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Abstract The breakthrough discovery of RNA interference (RNAi) by Fire and 
Mello in 1998 has ushered in a new wave of RNA-based technological advances 
in the life sciences. Small RNAs, namely small interfering RNA (siRNA) and 
microRNA (miRNA), not only play key roles in down regulating gene expression, 
controlling growth and development, stress response, and various diseases, but also 
serve as essential tools for the study of gene functions. In this chapter, we provide 
an overview of the technological aspects of siRNAs and miRNAs and common 
methods for studying their functions.

Keywords siRNA, miRNA, antagomiR, target mimicry, miRNA sponge, miRNA 
profiling

2.1 Introduction

RNA interference (RNAi) was the 2006 Nobel Prize winning discovery [135], 
although related research is still at an early stage and continuing at a rapid pace. 
RNAi technology has become one of the most important technological tools and is 
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now widely applied in almost every research aspect of modern biology. The key 
elements in RNAi are the small RNAs of ∼21 nucleotides (nt), termed small inter-
fering RNAs (siRNAs) [22–24, 39, 138]. SiRNAs regulate their target genes by 
binding in a sequence-specific manner to target gene transcripts (e.g. mRNAs), and 
inducing degradation of target RNAs or blocking their translations [20, 138]. The 
simple structure of siRNAs allows them to be easily generated in large quantities 
by chemical synthesis [22]. Synthetic siRNAs, as powerful reagents, bypass their 
biogenesis steps in RNAi and induce potent and specific silencing of any gene of 
interest in cells [22].

MicroRNA (miRNA), the siRNA cousin, is produced by RNAi-like mechanisms 
or miRNA pathways [3], and plays a key role in gene regulation, cell developmental 
control and various disease development [7]. More than 450 miRNAs encoded by 
the human genome have been identified and are predicated to regulate the expression 
of about one third of human coding genes [71, 130]. The development of many types 
of cancers or diseases is related to the abnormal expression or loss of certain miRNAs 
[11, 12, 17]. The global miRNA expression patterns of specific organs, tissues or 
cells can serve as an miRNA atlas or as biomarkers for the study of miRNA func-
tions [65]. As a result, one can potentially reverse metastatic cancers by blocking the 
abnormally-expressed miRNAs or by reintroducing the lost miRNAs during cancer 
progression [80]. Much evidence indicates that many miRNAs function not only 
individually but also coordinately in gene regulation or in specific disease develop-
ment [41]. Thus, this creates a new direction for studying a specific disease at the 
cellular level by simultaneously manipulating multiple miRNAs. Based on the study 
of the structures of miRNAs, artificial miRNAs have been developed as powerful 
tools for potently silencing genes in plants and animals [1, 89, 94, 101, 139, 140]. 
Compared to previous RNAi technologies, artificial miRNAs more accurately and 
specifically silence genes of interest and reduce off-target effects.

More than 5,000 miRNAs have been identified from various organisms 
(http://microrna.sanger.ac.uk/) [32, 33], but very few of them have been function-
ally analyzed. It remains a big challenge to discover the functions of most miRNAs 
currently stored in the database. The emergence of new technologies, such as high-
throughput miRNA array, antagomiR [59], miRNA target mimicry and miRNA 
sponge [18, 21, 30] provide new tools to understand how, where and when miRNAs 
are generated and function in specific tissues, cells and organisms. This chapter 
gives an overview of these different small RNA technologies and their applications.

2.2  The Basic Biology and Chemistry of siRNAs 
and miRNAs and Their Related Working Mechanisms

SiRNA and miRNA are ~21–23 nt small RNAs produced in cells via a series of 
enzymatic steps. Long double-stranded RNA (dsRNA) or stem-loop structured 
RNAs introduced or transcribed in cells are first processed into siRNA or miRNA 
duplexes by a dsRNA specific RNase-III family of enzymes termed Dicers [137]. 
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2 Small RNA Technologies 19

