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We compared two biogeomorphic models that postulate how vegetation is intertwined in the response and

recovery of barrier island dunes. Each model was developed in a separate coastal region using different

methods. Both relied on simple elevational representations of topography. By comparing topographies among

more islands of these two regions and by linking multiple representations of topographic pattern to resistance

and resilience, we provide a synthesis that shows the validity of both models and the consequences of

reifying one over the other. Using airborne LiDAR, topographic metrics based on point, patch, and gradient

representations of topography were derived for fifty-two sites across eleven islands along the Georgia Bight

and Virginia. These seventeen metrics were categorized in terms of resistance and resilience to disturbance

from storm-forced high water levels and overwash. Resistance refers to intrinsic properties that directly

counter expressions of power from disturbance. Resilience refers to the degrees of freedom to adjust and adapt

to disturbance. Using a cross-scale data modeling approach, these data were visualized as topographic state

space using multidimensional scaling. In this state space, similarity in topography as well as resistance and

resilience were inferred through a site’s position along low-dimension axes representing geomorphic

resistance and high-dimension axes representing the spatial landscape properties of biogeomorphic resilience.

The two models overlap in how they account for barrier dune resistance and resilience along the U.S. south

Atlantic coast. Islands of the Georgia Bight have a propensity for higher resistance and resilience. The

Virginia islands have lower resistance and resilience. Key Words: barrier islands, biogeomorphology, cross-scale
structure, dunes, resilience.

我们比较两个生物地貌模型，该模型假定植被如何在对障蔽岛沙丘之回应与回復中缠绕。两个模型分别
在分隔的海岸区域中运用不同的方法建立之。我们通过比较这两个区域中更多的岛屿型态，以及连结多
重地形模式再现与抵抗和回復力，提供展现两大模型有效性的合成，以及使其一较另一模型更具体化的

结果。运用空中LiDAR，为沿着乔治亚湾和弗吉尼亚的十一座岛屿的五十二个地点，推导出根据点、地

块和地形坡度再现的地形度量。这十七个度量，以对于风暴导致的高水位和越流扰动的抵抗及回復力进
行分类。抵抗指的是直接反抗扰动力量的展现之固有特质。回復力指的是调整与调适扰动的自由程度。
运用跨尺度数据模式化方法，这些数据使用多向度尺度化来可视化成为地形的状态空间。在此状态空间
中，通过随着再现地貌抵抗的低向度轴线与再现生物地貌回復力的空间地景属性之高向度轴线的场地位

置，推断地形的近似性和抵抗与回覆力 。两个模型在如何解释沿着美国南部亚特兰大海岸的障蔽沙丘的

抵抗与回復力上相互重叠。乔治亚湾的岛屿具有较高抵抗与回復力的倾向。弗吉尼亚岛屿则有较低的抵

抗与回復力。关键词：障蔽岛，生物地貌学，跨尺度结构，沙丘，回復力。

Comparamos dos modelos biogeom�orficos que postulan c�omo se entrelaza la vegetaci�on en la respuesta y en

la recuperaci�on en una barrera de dunas insulares. Cada modelo se desarroll�o en una regi�on costera separada

usando m�etodos diferentes. Ambos dependieron de simples representaciones de altura de la topograf�ıa. Al

comparar las topograf�ıas entre m�as islas de estas dos regiones, y conectando m�ultiples representaciones del

patr�on topogr�afico a la resistencia y la resiliencia, generamos una s�ıntesis que muestra la validez de los dos

modelos y las consecuencias de reificar a uno sobre el otro. Usando el LiDAR a�ereo, m�etricas topogr�aficas
basadas en punto, parches y gradiente, se derivaron representaciones de la topograf�ıa para cincuenta y dos

sitios a trav�es de once islas situadas a lo largo de la Bah�ıa de Georgia y Virginia. Estas diecisiete m�etricas se
categorizaron en t�erminos de resistencia y resiliencia a la perturbaci�on por niveles altos de agua forzados por

