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pression profiling has provided important insights into plant and animal biology.
However, there has not been ample published work about pitfalls associated with technical parameters in
miRNA gene expression profiling. One source of pertinent information about technical variables in gene
expression profiling is the separate and more well-established literature regarding mRNA expression
profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and
compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA
expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA
expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic
acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and
annotation. We conclude that greater focus on technical parameters is required to bolster the validity,
reliability, and cultural credibility of miRNA gene expression profiling studies.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Over the past 5 years, literally dozens of distinct miRNA gene
expression profiling platforms (miGEPs) have been introduced.
Studies using miGEPs have helped to establish that miRNA biology is
fundamentally important in plants and animals with clinical implica-
tions for human diseases. Excellent prior reviews have described some
of the important aspects of miRNA profiling (see for example [1–3]).
However, research literature to improve quality control for miGEPs
has not developed in parallel. Nor has there been commensurate
published work about the effects of pre-analytical and other technical
variables in miRNA gene expression profiling.

The purpose of this review is to describe some technical
parameters that may be relevant to miRNA expression profiling.
Unfortunately, there are many stages of a gene expression study
where systematic bias can be introduced. The expression ‘garbage in,
garbage out’ can be applied to gene expression profiling; however, in
the context of high-throughput techniques, subtle bias can be more
problematic than manifestly flawed data. This review is not oriented
toward ‘solving’ technical problems. Instead, we wish to begin
bringing important technical parameters to light because no variable
will have the same significance for each miGEP. In order to not repeat
ter on Aging, 800 S Limestone,
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the ‘learning curve’ of the mRNA profiling field, it seems advisable to
focus on technical parameters for the sake of improving the validity
and reliability of miRNA gene expression profiling studies.

2. Technical variables in gene expression profiling: lessons from
mRNA-oriented gene expression profiling

2.1. General considerations

Relative to miRNA studies, mRNA profiling parameters have been
assessed over a longer time, and with greater attention to technical
details. Recent reviews of mRNA-related expression profiling have
identified potential sources for systematic biases in expression
profiling, along with strategies to overcome those potential pitfalls
[4–6] (see Table 1). The initial studies using high-throughput mRNA
profilingmicroarrays were performed before the technical parameters
for those studies were fully optimized. Hence an appreciation of
technical barriers for mRNA gene expression profiling lagged behind
the initial implementation of these techniques. This is noteworthy
because some early mRNA gene expression profiling studies were
plagued by flawed assumptions and non-reproducible results [7,8].
These problems have beenmanifested in later years by some degree of
skepticism about gene expression profiling results [9]. With these
lessons in mind, it is important to begin addressing these issues soon
in the context of miRNAs.

Another general consideration for which mRNA profiling may
provide insights for miRNA profiling is in the cross-comparisons
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Table 1
A sample of technical variables shown to play a role in mRNA expression studies

Time between sample removal and RNA isolation
RNA extraction efficiency
Amplification yield
Labeling yield
Hybridization efficiency
Dye bias
Fluorescence gain bias
cDNA array printing pins
Properties of probe plates
Inter-individual differences
Non-linear cross-talk effects
Pooling/non-pooling bias
Genome annotation irregularities
Using correct analytical tools
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between the results of different gene expression profiling platforms.
In principle, for a given RNA sample, each gene expression profiling
platform should ‘report’ the same repertoire of transcripts. However,
this has not been shown necessarily to be the case (for an excellent
review of this literature see [6]). For example, it has been shown that
different cDNA-base mRNA profiling microarray techniques provide
differing results, and these differences are greater when comparing
the results between separate laboratories [6,10–13]. Experimental
results tend to vary even more when comparing between less-related
technologies (e.g., microarrays and SAGE) [14–17]. This problem of
reproducibility across platforms renders very difficult any biologi-
cally-relevant datamining of public access ‘gene expression’ databases
[18]. Under the most ideal circumstances (within-lab studies
performed in parallel), different gene expression platforms tend to
have acceptable agreement as long as emphasis is placed on the
direction of change, rather than the magnitude of change with regard
to differentially expressed genes [19,20].

