sensitivity for imaging distal branches of the pulmonary arteries and thus cannot be recommended yet as a test for suspected acute pulmonary embolism.

Patients with suspected pulmonary embolism who present with arterial hypotension or shock pose a particular challenge. The clinical probability is, as a rule, high, and immediate diagnosis and initiation of treatment can be lifesaving. Multidetector CT is the preferred diagnostic test in most hospitals. However, bedside echocardiography may be a valuable alternative if CT is not immediately available or if the patient’s condition is too unstable for a transfer to the radiology department (Fig. 2).

TREATMENT OPTIONS

INITIAL ANTICOAGULATION

Anticoagulation with heparin should be initiated without delay in all patients with confirmed pulmonary embolism. It is also recommended for patients with an intermediate or high clinical probability of pulmonary embolism until the results of further diagnostic tests are available. A meta-analysis of several major trials showed that low-molecular-weight heparins are at least as effective as unfractionated heparin in preventing a recurrence of symptomatic venous thromboembolism (3-month recurrence rate, 3.0% vs. 4.4%; odds ratio, 0.68; 95% confidence interval [CI], 0.42 to 1.09), and at least as safe with respect to the rate of major bleeding (1.3% vs. 2.1%; odds ratio, 0.67; 95% CI, 0.36 to 1.27). Similar data were obtained with the use of the pentasaccharide fondaparinux. Fondaparinux or low-molecular-weight heparins are currently preferred to unfractionated heparin because they are easier to administer and...
Clinical Probability Score

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms and signs of deep-vein thrombosis</td>
<td>3.0</td>
</tr>
<tr>
<td>Heart rate >100 beats/min</td>
<td>1.5</td>
</tr>
<tr>
<td>Recent immobilization or surgery (<4 wk)</td>
<td>1.5</td>
</tr>
<tr>
<td>Previous deep-vein thrombosis or pulmonary embolism</td>
<td>1.5</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>1.0</td>
</tr>
<tr>
<td>Cancer</td>
<td>1.0</td>
</tr>
<tr>
<td>Pulmonary embolism more likely than alternative diagnosis</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Figure 1. Diagnostic Algorithm for Suspected Pulmonary Embolism in a Patient without Hypotension or Shock.

This assessment of clinical probability is based on the Wells score (which has a range of 0 to 12.5, with higher scores indicating higher clinical probability). The revised Geneva score may be used as an alternative (see Table 1 in the Supplementary Appendix). If a moderately sensitive latex-derived d-dimer assay is used instead of the highly sensitive enzyme-linked immunosorbent d-dimer assay, pulmonary embolism can be ruled out only in patients with a low clinical probability. Alternatively, the Wells score can be dichotomized, classifying pulmonary embolism as unlikely (<4.0) or likely (>4.0). For patients in whom pulmonary embolism is considered unlikely, either a highly sensitive or a moderately sensitive d-dimer assay can be used to rule out the diagnosis without need for further testing. If multidetector CT pulmonary angiography, with or without venography, is negative in a patient with a high clinical probability, the possibility of a false negative result should be considered, and further testing performed to rule out pulmonary embolism. Options include serial venous ultrasonography, ventilation–perfusion lung scanning, and pulmonary angiography. If a multidetector CT scan shows only subsegmental defects in a patient with a low clinical probability, the possibility of a false positive result should be considered, and further testing (e.g., venous ultrasonography) should be performed to confirm the diagnosis. This may also apply to patients with an intermediate clinical probability, although the need for further tests is less well established for these patients.

are associated with lower rates of heparin-induced thrombocytopenia (see below).

The recommended doses of the heparins that are currently approved for the treatment of pulmonary embolism are shown in Table 1. Heparin treatment is continued for at least 5 to 6 days in combination with oral anticoagulation (vitamin K antagonists) until the international normalized ratio (INR) is within the therapeutic range (2.0 to 3.0) for 2 consecutive days.