The small RNA duplexes are characterized by 2-nt overhangs at the 3′ ends with 
specific chemical end structures of a monophosphate at the 5′ end and a hydroxyl 
group at the 3′ end [44, 115]. In addition to differences in biogenesis, the siRNA 
duplex is a perfect duplex of Watson-Crick base pairs while the miRNA duplex is 
often an imperfect duplex with mismatches or bulges [114]. Both RNA duplexes 
need unwinding to form effector complexes: RNA-induced silencing complexes 
(RISCs) for their functionality. The key protein component of the effector complex 
is the Argonaute (AGO) protein of an evolutionally conserved protein super family 
[14]. The end structures of the small RNA duplex play a pivotal role in the assem-
bly of the effectors or RISCs [76, 108]. After RISC assembly and maturation, spe-
cific gene transcripts, or messenger RNAs (mRNAs), are recognized and bound by 
the small RNAs on the RISCs based on sequence complementarities, leading to 
site-specific cleavage or translational repression of the mRNAs [28].

The elucidation of siRNA or miRNA chemical structures provides chemical 
approaches to generate them in large quantities for RNAi applications. Although 
single-stranded siRNA can be assembled into RISCs [81], synthetic siRNAs or 
miRNAs usually need to be double-stranded to be recognized by Dicer for initiating 
effective RISC assembly [77]. Thus, two short complementary RNA strands need 
to be synthesized and annealed to form siRNA or miRNA duplex characteristics 
with bona fide siRNA or miRNA end structures. In Drosophila, structurally distinct 
siRNA and miRNA duplexes are recognized by different Dicer proteins (DCR-1 
and DCR-2) and sorted into distinct AGO proteins (AGO-1 and AGO-2) [29, 69, 
91, 117]. DCR-2 sorts the siRNA duplex to be assembled into AGO-2 while DCR-1 
sorts the miRNA duplex into the AGO-1 protein complex. Sometimes the two sorting 
systems are interchangeable based on siRNA or miRNA duplex structures or nucleotide 
compositions [29, 117].

SiRNA or miRNA duplexes can be divided into two types according to their end 
structures and thermodynamic stability: symmetric and asymmetric siRNA or 
miRNA [114]. A symmetric siRNA or miRNA assembles into two kinds of RISCs 
with either a sense strand or an antisense strand and can potentially interact with 
two different complementary target mRNAs for regulation [114]. However, siRNAs 
or artificial miRNAs are normally designed to target one specific gene transcript 
rather than two. Thus, symmetric siRNAs or miRNAs have a higher chance of targeting 
unwanted mRNAs due to their ability to target two different gene transcripts, leading 
to off-target effects. In contrast, asymmetric siRNAs or miRNAs preferentially 
favor only one specific strand of the small RNA duplex assembled into a RISC 
while the other strand is excluded from RISCs and is subsequently degraded [102]. 
This allows a maximum assembly of one specific strand of small RNA duplex into 
RISC components, considerably reducing off-target effects coming from the RISC 
assembled by the unwanted strand.

Intriguingly, a major fraction of endogenous miRNAs are structurally asymmetric 
and display high specificity in the regulation of their target genes [50, 102], 
although a substantial number of miRNAs seem to have dual functions coming 
from each strand of the miRNA duplex (personal communication with Eric Lai). 
The asymmetric character seems a result of natural selection to reduce unwanted 

Ying Ch02.indd   19Ying Ch02.indd   19 6/22/2008   1:57:50 PM6/22/2008   1:57:50 PM



20 G. Tang et al.

off-target effects for fine control of development during evolution. The asymmetric 
structure of endogenous miRNAs has been successfully adopted to design highly 
efficient artificial miRNAs to target genes of interest in plants and animals [1, 89, 
94, 101, 139, 140]. Specific programs have also been developed to help design 
highly specific artificial miRNAs [101].