There has been improvement in recent years in mRNA gene
expression profiling–better experimental design has improved the
replicability of expression profiling studies [6]–and this is largely
because the field has focused during that time on technical
parameters. A consensus seems to have emerged that regardless
of the gene expression profiling platform, attention to study
design is a key prerequisite to obtaining valid data [6,7,9,21–23].
This focus has been reflected by a great deal of work, as well
as large-scale international consortiums dedicated to quality
control [11,24]. The positive impact that these forward-thinking
measures has had on mRNA expression profiling should have
direct implications for researchers interested in miRNA expres-
sion profiling.

2.2. Pre-analytical variables

The pre-analytical variables that have been most carefully studied
in mRNA expression studies regard the effect of fixation, tissue
embedding, freezing and other forms of storage, post-mortem
interval, RNA amplification, and tissue pH (see for example [25]).
These mRNA-related studies will not be reviewed here, partly because
there seems to be important differences between miRNAs and mRNAs
in the importance of these parameters. It is also probable that the
effects of particular technical parameters are distinct for different
tissue types, so these results should be interpreted and generalized
only with caution.

Relatively few mRNA gene expression studies have addressed
systematically the effects of pre-analytical technical issues as the
methods of cell lysis and of RNA isolation. However, the published
studies indicate that standardizing and optimizing RNA isolation
techniques, and the particular manner in which samples are handled,
are vitally important to obtaining valid results in gene expression
profiling studies [26–28]. Dell'Orto et al. showed that the particular
mRNA isolation technique chosen can impact significantly on the
amount of variation within and between experiments, and that
optimizing pre-analytical variables can help to better demonstrate
more accurately which genes are differentially expressed [29]. The
importance of RNA isolation in miRNA studies is discussed below.

Depending on the miGEP technique, processing samples after RNA
extraction can involve many additional steps. For example, in order to
label and/or amplify nucleic acids, catalysts are required. Purified
proteins such as T4 RNA ligase, poly(A) polymerase, or others are
utilized. These molecules are highly effective usually but are known to
have bias with regard to donor and/or acceptor sequence specificity. To
provide a few illustrations, labeling and amplification steps are
predicted to be systematically biased because of the use of T4 RNA
ligase [30,31]. For example, the oligonucleoside electron acceptor C–C–
Cwas ligated by T4 RNA ligasemore than three timesmore efficiently in
comparison to the acceptor sequence ending U–A–G [30]. There is also
bias introduced during T7-based RNA amplification (aRNA) [32]. Thus it
has been shown to be problematic to compare between the results of
small-sample and large-sample experiments [33]. Randompriming has
also been used to label miRNAs, however, it has been pointed out that
the nature of miRNAs (i.e., their short size) may result in nonrandom
labeling [1]. The poly(A) polymerase (PAP) enzyme has been used for
direct RNA dye labeling, with impressive results [1,34], however, it
should also bekept inmind that PAPmayalso showsubstrate sequence-
related biases [35–37]. Thesedata donot argue against the usefulness of
the ligating, labeling or amplification techniques, which have beenwell
established (in the context of miRNAs, see for example [38]). However,
thepotential biases shouldbeknownabout and argue strongly for using
identical methods in any single study.

2.3. Note about real-time “quantitative” PCR (RTQPCR)

In either low- or high-throughput format, RTQPCR is an important
and widely-used platform for mature and precursor miRNA expres-
sion profiling. RTQPCR is a versatile, sensitive, and convenient method
that provides a numerical read-out of DNA concentration in a sample.
Messenger RNA quantification gives some insights about the validity
and reliability of RTQPCR studies. Much of these data are impressive
with regard to the reliability and validity of the data. However, when
evaluated as a group, these studies may be biased toward reporting
positive results. A number of experienced users have raised concerns
about the technique. Even in the best of hands, high-throughput
RTQPCR can give variable results in quantifying DNA as other
techniques do, and care must be taken with controls and technical
parameters [39–43]. Accordingly, when carefully compared with
microarray and Northern blot results, RTQPCR results may provide
very good but by no means perfect correlation in miRNA profiling
[38,44]. Hence despite its descriptive name, and the fact that RTQPCR
has been repeatedly used as a validation technique of choice (see for
example [45–47]), mRNA-related studies indicate that it is not
necessarily appropriate to use RTQPCR data as an absolute ‘gold
standard’. Like Northern blots and microarrays, RTQPCR is another
good but imperfect tool for nucleic acid quantitation. This is not a
criticism of the technique but simply a caveat based upon experience
and supported by the pertinent literature. As concluded by Bustin and
Nolan, “…real-time qPCR is a…powerful technique. But, like anything
powerful, it needs to be treated with respect.” [40]