The incidence and management of heparin-induced thrombocytopenia have been reviewed in the Journal and in recent guidelines. The risk of this potentially fatal complication (mortality, 8 to 20%) depends on both the type of heparin used and the clinical setting. The incidence is highest (3 to 5%) among patients who have undergone orthopedic surgery and received unfractionated heparin. Among medical and surgical patients receiving low-molecular-weight heparin, the incidence is less than 1%, and among patients receiving fondaparinux, the risk is negligible. The current recommendations for the monitoring of platelet counts during heparin treatment are sum-
Table 1. When there is an intermediate or high clinical suspicion of heparin-induced thrombocytopenia, all sources of heparin should be discontinued, and therapy with direct parenteral thrombin inhibitors, particularly argatroban or lepirudin, should be initiated; bivalirudin is approved for patients undergoing percutaneous coronary interventions.

Thrombolysis

Results from randomized trials have shown that thrombolytic agents (e.g., urokinase, streptokinase, and alteplase) rapidly resolve thromboembolic obstruction and have favorable hemodynamic effects. The greatest benefit is observed when treatment is initiated within 48 hours after the onset of symptoms, but thrombolysis can still be effective in patients who have had symptoms for up to 14 days. However, thrombolytic therapy carries a significant risk of bleeding. Pooled data from studies assessing various thrombolytic regimens showed that there was a 13% cumulative rate of major bleeding and a 1.8% rate of intracranial or fatal hemorrhage. In weighing the clinical benefits against the risks of thrombolysis, the presence and severity of hemodynamic instability due to right ventricular failure appear to be the critical factors. A meta-analysis of five randomized trials that included patients with arterial hypotension or shock showed that thrombolysis effectively reduced the risk of death or recurrent pulmonary embolism (9.4%, vs. 19.0% with heparin alone;
Table 1. Anticoagulant Drugs for Initial Treatment of Pulmonary Embolism.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfractionated heparin</td>
<td>80 IU/kg of body weight as an intravenous bolus, followed by continuous infusion at the rate of 18 IU/kg/hr</td>
<td>Adjust infusion rate to maintain aPTT between 1.5 and 2.5 times control, corresponding to therapeutic heparin levels (0.3 to 0.7 IU/ml by factor Xa inhibition); monitor platelet count at baseline and every other day from day 4 to day 14 or until heparin is stopped; investigate for heparin-induced thrombocytopenia if platelet count falls by ≥50% or a thrombotic event occurs.</td>
</tr>
<tr>
<td>Low-molecular-weight heparins</td>
<td></td>
<td>Low-molecular-weight heparins have not been tested in patients with arterial hypertension or shock and thus are not recommended for such patients; monitoring of anti–factor Xa levels may be helpful in patients at increased risk for bleeding, particularly those with moderate or severe renal impairment; the need for monitoring anti–factor Xa levels in pregnant women remains controversial; monitor platelet count at baseline and every 2 to 4 days from day 4 to day 14 or until heparin is stopped.</td>
</tr>
<tr>
<td>Enoxaparin</td>
<td>1.0 mg/kg every 12 hr or 1.5 mg/kg once daily§</td>
<td>If creatinine clearance is <30 ml/min, reduce enoxaparin dose to 1 mg/kg once daily; consider unfractionated heparin infusion as an alternative.</td>
</tr>
<tr>
<td>Tinzaparin</td>
<td>175 U/kg once daily</td>
<td>This drug is contraindicated in patients with severe renal impairment (creatinine clearance, <30 ml/min); no routine platelet monitoring is necessary.</td>
</tr>
<tr>
<td>Fondaparinux§</td>
<td>5 mg (body weight, <50 kg); 7.5 mg (body weight, 50–100 kg); or 10 mg (body weight, >100 kg), administered once daily</td>
<td></td>
</tr>
</tbody>
</table>