la tormenta y por overwash. La resistencia se refiere a las propiedades intr�ınsecas que directamente enfrentan
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las expresiones de poder de la perturbaci�on. La resiliencia se refiere a los grados de libertad de ajustarse y

adaptarse a la perturbaci�on. Usando un enfoque de modelado de datos de escala cruzada, los datos se

visualizaron como espacio en estado topogr�afico usando procedimientos de escala multidimensional. En este

espacio estado, la similitud en topograf�ıa lo mismo que la resistencia y la resiliencia se dedujeron a partir de

una posici�on del sitio a lo largo de ejes de dimensiones bajas que representan la resistencia geom�orfica, y de

ejes de dimensiones altas que representan las propiedades del paisaje espacial de la resiliencia biogeom�orfica.
Los dos modelos se traslapan en lo que concierne a c�omo considerar la resistencia de la barrera de dunas y la

resiliencia a lo largo de la costa sudatl�antica de los EE.UU. Las islas de la Bah�ıa de Georgia tienen una

propensi�on a resistencia y resiliencia m�as altas. Las islas de Virginia tienen resistencia y resiliencia m�as bajas.
Palabras clave: barrera insular, biogeomorfolog�ıa, estructura de escala cruzada, dunas, resiliencia.

S
patial pattern comparison is a fundamental

mode of geographic inquiry, one that has taken

on urgency in light of accelerating anthropo-

genic environmental change. For physical geogra-

phers, spatial pattern comparison is augmented by

the increased availability of data collected at high

resolution and large spatial extents. These data have

made it possible to compare the spatial attributes of

landforms in new and more subtle ways (Long and

Robertson 2017; Praskievicz 2018). This is particu-

larly true for sandy barrier island coasts, where

higher sea levels and more frequent storm surges are

anticipated if not well underway.
Although questions about the processes and pat-

terns contributing to the maintenance of barrier

islands motivated scholars in the 1970s and 1980s

(Godfrey 1977; Godfrey, Leatherman, and Zaremba

1979; Leatherman 1979), their focus now is more

attentive to the extent to which these landforms

will exhibit resilience to human-caused climate

change (Moore and Murray 2018). Resilience has

two properties. Engineering resilience, or resistance,
refers to properties that directly counter expressions

of power from externally forced disturbances like

storm surge. Ecological resilience, herein resilience, is a
measure of the degrees of freedom a system has

evolved to absorb or adjust to disturbance before

changing state. This dual, or bivariate, aspect of

resilience is recognized by biogeographers and geo-

morphologists (Stallins, Mast, and Parker 2015;

Phillips and Van Dyke 2016; Thoms, Metizen et al.

2018; Thoms, Pi�egay, and Parsons 2018; Fuller

et al. 2019).
In these renewed inquiries about the forces that

maintain barrier islands, dune topography is recog-

nized as a critical determinant of how sandy coasts

respond to and recover from high water events.

One ongoing line of investigation emphasizes pro-

cess-based geomorphic and geologic mechanisms.

Sediment exchange among dunes, the nearshore,

and the beach controls dune height. In turn, dune

height shapes the overland transfer of sediment and

the maintenance of barrier island elevation (Houser

2018). Geological framework, bathymetric features,

dune topographic variability, and storm sequence are

interwoven factors shaping sediment exchange

(Houser 2013; Houser et al. 2015; Hapke et al.

2016; Walker et al. 2017; Wernette, Houser, et al.