2.4. Technical issues in miRNA expression profiling

Relative to mRNAs, miRNAs are distinguished because of their
relatively uniform and small size, their lack of poly(A) tails, and that
they can be represented by very high cellular copy numbers [48].
Further, the overall mechanism(s) of miRNA function are distinct from
mRNAs. Hence there are special aspects of miRNA biology that need to
be taken into account by researchers interested in miRNA profiling.
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3. MiRNA research is a fast-moving field and produces an evolving
set of technical challenges for miRNA profiling

The study of miRNAs is still in its infancy. The field has grown
explosively, with many new biological paradigms discovered.
Researchers interested in miRNA expression profiling cannot ignore
the technical implications of these novel data.

At the most basic level, the full complement of miRNAs expressed
in most animals including humans has not been determined. As of
December 2007, the Rfam registry (v. 10.1) has annotated 563 human
miRNA genes, an increase from 475 miRNAs in v. 9.2. However, many
of these are identical or nearly-identical paralogs (see http://microrna.
sanger.ac.uk/ and Ref. [49]). It is important to note that certain miRNA
assays, including some RTQPCR and some microarray methods, are
highly specific to 3′ ending positions of targeting miRNAs. The end-
position specificity is considered to represent an advantage of those
assays. However, the recent updates of sequence information,
particularly in miRBase changes from v9.2 to v10.0, have led to
Fig. 1. A–C. Informative miRNA array results referent to separate brain samples using a cDNA
matter of the superior and mid-temporal gyri from nondemented elderly autopsy subjects (a
RNA excised, then labeled with P-32 and hybridized to the cDNA array. Each array element i
mir-720). The extreme bottom right spots are internal spiked-in controls of differing concen
arrow in 1C. Several observations follow from these results. Firstly, the “signature” of miRNA
554 different array elements representing all unique annotated miRNAs (circa spring 200
threshold and several dozen would be considered highly-expressed. Thirdly, most but not
annotated before miR-500. An apparently conspicuous exception to this ‘rule’ is mmu-miR-7
Northern blot using a probe against mmu-miR-720 is shown in Fig.1D. For the Northern blot,
LS) and run on a 15% urea-PAGE gel. Note that rather than the expected banding pattern of p
720 signal is probably not a conventionalmiRNA. An anomalous ~50 nt RNA band is present (a
expected pattern of pre-miRNA and mature miRNA. These results illustrate the importanc
Northern blot when faced with unexpected array data.
changes in the ‘canonical’ end positions of many miRNAs. We have
found that many different 3′ end configurations are represented for a
givenmiRNA; for example, Argonaute protein-associated hsa-miR-451
has at least seven different 3′ end configurations in human blood [50].
These differences may indeed lead to different target selectivity for
miRNAs. Hence it may be necessary to incorporatemore flexibility into
miRNA profiling assays, as was the case in the microarray studies by
Berezikov et al. [51].

In contrast to the official annotated miRNA count, some studies
indicate that expressed humansmiRNAs numberwell over a thousand.
For example, a study of human and chimpanzee brains yielded 447
completely new miRNA genes (see [51–54]). There may be a
diminishing return because the miRNAs described earlier were
probably those with the highest expression (see Fig. 1 and Ref [53]).
However, the miRNAs that are expressed at low levels in a tissue may
be very important to subpopulations of cells within those tissues (see
for example [55]). Seeking new miRNAs is a challenge because many
miRNAsmay be expressed preferably during particular developmental
array after the method of Tang et al. [130]. The RNA samples were extracted from gray
ge and sex indicated). RNAwas then run on a denaturing (urea–PAGE) gel and the small
s spotted in duplicate with miRNAs numbering from top (hsa-miR-1) to bottom (mmu-
trations. The array elements corresponding to miR-124a are indicated with a diagonal
expression is quite consistent across all three arrays. Secondly, in this array that queries
7) found in humans and mice, ~100 miRNAs are expressed above a moderately-high
all of the miRNAs detected in these brain samples were discovered prior to 2005, i.e.
20, which is indicated with the vertical arrow at the bottom of 1C. However, a follow-up
the three different human brain samples were again used (total RNA isolated using Trizol
re-miRNA and mature miRNA, the miR-720 Northern blot shows that the apparent miR-
sterisk). Note for comparison the same blot using a probe formiR-124awhich shows the
e of confirming array results with another technique, and shows the strengths of the