* The abbreviation aPTT denotes activated partial-thromboplastin time.
† Unfractionated heparin is the preferred treatment in patients with severe renal dysfunction (creatinine clearance, <30 ml per minute), since it is not eliminated by the kidneys, and in patients with an increased risk of bleeding (i.e., those with congenital or acquired bleeding diathesis, active ulcerative or angiodysplastic gastrointestinal disease, recent hemorrhagic stroke, recent brain, spinal, or ophthalmologic surgery, diabetic retinopathy, or bacterial endocarditis), owing to its short half-life and reversible anticoagulant effects.
‡ It is recommended that the treatment dose be adjusted on the basis of standardized nomograms such as that proposed by Raschke et al.27
§ Tinzaparin and fondaparinux are explicitly approved for the treatment of acute pulmonary embolism. Enoxaparin is approved for the treatment of deep-vein thrombosis with or without pulmonary embolism.
¶ This recommendation applies to postoperative patients and to medical or obstetrical patients who have received unfractionated heparin within the past 100 days.28,29 For medical or obstetrical patients who have received only low-molecular-weight heparin, some authorities recommend no routine monitoring of platelet counts.28
| Once-daily injection of enoxaparin at a dose of 1.5 mg per kilogram is approved for inpatient treatment of pulmonary embolism in the United States and in some, but not all, European countries. |

odds ratio, 0.45; 95% CI, 0.22 to 0.92; number needed to treat, 10).30 Accordingly, thrombolysis is indicated in the case of patients with pulmonary embolism who have arterial hypotension or are in shock.13,24 In contrast, the benefits of thrombolysis in patients with pulmonary embolism who have normal blood pressure are less well established. Results from a randomized trial suggested that selected patients with evidence of right ventricular dysfunction and a low risk of bleeding may benefit from early thrombolysis.33 In that study, early treatment with alteplase plus heparin, as compared with conventional anticoagulation therapy, reduced the need for emergency therapeutic measures during the hospital stay; however, no benefit was found with respect to in-hospital mortality.

An overview of thrombolytic regimens for the treatment of pulmonary embolism is shown in Table 2, along with a list of absolute and relative contraindications to this type of treatment. Data from head-to-head trials indicate that the approved thrombolytic agents are equivalent in terms of the clinical outcomes; regimens with shorter infusion periods are thus preferred. Direct infusion of thrombolytic agents through a catheter in the pulmonary artery has not been shown to offer any advantages over systemic intravenous thrombolysis.24

SURGICAL AND INTERVENTIONAL TREATMENT OF PULMONARY EMBOLISM

For patients with arterial hypotension or shock in whom thrombolysis has failed or is absolutely contraindicated (Table 2), emergency surgical embolectomy can be a lifesaving treatment option, provided that the surgery can be performed on site.
Surgical removal of pulmonary emboli is also generally recommended in the case of patients who have free-floating thrombi in the right atrium or ventricle and in the case of those with impending paradoxical embolism through a patent foramen ovale. Alternatively, selected patients with hypotension or shock who cannot receive thrombolytic therapy may be candidates for percutaneous catheter thrombectomy.

Inferior vena cava filters, which are used as a means of protection against recurrent venous thromboembolism, have been available for almost 40 years. Permanent filters are associated with long-term sequelae such as deep-vein thrombosis and the post-thrombotic syndrome. The use of these filters in patients with pulmonary embolism is generally discouraged. On the other hand, the placement of retrievable venous filters may be considered when both the risk of recurrent pulmonary embolism and the risk of bleeding associated with anticoagulation are very high. This situation can occur, for example, in the case of a person with extensive thrombosis during the early postoperative period after neurosurgery or in the case of a pregnant woman who is thought to be within a few days of delivery. The optimal duration of filter use is unknown; generally, filters should be removed as soon as it is safe to resume anticoagulation therapy.