2018). The emphasis in these reductionist barrier

island studies (sensu Harrison 2001) is on elucidating

the geomorphic variables and conditions that main-

tain barrier islands, often for the development of

predictive models (Gutierrez et al. 2015; Houser,

Wernette, and Weymer 2018; Weymer et al. 2018).
An accompanying line of inquiry into the forces

that maintain barrier islands emphasizes the emer-

gent properties of dune topography (Stallins 2005;

Wolner et al. 2013; Brantley et al. 2014; Vinent and

Moore 2015; Zinnert, Shiflett, et al. 2016). These

studies also aim to describe the response and recov-

ery behavior of barrier dunes when exposed to high

water events. They concentrate on the potential

contributions of ecological and biogeomorphic phe-

nomena, however. The overland transfer of sediment

is also shaped by feedbacks among dune topography,

dune vegetation, and meteorological forcings that

elevate water levels and mobilize sediments. The

dune dynamical states of Vinent and Moore (2015)

and Goldstein and Moore (2016) document how

barrier dunes along the Virginia coast can become

trapped in a low topographic state or maintain ele-

vation through dune building as a high topographic

state. Whether topography on Virginia barrier

islands can recover from a low, frequently inundated

state is determined by the balance of constraints

imposed by sediment availability, the stabilizing

effects of vegetation, plant growth rates, and the

timing of storm sequences. In the stability domain
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model of Stallins and Parker (2003), similar high
and low island states are defined in terms of plant

functional types and how they shape the spatial
attributes of the dune landscape. In a disturbance-
reinforcing stability domain, frequent overwash forc-

ing events and biogeomorphic feedbacks reinforce a
resilient assemblage of dune plant functional types.
These plants lower topographic resistance to over-

wash, as postulated for the wave-dominated barrier
island morphology of South Core Banks, North
Carolina. In a disturbance-resisting stability domain,

infrequent overwash forcing events and biogeomor-
phic feedbacks reinforce a resilient assemblage of
dune plant functional types that augments topo-
graphic roughness and increases resistance to over-

wash, as postulated for the tidally dominated barrier
island morphology of Sapelo Island, Georgia. The
high and low state model and the stability domain

model do not necessarily apply to an entire island
but to coastal stretches within an individual island

(Zinnert, Brantley, and Young 2016).
These two biogeomorphic models each seek to

understand the resilience properties of barrier coasts.

The high and low state model places an emphasis on
the net balance among geomorphic and biogeomor-
phic processes that maintain an island, however.

The stability domain model stresses the landscape
spatial character of biogeomorphic interactions. In
addition, the Virginia high and low state model is

derived from modeling and remote sensing. The
Georgia Bight stability domain model is based on
ground-based sampling of topography and vegetation.
Yet both models are generalized from a few islands.

The characterizations of topography that inform
each of them are based only on simple point and
line elevations. Taken together, these two models

Figure 1. Study islands in the Georgia Bight and along the Virginia coast.

Multiple Representations of Topographic Pattern 3



reflect a tension between simplifications of topogra-

phy done as a prerequisite for modeling versus those

made in field investigations trying to incorporate

geographical verisimilitude (Vinent and Moore

2013; Davidson-Arnott et al. 2018).

To identify the common ground between these

two models, we compared dune topographies across

six barrier islands of the Georgia Bight to topogra-

phies among seven islands of the Virginia barrier

coast (Figure 1). We posed two questions: (1) How

do the dune topographies of the Georgia Bight and

Virginia coastal region differ? (2) How do the dunes

in these regions differ in resistance and resilience?

The barrier islands of the Georgia Bight are com-

posed of tidally dominated island morphologies

toward its center and wave-dominated island mor-

phologies along its limbs in Florida and North

Carolina. Along these two outlying coastlines, tidal

range is at a minimum and wave heights are high.

Barrier island morphologies tend to be long and nar-

row. Toward the center of the bight, where tidal

range increases and wave heights diminish, barrier

islands tend to be shorter and wider. Hayes (1994)

classified the Georgia Bight islands into the wave-

dominated barrier islands of the Outer Banks of

North Carolina, the mixed tidal and wave energy

barrier islands of South Carolina, the tide-dominated

estuarine sea islands of Georgia, and the wave-domi-

nated barrier islands along the east coast of Florida.