How can asymmetric siRNAs or miRNAs ensure that one specific strand is 
going into the RISC and excluding the other strand to prevent off-target effects? 
Recent research results indicate that RISC assembly and activation involve strand 
selection and exclusion by the RISCs. In the case of siRNAs, guide strand-associated 
RISCs exclude the passenger strand by guide-associated RISC directed cleavage of 
the passenger [70, 82, 95]. This cleavage has the same characteristics of RISC-
directed target mRNA cleavage. That is, the cleavage site on the passenger strand 
is between the bases 10 and 11 from the 5′ end of the guider siRNA strand [24]. 
However, this cleavage depends on several prerequisites [82]. First, the AGO pro-
tein on the RISC must have “slicer” (endonuclease) activity. Second, there must be 
no mismatches or bulges between the guide strand and the passenger strand around 
the cleavage site. Thus, miRNA duplexes, which naturally have bulges or mis-
matches around the potential cleavage sites, likely employ other mechanisms to 
exclude and eliminate the passenger strand. This mechanism should be also true for 
RISCs on which the slicer activity is missing. In such cases, it remains unknown 
how the passenger strands are degraded after their exclusion from the RISCs, rather 
than cleaved by the slicer.

2.3 MiRNA Functional Analysis and miRNA Inhibitors

Like transcription factors, miRNA-directed regulation of post-transcriptional gene 
expression is wide-ranging [41]. First, the expression of many transcription factors 
themselves are regulated by miRNAs in plants and animals. Second, miRNA-
directed gene regulation seems more extensive in animals than in plants due to dis-
tinct working mechanisms. One third of the human protein-coding genes are 
predicted to be regulated by different miRNAs [71, 130], but relatively very few 
miRNA-target interactions have been experimentally validated. Most identified or 
predicted miRNAs are functionally unknown. Thus, the study of miRNA functions 
constitutes a unique aspect of miRNA genomics. Due to the small size of miRNAs 
and their functions associated with specific target genes, functional analysis of 
miRNAs is substantially different from coding genes and as a result, various methods 
have been developed.

An earlier approach to the study of miRNA targets was focused on computa-
tional predications based on the base-pairing conditions between miRNAs and their 
target genes [16, 51, 56, 96, 100, 106, 123, 124, 131, 134, 141]. The completion of 
the whole genome sequencing of various organisms expedited the discovery of new 
miRNA genes and their targets by a computational approach. The regulatory 
roles of miRNAs are reflected in the cellular functions of miRNA target genes. 
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The prediction that one-third of human protein-coding genes are miRNA targets 
was mainly based on the assumption that a short stretch of “seed” region (~7 base 
pairs of the position 2 to 8 from the 5′ end of the miRNAs) between miRNAs and 
the 3′ untranslated region (UTR) of their targets is sufficient for regulation [71, 72, 130]. 
In contrast, regulation of target gene transcripts in plants by miRNAs seems pre-
dominantly reliant on extensive sequence complementarities between the miRNAs 
and their target genes. Thus, the number of predicted miRNA targets in plants is 
much more limited [98]. The outcomes of the interactions between plant miRNAs 
and their targets, in most cases, are the cleavage and degradation of the target 
mRNAs. Thus, validation of plant miRNA targets is relatively simple and can be 
done by assaying for target cleavage in vitro and in vivo.

The first validations of miRNA-target interactions were reported in plants [78, 
115]. Two experimental approaches were established for these validations: direct 
visualization of the target cleavage in vitro and cloning of the target cleavage prod-
ucts in vivo by 3′ or 5′ RACE-PCR. Traditional wheat germ extracts or newly 
established maize germ extracts (G. Tang, 2007) are convenient cell-free systems 
for miRNA target validation. Both systems contain abundant endogenous miRNAs 
that have already been loaded on the RISCs, and exogenous target mRNAs are 
readily cleaved by the existing miRNA-associated RISCs. However, these cell-free 
systems have limitations when validating miRNA-target interactions whose corre-
sponding miRNAs do not exist in wheat or maize germ extracts. In vitro program-
ming of active RISCs by synthetic miRNA duplexes in plant systems needs further 
exploration [83, 93, 115]. In contrast, Drosophila embryo extracts are capable of 
RISC assembly programmed by various kinds of small RNAs and can thus serve as 
a platform for animal miRNA target validations, as well as a useful heterologous 
system for validation of plant miRNA targets [38].