Table 2. Thrombolytic Agents and Regimens and Contraindications to Thrombolysis.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Regimen</th>
<th>Contraindications to Thrombolysis*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptokinase†</td>
<td>250,000 U as a loading dose over a 30-min period, followed by 100,000 U/hr over a period of 12–24 hr; accelerated regimen, 1.5 million IU over a 2-hr period;‡</td>
<td>Absolute — history of hemorrhagic stroke or stroke of unknown origin, ischemic stroke in previous 6 mo, central nervous system neoplasms, major trauma, surgery, or head injury in previous 3 wk</td>
</tr>
<tr>
<td>Urokinase†‡</td>
<td>4400 U/kg of body weight as a loading dose over a 10-min period, followed by 4400 U/kg over a period of 12–24 hr; accelerated regimen, 3 million U over a 2-hr period;‡</td>
<td>Relative — transient ischemic attack in previous 6 mo, oral anticoagulation, pregnancy or first postpartum week, noncompressible puncture sites, traumatic resuscitation, refractory hypotension (systolic pressure, >180 mm Hg), advanced liver disease, infective endocarditis, active peptic ulcer</td>
</tr>
<tr>
<td>Alteplase†</td>
<td>100 mg over a 2-hr period;§ accelerated regimen, 0.6 mg/kg over a 15-min period</td>
<td></td>
</tr>
<tr>
<td>Reteplase‖</td>
<td>Two bolus injections of 10 U 30 min apart</td>
<td></td>
</tr>
<tr>
<td>Tenecteplase**</td>
<td>30- to 50-mg bolus over a 5–10-sec period, adjusted for body weight (<60 kg, 30 mg; ≥60 to <70 kg, 35 mg; ≥70 to <80 kg, 40 mg; ≥80 to <90 kg, 45 mg; ≥90 kg, 50 mg)</td>
<td></td>
</tr>
</tbody>
</table>

* The list of contraindications to thrombolysis has been adapted from guidelines for the management of acute myocardial infarction. The contraindications apply to all thrombolytic agents.
† Unfractionated heparin should not be infused concurrently with streptokinase or urokinase; it can be given during alteplase or reteplase administration. Low-molecular-weight heparins have not been tested in combination with thrombolysis in patients with pulmonary embolism.
‡ Short (2-hour) infusion periods are generally recommended.
§ Urokinase is available in some European countries but not in the United States.
¶ This is the regimen approved by the Food and Drug Administration.
‖ This is an off-label use of reteplase.
** This is an off-label use of tenecteplase. The regimen listed here is the one recommended for patients with acute myocardial infarction. Preliminary evidence suggests that it is safe and effective in patients with pulmonary embolism as well.

or the patient can be referred promptly to a specialized tertiary center. Surgical removal of pulmonary emboli is also generally recommended in the case of patients who have free-floating thrombi in the right atrium or ventricle and in the case of those with impending paradoxical embolism through a patent foramen ovale. Alternatively, selected patients with hypotension or shock who cannot receive thrombolytic therapy may be candidates for percutaneous catheter thrombectomy.

Non–High-Risk Pulmonary Embolism

Non–high-risk pulmonary embolism identifies an embolism in patients who have normal blood pressure on presentation. These patients have a low risk of death or complications during their hospital stay (Table 3). If pulmonary embolism is clinically suspected in a patient without hemodynamic compromise, it is advisable to initiate anticoagulant treatment with unfractionated or low-molecular-weight heparin while awaiting the results of further diagnostic tests. After confirmation of the diagnosis of pulmonary embolism on the basis of algorithms such as the one proposed in Figure 1, low-molecular-weight heparin or fondaparinux, given subcutaneously at weight-adjusted doses (Table 1) without routine monitoring of anti-Factor Xa, is the treatment of choice. As a rule, aggressive recanalization such as that attained
with early thrombolytic treatment is not recommended in patients with non–high-risk pulmonary embolism (Table 3).

Intermediate-risk (submassive) pulmonary embolism identifies an embolism in a subgroup of normotensive patients who may have an elevated risk of death or serious complications if they present with right ventricular dysfunction or injury to the myocardium as a result of pressure overload. A number of echocardiographic findings (briefly mentioned in Fig. 2) have been used in cohort studies to establish the diagnosis of right ventricular dysfunction. Although standardization of these findings was generally poor, the results of these studies and the post hoc analysis of data from a large registry appear to confirm that right ventricular dysfunction detected on an echocardiogram may be an independent predictor of an adverse outcome. Retrospective data also suggest that detection of right ventricular enlargement on the four-chamber view of the CT scan is of prognostic relevance. In addition, cardiac biomarkers, particularly troponins and natriuretic peptides, have been used to detect myocardial dysfunction and injury, respectively, in patients with acute pulmonary embolism. These biomarkers have high negative predictive values (i.e., normal levels indicate a low risk of death or complications) but low positive predictive values, such that elevated levels alone do not dictate the need for aggressive early treatment other than anticoagulation therapy with heparin.