http://microrna.sanger.ac.uk/
http://microrna.sanger.ac.uk/


Fig. 2. A chart of the numbers of available papers referent to microarrays, as defined by searches on the Pubmed database. Papers about mRNA microarrays increased dramatically
beginning in 1997, followed by a later increase in the number of papers cross-referenced by the search terms “microarray” and “quality control”. Papers returned by the search for the
terms “microarray” and “miRNAs” appear to be increasing considerably since first appearing in 2004.
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timepoints, or within certain cells or tissues, anatomical subregions, or
environmental conditions. In any case, many current miGEPs survey
only several hundred different miRNAs. For this reason, future miRNA
researchers may be compelled to perform the profiling experiments
over again in order to incorporate the many new miRNAs.

Another concern is that the exact biological definition of miRNAs
will probably evolve further in the future. Some miRNAs may have
special rules, for example, they may be processed differently from the
current canonical guidelines [56], and unconventional miRNAs are
derived from noncoding RNAs [57–59]). Viruses can either suppress or
employ the miRNA pathways (see [60–63]). Another twist is that RNA
editing, particularly A-to-I conversion, may dramatically alter miRNA
function to the extent of generating a novel miRNA species and/or
altering the degree to which mature miRNAs are produced from the
pre-miRNA [64–67]. Furthermore, plant miRNAs and human piRNAs
are methylated at the 3′ end [62,68–73], which may add variables to
profiling for 3′ end methylated miRNAs or small RNAs. In principle
these biological ‘tricks’ would be detected by an optimal miRNA
profiling platform.

Just as with the annotation of new miRNAs, the regulation of
miRNA expression is a novel topic and no doubt many surprises are in
store for researchers. A lurking uncertainty relevant to miGEP
experiments is the relationship between the cellular levels of a
miRNA in a biological sample, and that miRNA's “biological activity”.
Analogy can be drawn to messenger RNAs: mRNAs are templates for
the production of polypeptides. However, gene expression is appar-
ently regulated predominantly post-transcriptionally, so the levels of
mRNAs in a biological sample tend to correlate poorly if at all with
protein levels [74]. Likewise, we cannot query the percentage of
miRNA molecules engaged in actively targeting mRNAs. This is a
profound caveat to mRNA based ‘gene expression’ analyses. It is
already known that miRNA function can be affected in cell culture
without changing the ‘expression’ (i.e., transcription) of the miRNA
[75]. There may also be regulation of miRNA activity at brain synapses
via proteolytic processing of miRNA processing proteins [76]. Could
the detected amount of a givenmiRNA correlate poorly in fact with the
degree to which that miRNA is actively involved in regulating target
mRNAs? Further work remains to be performed in this area.

Depending upon study design, the distinct characteristics of
miRNA biochemistry would be predicted to impact upon still more
aspects of miGEP studies. For example, considerable miRNA proces-
sing occurs in the cytoplasm, where pre-miRNAs are cleaved to
produce ‘mature’ ~22 nts miRNAs. It is possible that some miGEPs
would have difficulty in differentiating between pre-miRNAs and
miRNAs and this would affect the data read-out [1]. Some miGEPs
have intrinsic advantages in this area because they can detect the sizes
and/or end sequences of small RNAs: miRNA cloning, PCR-based
techniques, Northern blots, and RNA-primed array-based Klenow
enzyme (RAKE) microarray techniques (see [51,77–79]). Many micro-
array studies have been performed on RNA samples that have been
enriched for small RNAs, or RNA samples that have been cut from
PAGE gels, and thus should contain a high proportion of a given size
range of RNAs. However, depending on the RNA isolation technique,
the miGEP platform, and other experimental factors, it is possible that
these techniques may introduce as well as eliminate some systematic
biases.