The validation of animal miRNA-target interactions is not trivial. First, most 
miRNA targets in animals are not directly cleaved but rather translationally 
repressed by miRNA-associated RISCs. Therefore, the validation needs to be con-
ducted at the protein level. Detection of the change in protein expression of the target 
genes using specific antibodies is preferred for such validation [143]. Alternatively, 
reporter genes are often fused with the 3′ UTR of the target mRNAs for the purpose 
of validating translational repression by miRNAs [58]. A mammalian cell-free sys-
tem was recently developed to recapitulate let-7 miRNA-directed translational 
repression in vitro, which will be useful in the validation of animal miRNA-target 
interactions [121]. This in vitro system was established with extracts from 
HEK293F cells transfected with expression vectors that contain genes encoding 
various miRNA pathway components, such as Dicer, TRBP2, Argonaute2 and 
GW182. This system is capable of processing chemically synthesized let-7 miRNA 
precursors into mature let-7 that is likely to be further assembled into RISC to 
direct translational repression. Based on this system, Wakiyama et al. found that 
let-7 miRNP complexes induced the deadenylation of the let-7 target mRNAs and 
the abolishment of cap-poly(A) synergy, leading to target mRNA translation blockage 
[121]. These in vivo and in vitro approaches are often used together to validate animal 
miRNA targets.
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Approaches to inducing a loss of function of miRNAs represent a powerful 
functional genomics tool. Traditional screening for mutation of miRNA genes has 
not proved very successful. This is because miRNAs are often encoded by multi-
gene family members and the loss of function of one miRNA member is often 
obscured by redundant functions of other miRNA members that have almost identical 
sequences and the ability to bind and regulate the same target gene transcripts. 
Fortunately, different methods and strategies have been developed to block the 
regulatory functions of all members of any miRNA family. In vitro chemically 
modified miRNA inhibitors, such as ‘antagomirs’, or in vivo target mimicry in 
planta and miRNA sponge in mammalian cells have recently proved to be effective 
in blocking functions of specific miRNA families [21, 30, 59].

Chemically modified oligonucleotides have been widely used in the study of the 
loss-of-function of miRNAs. Based on antisense strategy, oligonucleotides comple-
mentary to the miRNAs act as competitive inhibitors of endogenous target mRNA 
binding to the miRNAs, leading to a suppression of miRNA functions. These have 
been developed and demonstrated to be very specific and potent inhibitors of tar-
geted miRNAs [45, 59]. The major modification in antagomirs is 2′-O-methylation 
of the ribose, sometimes combined with other kinds of modifications such as phos-
phorothioate linkage near 5′ and 3′ ends and a cholesterol-moiety conjugated at 
3′end. Antagomir, usually 21–33 nt in length, sequence-specifically binds to spe-
cific target miRNAs through base-pairing [45, 59]. A traditional modified antisense 
oligo, such as morpholino that was previously used to knock down the expression 
of protein coding gene transcripts, also successfully knocked down specific 
miRNAs by binding to the miRNAs or their precursors [54]. These chemically 
modified miRNA antisense RNAs can effectively compete with miRNA target 
mRNAs by a stronger bind to their specific target miRNAs on the miRISCs, result-
ing in inhibition of the miRNA activities. Antagomirs also induced the degradation 
of the targeted miRNAs with as of yet unknown mechanisms [57, 59]. Antagomirs 
were delivered to mouse tissues via intravenous injections, absorbed by tissues, and 
were highly resistant to various RNAses in cells. It was shown that antagomirs spe-
cifically inactivated multiple target miRNAs in various mouse tissues for over 20 
days following a single intravenous injection, resulting in changes in the abundance 
of distinct target mRNAs [57, 59]. The introduction of antagomirs against specific 
miRNAs in cells will release the repression of the bona fide miRNA target mRNAs 
from translation into proteins, thus indirectly validating the miRNA targets.

