1. Quine’s Extensionalism

According to Quine’s extensionalism, what matters about the meaning of certain expressions can be summarized as follows:

- sentences: their truth-value
- singular terms: their referents
- predicates: the difference they make to the truth-value of the sentence given the names that are in place of the variables (e.g. ‘x is happy’)

Any kind of linguistic construction that does not meet Quine’s extensionalism was either translated into one that did or thrown out. Quine’s extensionalism, then, is importantly revisionary. Consider: why hold extensionalism?

2. The Ambiguity of Belief Constructions

According to Quine, belief and other propositional attitude constructions are ambiguous. Consider the following example:

(1) Ralph believes that someone is a spy.

According to Quine, there are two senses of the verb ‘believes’ (and other propositional attitude verbs) such that sentences like (1) have two readings:

(1a) There is someone whom Ralph believes is a spy.
(1a*) (\exists x)(Ralph believes that x is a spy).
 There is an x such that Ralph believes that x is a spy.

Quine calls the sense of ‘believes’ associated with this reading the notional sense (de dicto).

(1b) Ralph believes that there are spies.
(1b*) Ralph believes that (\exists x)(x is a spy).

Quine calls the sense of ‘believes’ associated with this reading the relational sense (de re).

To see the difference between these two senses, consider the following question:

Does Ralph have a particular spy in mind, or does he simply think that there are spies?

If the answer is that Ralph does have a particular spy in mind, then the sense of ‘believes’ is a relational one (it relates Ralph, via a certain attitude, toward a particular thing in the world). If the answer is that he does not have a particular spy in mind, then the sense of ‘believes’ is a notional one.

3. Quine’s Problem: The Relational Sense

Now consider Quine’s story (p. 136 of Morris). The following sentence is true:

(2) Ralph believes that the man in the brown hat is a spy.

But the following sentence is also true:

(3) The man in the brown hat = the man seen at the beach.

According to Leibniz’s Law\(^1\), we ought to be able to assert (i.e., say that it is true):

(4) Ralph believes that the man seen at the beach is a spy.

But, given the story, (4) is false.

\(^1\) Roughly: if a is the same thing as \(b\), whatever is true of \(a\) is true of \(b\).
4. Quine’s Solution?

The problem in a nutshell: How do we make sense of the difference between notional and relational readings of the same sentence without flouting his extensionalism?

Intension: roughly, what is said by a sentence or by a predicate.

Intensions come in degree:
 - Degree 1: what is said by a one-place predicate
 - Degree 2: what is said by a two-place predicate
 - Degree 3: what is said by a three-place predicate
 - Degree 0: what is said by a whole sentence. Quine calls intentions of degree 0 propositions.

The answer to Quine’s problem lies in the interpretation of the predicate ‘believes that’.

The notional reading of (1):

(1b) Ralph believes that there are spies.

According to Quine, (1b) has the form x believes, y, where x is a proper name (‘Ralph’) and y is the name of a proposition (‘that there are spies’). The notional reading of (1b), then, involves a two-place predicate which expresses a two-place relation.

Does this fall within the rule of extensionality? Yes. The whole expression ‘that there are spies’ is taken to be a singular term that names a proposition. Quine claims that you can replace it with any other expression (e.g., one in a different language) which refers to the same proposition.

The relational reading of (1):

(1a) There is someone whom Ralph believes is a spy.

Quine thinks that (1a) has the form x believes, y of z, where x is the name of a believer (‘Ralph’), y an intension of degree 1 (being a spy), and z the name of the object the belief is about (‘Ortcutt’).

(5) Ralph believes, y’s being a spy of Ortcutt
(1a**) There is an x such that Ralph believes, y’s being a spy of x.

Does this fall within the rule of extensionality? Yes. Consider (5) (as it is suitably ‘filled out’). In (5), the singular terms occur in referentially transparent positions. We can replace ‘Ortcutt’ with any other expression that refers to that guy, and we can replace ‘y’s being a spy’ with any other expression that refers to the same intension of degree 1. We can also replace ‘Ralph’ with any other expression that refers to that guy.

How does this fix the problem we saw in the previous section?

(2) and (4) are ambiguous: they each have a notional (de dicto) reading and a referential (de re) reading:

(2n) Ralph believes, that the man in the brown hat is a spy.
(4n) Ralph believes, that the man seen at the beach is a spy.

The expressions ‘the man in the brown hat’ and ‘the man at the beach’ are not functioning as singular terms that pick out a particular man—namely, Ortcutt. Rather, they are parts of what are singular terms that name propositions. The only singular terms in (2n) and (4n) are ‘Ralph’ and the whole clauses ‘that the man in the brown hat is a spy’ and ‘that the man seen at the beach is a spy’, respectively.

(2r) Ralph believes, x’s being a spy of the man in the brown hat.
(4r) Ralph believes, x’s being a spy of the man seen at the beach.

(2r) contains three singular terms: ‘Ralph’, ‘x’s being a spy’, and ‘the man in the brown hat’. All of these singular terms occur in referentially transparent positions, so it’s possible to replace co-referring expressions for each. That means that, given (3), we can legitimately derive (4r) from (2r). This is not a problem because (4r) does not imply (4n).

5. Discontent

But intensions are “creatures of darkness”. So, Quine is not entirely happy with his proposed solution. He considers another possible solution: propositions do not involve relations to intensions but relations to sentences and predicates. In this solution, we replace ‘believes’ with ‘believes true’.
On this proposed solution, the notional reading of (2) is:

\[(2^n*)\] Ralph believes-true, ‘The man in the brown hat is a spy’.

And the relational reading of (2) is:

\[(2^r*)\] Ralph believes-true, ‘x is a spy’ of the man in the brown hat.

Two reasons why Quine doesn’t like this proposals:

1. \[(2^n*)\] is really not equivalent to (2) on a notional reading. To see why not, consider a translation of (2):

\[(2^{nf})\] Ralph croit que l’homme au chapeau brun est un epion.

But a French translation of \[(2^n*)\] would be:

\[(2^{nf*})\] Ralph croit-vrai, ‘The man in the brown hat is a spy’.

2. Quine treats words and sentences as things which are entirely defined by their shape (when written) and their sound (when spoken). But a word could have different meanings; it could even belong to more than one language. But then what is said by \[(2^n*)\] is not fixed until we have specified the language we are to understand the quoted sentence:

\[(2^{nf})\] Ralph believes-true, ‘The man in the brown hat is a spy’ as understood in English.

But the notion of an English understanding is likely to be as difficult to understand as the notion of meaning was. (So, equally spooky “creatures of darkness”.)