While endonucleolytic processing of miRNAs may affect miGEP
results, miRNAs' heterogeneous spatial distribution is another feature
that can influence experimental outcome. Animal miRNAs are
generally considered to localize diffusely within the cytoplasm, within
cytosolic P bodies, stress granules, and/or in association with
polyribosomes [80–85]. It has been established that particularmiRNAs
tend to be targeted to different cellular compartments. This can even
be true of closely paralogous miRNAs. For example, hsa-miR-29a has
been shown to be targeted to the nucleus, whereas hsa-miR-29b is a
predominantly cytoplasmic human miRNA [86]. These paralogous
miRNAs differ only at one central nucleotide and in several other
nucleotides at the 3′ end. In cultured rat neurons, it has been shown
that a particular group of miRNAs is targeted to dendrites, whereas
others are more concentrated in the neuronal soma [87]. These
differences could in principle alter the results of miGEPS under some
circumstances. It is possible for example that some cell lysis techniques
would be relatively enriched for cytoplasmic RNA, and thus theywould
systematically exclude nuclear miRNAs such as miR-29a.

As with the spatial processing of cellular miRNAs, the temporal
sequence of miRNA expression may be also subject to complex
regulation. MiRNAs were discovered in the context of worm
developmental stages [88–90], and they may play a role in cell fate
determination [91–93]. Hence some miRNAs, within a developmen-
tal framework, may exhibit stable and fixed “on/off” expression
pattern. The stability of miRNA expression is supported by the
observation that some unmodified siRNAs are stable and functional
for days[94,95] or weeks[96] in cultured cells. However, new data
appears to indicate that certain miRNAs may be a more dynamic
source of biochemical regulation (see for example [85,97–99]), and
hence may exhibit differential stability kinetics and/or rapidly-
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changing compartmentation in animal cells. Published data are
relatively scanty about rates and mechanism(s) of physiological
miRNA turnover whether in vivo, in vitro, or ex vivo. However, these
data will be highly relevant to miGEP studies. For example, miRNAs
are apparently differentially stable during storage, i.e. some miRNAs
are more unstable than others, as quantified using RTQPCR [100].
Surprisingly, this also extends to miRNAs isolated using Trizol and
stored at −80 °C [100]. These are exactly the sort of data that needs to
be more known and better understood because there is obvious
potential impact on the work of many researchers.

3.1. Clinical/co-morbidity variables

Human tissue is an important source of RNA for gene expression
profiling. Even in relatively tightly-controlled experimental contexts
(surgical pathology biopsy specimens, biopsies from volunteers, or
autopsy series from a closely-followed clinical cohort), there are
challenges to adequate controls in miRNA and mRNA studies alike
(see [25]). This is because there are awide variety of conditions that can
introduce experimental confounds and/or biological variability. Some
of these are presented inTable 2, revised from [25]. Relatively littlework
has been performed to probe systematically the importance of
premortem clinical features and co-morbidities, partly because expres-
sionprofiling is expensive, the variables are so numerous, andgrappling
with obstacles of clinical documentation alone is a daunting task.

Some potential confounds may be unexpectedly relevant to human
miRNA expression studies. For example, circadian rhythms are appar-
ently important in cell culture [101–103] aswell as invivo. SincemiRNAs
have been shown to be differentially expressed in different circadian
stages [97,104], it seems likely that someof themiGEP resultswill simply
result from differences in sleep–wake cycle or, biorhythms that can
result from various stimuli [103]. Additionally, the importance of
Table 2
Clinical variables of potential relevance in miGEP studies on human tissues

Demographics Age
Sex
Race

Genetic factors Congenital diseases
SNPs
Non-SNP polymorphisms
Mosaicism

‘Background’ co-morbidity (chronic) Sophistication of clinical documentation
Substance abuse/cigarettes
Prescription drugs/supplements
Metabolic disease
Degenerative processes
Major psychiatric disorder(s)
Inflammatory/infectious disease
Prior surgery/transplant
Radiation therapy
Body habitus/nutritional status
Toxic/environmental exposures
Organ function: kidney, liver, lungs, etc.