The strategy of target mimicry to block miRNA functions was enlightened by a 
study of the interactive relationships between the phosphate (Pi) starvation-induced 
miR-399 and its naturally occurring RNA transcripts from IPS1 gene in Arabidopsis 
thaliana [30]. IPS1 contains a 23-nucleotide motif that is almost complementary to 
miR-399 but with a mismatched loop at the expected miRNA-directed cleavage 
site. Over-expressed IPS1 RNAs can bind to mature miR-399 associated RISCs, 
and prevent miR-399 mediated cleavage of the target mRNAs, including PHO 
mRNA. Mutation of the IPS1 motif to be perfectly complementary to miR-399 
abolished IPS1 inhibitory activity on miR-399, indicating that miR-399 associated 
RISCs are highly efficient and multiple-turnover enzymes to cleave their perfectly 
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complementary targets, but may be stuck in the interaction between RISCs and 
their non-cleavable targets. This research not only revealed the phenomenon that 
miRNA activity in planta can be regulated by its mimic non-coding RNA, but also 
provided a genetic tool for the miRNA functional analysis. That is, introduction of 
an artificial non-cleavable miRNA target mimic is capable of knocking down com-
plementary miRNA activity in vivo. Using this strategy and the IPS gene backbone 
[30], successfully inhibited the activities of the miR-156 and miR-319 separately 
by over-expressing target mimicries with non-cleavable sites for these miRNAs, 
respectively, in Arabidopsis thaliana.

The principle of ‘miRNA sponges’ developed by [21] is similar to target mimicry 
of miRNAs described in plants. Artificial target RNAs are designed to contain sev-
eral tandem complementary binding sites to the miRNA of interest, but with a bulge 
or mismatch in the RISC cleavage site, and are genetically engineered to be stably 
expressed in mammalian cells. These artificial RNAs, like sponges, absorb a high 
level of their complementary miRNAs and release the translational repression of 
the bona fide targets by the miRNA-associated RISCs (miRISCs). The mismatch in 
the cleavage site prevents the decoy RNA from being degraded by miRISCs, but 
binds more firmly to the target miRNA loaded in RISC, sequestering it away from 
its bona fide mRNA targets in the cell. These miRNA sponges are experimentally 
proven to function as highly competitive miRNA inhibitors and depress miRNA 
targets effectively in mammalian cells. In addition, the sponges can be designed to 
bind effectively to multiple miRNAs that contain the same “seed’ region (position 
2–8 from the 5′ end of the miRNA) [21].

2.4  SiRNA and miRNA Vectors and Their 
Application in Gene Silencing

Various siRNA vectors have been developed for knocking down genes in plants and 
animals since the discovery of RNAi [2, 26, 49, 68, 85, 97, 109, 110, 126, 128]. 
SiRNA vectors are able to generate siRNAs transiently or consistently from double-
stranded RNAs or hairpin/stem-loop structure via Dicer enzymes targeting specific 
gene transcripts in various tissues or cells. However, not all siRNA vectors work well 
for both plants and animals. For example, the most popular siRNA vectors for gene 
silencing in plants are inverted repeat sequences coupled with a linker or a spliceable 
intron between the two repeats to form long (>100 bp) RNA hairpins [27, 62, 107, 
125]. Yet, these vectors are not applicable in animal cells because the long double-
stranded RNAs (dsRNA) generated from these vectors trigger cellular interferon 
pathways and lead to non-specific programmed cell death. Consequently, vectors 
that produce short hairpin RNAs (shRNAs) but which rarely trigger the interferon 
pathway were developed and have become widely used in animal studies [110, 129]. 
Similar shRNA vectors were also successfully applied toward directing gene silencing 
in plants [79]. Most shRNA vectors currently use an RNA polymerase III (Pol III) 
promoter, usually U6 or H1, and a pol III terminator (a stretch of thymidines) 
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to transcribe a short hairpin structure with a stem of 19–29 bp and a short loop of 
4–10 nt. The shRNA structures are further recognized and cleaved by Dicers to 
produce a large amount of siRNAs in cells to target specific gene transcripts.