Currently, low-molecular-weight heparin or fondaparinux is considered to be adequate treatment for most normotensive patients with intermediate-risk pulmonary embolism (Table 3). However, early thrombolysis may be considered for selected patients who have a high risk of early death (due, for example, to preexisting heart failure or respiratory failure) and for whom thrombolytic agents are not contraindicated (Table 2).

Table 3. Stratification of Risk of Death Associated with Pulmonary Embolism and Severity-Adjusted Treatment.

<table>
<thead>
<tr>
<th>Early Risk of Death</th>
<th>Risk Factor</th>
<th>Recommended Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock or Hypotension (on Clinical Examination)</td>
<td>Right Ventricular Dysfunction (on Echocardiography or Multidetector CT)</td>
<td>Myocardial Injury (on Cardiac Troponin Testing)</td>
</tr>
<tr>
<td>High</td>
<td>Present</td>
<td>Present †</td>
</tr>
<tr>
<td>Non-high</td>
<td>Intermediate §</td>
<td>Absent</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Low</td>
<td>Absent</td>
<td>Absent</td>
</tr>
</tbody>
</table>

* Adapted with modifications from the 2008 Guidelines on the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology. NA denotes not applicable.

† If RV function is normal on echocardiography, or if a CT scan shows no RV dilatation in a patient with hemodynamic compromise and clinically suspected pulmonary embolism, an alternative diagnosis should be sought.

‡ Troponin test results do not influence risk assessment or treatment in hemodynamically compromised patients with acute pulmonary embolism.

§ Although it has been suggested that normotensive patients with both RV dysfunction and myocardial injury have a higher risk of death than those with only one of these risk factors, there is currently no definitive proof that they should receive more aggressive treatment.
pending the results of further diagnostic tests. If the diagnosis of massive pulmonary embolism is confirmed on the basis of algorithms such as the one proposed in Figure 2, thrombolytic agents should be administered without delay. If thrombolysis is absolutely contraindicated or has failed, surgical embolectomy or catheter-based thrombus fragmentation or suction is a valuable alternative (Table 3).

Guidelines

Guidelines for the management of acute pulmonary embolism have recently been published by the American College of Chest Physicians and the European Society of Cardiology. The management strategies proposed in this article are generally consistent with these guidelines.

Conclusions and Recommendations

The diagnostic workup for patients with suspected pulmonary embolism should begin with an assessment of the clinical probability on the basis of validated explicit scores. When the probability is low or intermediate, a negative D-dimer test (level below 0.5 mg per liter) essentially rules out the diagnosis, whereas a positive result indicates the need for further testing, preferably multidetector CT scanning. The patient in the vignette had an intermediate clinical probability and a positive D-dimer test, and a multidetector CT scan confirmed the diagnosis of pulmonary embolism.

Anticoagulation therapy should thus be initiated promptly; I would use a low-molecular-weight heparin or fondaparinux because of the proven efficacy, greater ease of use, and better safety profile of each of these agents as compared with unfractionated heparin. The detection of right ventricular dilatation on the patient’s CT scan indicates the presence of an intermediate-risk pulmonary embolism. Early thrombolytic therapy should be considered, but its role in such cases remains uncertain, and I would be inclined not to use it in this case, given the negative troponin test. I would wait to initiate warfarin therapy until the second or third hospital day, to ensure that right ventricular dysfunction does not progress to hemodynamic instability, a situation that would warrant late thrombolysis. I would discontinue heparin once the INR has been in the therapeutic range (between 2.0 and 3.0) with warfarin therapy for 2 consecutive days.

Dr. Konstantinides reports receiving lecture fees from Boehringer Ingelheim, CSL Behring, GlaxoSmithKline, and Sanofi-Aventis. No other potential conflict of interest relevant to this article was reported.

An audio version of this article is available at www.nejm.org.

Copyright © 2008 Massachusetts Medical Society.