Acute condition (See above)
Vascular status (blood pressure problem/shock)
External support—respirator, dialysis
Metabolic perturbations
Acute treatment included chemotherapy,
morphine, etc.
State of consciousness including sleep/wake
Trauma

Related to death/surgery Single or multi-factorial
Biopsy/autopsy confirmed via pathology
Anesthesia

Pre-analytical variables Post-mortem interval
Interval prior to freezing/fixative
Tissue pH
Expertise/number of tissue handler(s)
Sophistication of documentation
Detailed information regarding anatomy
particular anesthesia modalities and pain stimuli cause changes in
mammalianmRNAgeneexpression [105,106], and thesedatawouldalso
be interesting to correlate with miRNA expression studies. As more
studies accumulate it will become easier to filter these variables.
However, for now these potential confounds should be kept in mind.

3.2. Tissue processing

Important variables in tissue processing include tissue procure-
ment, fixation, embedding, and RNA extraction method. Tissue
fixation and embedding are technical parameters where the unique
characteristics of miRNAs have a strong impact on gene expression
profiling. This is evidently explained both by the shortness of the
molecules as well as protection from degradation by intimate RNA–
protein interactions. Other factors may be related—miRNA sequences
may have evolved to elude RNA nucleases. Whereas mRNA tends to be
labile in fixed and/or embedded tissue [25], a number of studies have
shown robust correlations between miRNA profiling results in fresh
versus in formalin fixed paraffin-embedded (FFPE) tissue [78,107–
110]. Perhaps surprisingly, biologically-relevant profiling data can be
obtained from FFPE tissue that had been stored embedded at room
temperature for years [107,108]. However, it has been noted that RNA
isolation from FFPE tissue is far less efficient than from fresh-frozen
tissue, possibly because of fixative-induced RNA–protein cross-links
[110], and the subtle biases of these reactions have yet to be entirely
elucidated. Furthermore, it is possible that somemiRNAs are relatively
less likely to be ‘protected’ via RNA–protein interactions, and these
would be predicted to be more affected by FFPE processing. Or more
globally, during stress [75,111], the overall miRNA–protein pattern
may be altered, which may in turn change the degree to which
miRNAs are protected from fixative cross-linking.

After the tissue sample is obtained, there are many different
techniques that can be used to extract or isolate RNA. Considering the
importance to the overall field, relatively little research has been
performed to probe the impact of the particular RNA isolation
techniques on miRNA expression. Different techniques rely on
phenol/chloroform extraction, denaturing polyacrylamide gel electro-
phoresis (PAGE) with small RNA extraction, and/or column-based
small RNA enrichment. The companion article shows that in human
brain isolation for miRNA microarrays, the different RNA isolation
techniques produce results with nontrivial differences [112]. Since we
do not have a current “gold standard”, we do not know which is
technically superior. However, we can certainly recommend that one
should never compare samples against each other that have been
isolated using different techniques. It has been noted that PAGE
involves a loss of RNA, although it is unknownwhether this can lead to
a systematic bias in miRNA repertoire [1]. Another variable in RNA
extraction that goes without saying, but which is no doubt important,
is the expertise of the individual(s) who perform the experiment.
Tissue dissection and RNA extraction can be a challenge to even
experienced individuals. Whether or not an experienced person per-
forms the RNA extraction, it should be kept in mind that even slight
deviations from protocol can induce relatively large changes in
experimental outcome.