Later on, with the discovery of miRNA genes that produce highly specific short 
miRNAs, earlier vectors that produce short hairpin structured siRNAs were further 
modified by using miRNA backbones [9]. The new vectors adapted the flanking and 
loop regions of endogenous miRNAs to express miRNA-like primary transcripts 
(pri-miRNA-like RNAs) using pol-II promoters and terminators. These modified 
miRNA-like small RNA vectors have been demonstrated to be more effective in 
gene knock-down by many folds, indicating the miRNA backbones are structurally 
predisposed to produce more effective small RNAs for gene silencing [9].

The most significant discovery that helped to revolutionize small RNA vector 
technology was the discovery of the asymmetric structures of siRNAs [50, 102]. The 
realization that most endogenous miRNAs are structurally asymmetric immediately 
prompted the birth of second-generation RNAi vectors, artificial miRNA vectors 
[1, 89, 94, 101, 139, 140]. The major difference between miRNA backboned siRNA 
vectors and artificial miRNA vectors is found on the stem region of the stem-loop 
structured RNAs produced by both kinds of vectors. While the stem regions of the 
stem-looped structured RNAs produced by the miRNA backboned siRNA vectors 
are perfect Watson-Crick base pairs, the ones from the miRNA vectors are often 
designed to be imperfectly matched with mismatches, GU wobbles, and bulges. The 
biogenesis of artificial miRNAs produced by miRNA vectors strictly follows the 
miRNA pathways distinct from the RNAi pathways in cells. Thus, artificial miRNA 
vectors can be used not only to silence most protein coding genes, but also to knock 
down genes encoding the enzymes/proteins of RNAi pathways.

Today, artificial miRNAs are widely used for gene silencing in both plants and 
animals. Compared to siRNA vectors, artificial miRNA vectors have significant 
advantages, including high specificity, fewer off-target effects, tissue-specific 
expression and almost no side effects. In contrast to the vectors that are used to 
silence individual genes, various modified vectors that direct simultaneous silencing 
of multiple genes have also been developed. For example, modified multi-hairpin 
structures of miR-30 have successfully knocked down multi-genes in a single construct 
[111]. We expect future gene silencing vectors to be more powerful in fine-tuning 
silencing of genes with subtle differences for various therapeutic purposes.

2.5 MiRNA Profiling and miRNA Biomarkers

Over 5,000 miRNAs from 44 organisms have been identified/predicted and stored 
in the miRBase registry (http://microrna.sanger.ac.uk/) [32, 33]. Most of them are 
not characterized by function. Determination of miRNA functions and miRNA-target 
interactions is therefore a long-term objective. Roles of miRNAs in post-transcriptional 
gene regulation are presumed to be extensive. In humans, an individual miRNA is 
predicted to regulate hundreds of coding gene transcripts [10, 71, 130]. Furthermore, 

Ying Ch02.indd   24Ying Ch02.indd   24 6/22/2008   1:57:50 PM6/22/2008   1:57:50 PM



2 Small RNA Technologies 25

transcripts from a single gene can be regulated by multiple miRNAs in a coordi-
nated manner [25, 42, 48]. Analysis of miRNA expression profile is thus important 
in elucidating roles of specific miRNA or miRNA cohorts in the regulation of their 
target gene transcripts.

Like the expression of mRNAs, the expression of miRNAs varies considerably 
from different cells, tissues, organs and species [63, 64]. The big challenge of studying 
miRNAs is how to effectively analyze thousands of miRNAs simultaneously for a 
limited amount of given samples. Traditional microarray technology has succeeded 
in analyzing entire protein-coding gene transcriptomes in various organisms. 
Similarly, various laboratories and companies have adopted the traditional mRNA 
array platform for the analysis of miRNAs over the last few years, allowing thou-
sands of miRNAs to be analyzed from samples including plants and animals [6, 13, 
15, 36, 47, 55, 67, 73–75, 84, 86, 87, 103–105, 113, 116, 122, 142].