3.3. Validation (alternative method, in situ hybridization)

Validating the results of miGEP studies is vitally important. As for
any high-throughput and data rich technique, some testable false-
positives are to be expected. It is necessary to know if the differential
expression revealed by one platform is also shown using another
expression platform, as this cannot be taken for granted. There is
currently no acknowledged ‘gold standard’ for assessing the concen-
tration of miRNAs in a sample. For example, Northern blots and
RTQPCR have been shown to be very good at quantifying miRNAs,
however each can be problematic in some circumstances [40,78].
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Validation experiments should also extend the tissue-level results
(most miGEPs) to the cellular and subcellular levels, via in situ
hybridization (ISH). A number of studies have shown robust ISH
results with miRNAs in a number of different organisms (see [107,113–
116]). The insights from ISH can be vitally important, partly because
almost every tissue comprises a variety of cell types and it is important
to know which cells express the miRNA(s) of interest. For example, in
human brain tumors, tissue-level miRNA microarray showed that
miR-124 expression was decreased in oligodendrogliomas, whereas
the expression of miR-9 was increased [107]. In situ hybridization
revealed that the observed miR-124 decrease was accurate but not
biologically relevant because miR-124 is specific to neurons and
neurons are present in lower density in tissue samples that include
brain tumors. By contrast, ISH showed that miR-9 expression was
more robust in tumor cells than normal glial cells, and thus represent a
better candidate for further study in the clinicobiological behavior of
brain tumors [107]. We also found ISH to be an imperative
complement tomiRNA expression profiling in the study of Alzheimer's
disease where the cellular localization of miR-107 was important
[117]. Another example inwhich ISH is helpful is in understanding the
subcellular distribution of miRNAs. This principle is illustrated in
myocytes where miR-206 was shown to colocalize with ribosomes
and within cell nucleoli [118]. Finally, ISH can be used to detect
biologically important differences in the distribution of pre-miRNA
and mature miRNA species [119]. Thus, ISH data provides a strongly
complementary tool in shifting from high-throughput miGEP experi-
ments to the more focused analyses of individual miRNAs.

3.4. Bioinformatics and normalization

A primary challenge to miGEP studies is to identify miRNA ex-
pression changes between samples that are valid and replicable.
Although statistical tools are important in any high-throughput tech-
nology, including miGEPs, the statistical tasks to be performed
are different. For most tissues the number of different miRNAs that
are highly-expressed is fairly modest: usually less than a hundred
miRNAs are even moderately expressed in a given tissue. Thus the
same emphases that are placed on data management for a very-high-
throughput mRNA experiment, in which N100-fold times more
transcripts are present, may not be as important to miRNA studies.
MiRNA microarray experiments may align closer with large-scale
Northern blotting than with mRNA/cDNA expression arrays. Further-
more, in our experience, even sensible-seeming measures such as
spiked-in controls must be performed mindful of their own potential
for introducing, rather than dampening, data variability. In any case,
the experiments must be performed considering the underlying
biochemistry and the limitations inherent to each profiling platform.

Global miRNA expression patterns are thought to change drama-
tically in response to Drosha and histone deacetylase levels, cell
division status, neoplastic transformation, developmental stage(s),
circadian rhythms, cellular stress, and other factors (see for example
[97,104,111,116,120–124]). Hence the assumptions–common to many
mRNA expression profiling experiments–that overall RNA transcrip-
tion is ‘constant’, and that a low percentage of individual transcripts
are changed under different test conditions, are not applicable to
miRNA studies. Some informatics, statistical, and normalization issues
in miGEPs have been previously discussed [1]. In short, many
researchers employ median scaling normalization (with the caveat
that the results are probably not biologically relevant because global
miRNA expression is changeable) and other means of stabilizing
variance with a combination of technical replicates, logarithmic
transformation, with or without spiked-in positive and negative
controls [2,125–128]. Innovative approaches have been employed
when reconciling different expression platforms [129]. However, more
work can be performed in order to reconcile miGEP profiling data
analyses with the specifics of miRNA biology.
4. Conclusion

Papers about miGEPS are accumulating quickly (Fig. 2). In high-
throughput miGEP studies, the saying applies: “the devil is in the
details”. Unfortunately, the details for every system (every profiling
platform, cell type, disease, and experimental design) will be distinct.
The impact of each technical parameter will hence be different–
however subtly–for each of the profiling platforms. This argues for the
need of more work on the topic of technical parameters in miGEP
studies. Yet such papers are not necessarily considered high-yield in
careerist or grantsmanship senses. There is not a high premium placed
on working out details in a given experimental system, much less
comparing different systems in a rigorous way. This problem has no
quick fix. Rather, the field must acknowledge the importance of
quality control and implementing measures to ensure that miGEP
results can be considered valid and reliable. The first steps of this
process involve the identification of the different areas of miGEP
experiments that can contribute to systematic bias and/or error. These
data begin to provide researchers with the necessary parameters for
designing and implementing rigorous and valid future experiments
that can be compared to each other across the many different miRNA
profiling platforms.
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