The technologies to be used for miRNA array are not trivial. Compared to array 
analysis for mRNA expression, miRNA arrays usually involve much more compli-
cated procedures due to the small size of the miRNAs and the lack of a conserved 3′ 
end for easy sample labeling. These complicated steps include the ligation of RNA 
adapters to the miRNAs, RT-PCR amplification and T7 RNA polymerase transcrip-
tion [19, 87]. Current non-isotope miRNA array platforms involve these complicated 
techniques and require special skills; moreover, process-related systematic biases are 
unavoidable [19]. To simplify these steps, we have recently optimized the conditions 
for an earlier version of an isotope labeled miRNA array platform [55, 86], and further 
developed this system demonstrating its use in mouse miRNA analysis [116]. This 
optimized miRNA array platform is characterized by several unique features: (1) a 
careful selection of miRNAs for probe design to reduce potential cross-hybridization 
between different probes; (2) isolation of small RNAs of 15–28 nt using a 15% 
sequencing gel to avoid interference of signals between pre-miRNAs and pri-miRNAs; 
(3) direct labeling of the isolated small RNAs at their 5′end by introducing isotope-
labeled phosphates to avoid using adaptors and biased PCR amplification, and 
directly hybridizing the labeled small RNAs to the membrane containing arrayed 
miRNA probes. Results can be output as a visual miRNA atlas reflecting the 
 bonafide level of miRNAs in cells; and (4) introduction of a new way of data nor-
malization by using northern blot analysis of a constitutively expressed miRNA for 
initial data adjustment, and by a set of external controls for the evaluation of process-
related loss of signal and quantification of endogenous miRNAs.

Application of various miRNA array platforms reveals numerous miRNA 
biomarkers for a variety of human diseases including various kinds of cancers. The 
expression changes of these miRNA biomarkers indicate changes from normal to 
abnormal genetic and physiological conditions. For example, a specific spectrum of 
miRNAs including miR-23, -24, -26, -27, -103, -107, -181, -210, and -213 were 
induced in neoplastic cells under a hypoxic environment compared to normal condi-
tions [61]. Similarly, comparisons of miRNA profiles of tumor and normal tissues 
have revealed distinct miRNA biomarkers for various tumor cells over the last a few 
years [11, 12, 46, 60, 112, 120, 132]. Exploration of these miRNA biomarkers will 
be particularly useful in early diagnostics of human diseases such as cancers, 
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 diabetes, and Alzheimer’s disease. Eventually, detailed miRNA atlases of humans, 
animals and plants will be available with the help of small RNA deep sequencing 
and miRNA array platforms for a wide variety of applications.

2.6 Conclusions and Perspectives

In conclusion, the study of RNAi and miRNAs has led to a number of small RNA 
technologies that are and will continue to be extremely useful in the study of small 
RNAs, individual gene functions, functional genomics, and various biological ques-
tions in both plants and animals. The dissection of RNAi, miRNA, and other small 
RNA pathways is only the beginning. For most organisms, the detailed maps or 
atlases of small RNAs have not been completed or even started. The small RNA 
networks in gene regulation are still obscure, and the entire picture of gene regula-
tion by small RNAs and their detailed regulatory steps is a long-term goal. With a 
deeper understanding of the roles and mechanisms of small RNA-directed gene 
regulation, new technologies of using small RNAs will continue to be developed and 
established. We expect that such small RNA technologies will be expanded from the 
current siRNA or artificial miRNA directed post-transcriptional gene regulation to 
transcriptional gene regulation, for example, small RNA directed chromatin modifi-
cations or DNA methylation, to modulate the expression of any gene of interest. 
Small RNA technologies will not only used as tools to silence genes of various 
pathways but also genes of small RNA pathways themselves. For example, since 
RNAi and miRNA generally belong to different pathways that composed of different 
sets of enzymes, we expect that RNAi technology will be used to study functions of 
genes of the miRNA pathway, and vice verse. In addition to siRNAs and miRNAs, 
other kinds of small RNAs, such as trans-acting siRNAs (ta-siRNAs) [31, 40, 43, 90, 
119, 127], repeat-associated small interfering RNAs (rasiRNAs) [37, 52, 53, 92, 
118], and piwi-associated siRNAs (piRNAs) [4, 5, 8, 34, 35, 66, 88, 99, 133, 136], 
may also be able to be used for silencing of genes of interests.
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