The Virginia barrier islands are a part of the

Delmarva Peninsula. Headland erosion at the north-

ern extent of the peninsula provides sediments for

Assateague Island, a wave-dominated barrier island,

and for the more numerous mixed-energy, tide-domi-

nated barrier islands to the south (Oertel and Kraft

1994). Rates of relative sea level rise from New

Jersey to North Carolina are among the highest

along the U.S. Atlantic coast (Sallenger, Doran, and

Howd 2012; Piecuch et al. 2018). Many of the

Virginia islands are migrating toward the mainland

and are undergoing pronounced reductions in upland

area (Zinnert, Shiflett, et al. 2016; Deaton, Hein,

and Kirwan 2017).
By comparing topographic patterns in these two

regions, our intent was to infer the consequences of

the simplifications and generalization inherent to

the existing biogeomorphic models. The topographic

variables informing these models have been limited

to primary foredune height or field-observed point

elevations along line transects even though

alongshore topographic variability (Houser,

Wernette, and Weymer 2018) and spatial biogeo-

morphic processes (Feagin et al. 2005) are impor-

tant. By incorporating a greater variety of ways to

represent topography in these comparisons, we pro-

vide a more nuanced assessment of where and under

what conditions different levels of barrier dune resis-

tance and resilience develop. In these comparisons,

it was not feasible to incorporate all of the geologic,

bathymetric, and meteorological factors that impinge

on barrier island dune topography. Dune topography,

however, is the proximate causal factor influencing

the movement of sediment and the maintenance of

a barrier island. Furthermore, as a strategy of geogra-

phers, comparisons among many different places gen-

erate knowledge in ways that fully specified

descriptions of one or a few locations do not. From

the perspective of macroecology (McGill [2019] and

many others), the relationships between topography

and resilience properties can be more readily dis-

cerned by comparing observations from

many islands.

Resistance, Resilience, and Comparing

Spatial Patterns

We employ the definition of resilience that recog-

nizes its multiple components. Geomorphologists

and ecologists describe resilience as bivariate

(Thoms, Pi�egay, and Parsons 2018; Fuller et al.

2019) in that there are two interrelated properties of

resilience. Engineering resilience, or resistance, refers

to properties that directly counter expressions of

power from extrinsic disturbance. Ecological resil-

ience (i.e., resilience) is a measure of the degrees of

freedom that have evolved to absorb or adjust to dis-

turbance. Resilience is a measure of how feedbacks

couple to extrinsic disturbance and maintain an

organizational structure and function until some

threshold is reached and the system undergoes a

change in state. Resistance is a measure of the mag-

nitude of change as an immediate response to distur-

bance. Resilience invokes adaptation and the

emergence of stabilizing feedbacks.
Biophysical systems can have varying levels of

resilience properties simultaneously (Corenblit et al.

2009; Corenblit et al. 2015; Eichel, Corenblit, and

Dikau 2016; Hortob�agyi et al. 2018). Resilience

emerges out of resistance and they shape one

another. Plant adaptations and biogeomorphic
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feedbacks might enhance resistance to disturbance if

disturbance-forcing events are frequent. Conversely,

plant adaptations and biogeomorphic feedbacks

could lessen resistance where disturbance-forcing

events are infrequent. By modulating disturbance

exposure, biogeomorphic interactions can select for

resilient configurations of landforms, sediment mobil-

ities, and plant compositions. Extreme resistance to

disturbance or minimal resistance might inhibit the

development of landform–vegetation feedbacks that

contribute to the emergence of resilience.
Inferring resistance and resilience among different

topographies requires addressing the underacknowl-

edged intricacy of making spatial pattern compari-

sons (Lastochkin, Zhirov, and Boltramovich 2018;

Praskievicz 2018). A single pattern can have a vari-

ety of components and be represented in various

ways. As Wernette, Thompson, et al. (2018) noted,

many studies have made predictions about dune

change based on a few summary measures of topogra-

phy. Topography has often been limited to point

observations averaged for an area on an island or

calculated within a moving window distance.

Topography is also frequently represented as a line

demarcating the alongshore elevation of the primary

foredune crest or the beach berm. If sandy barrier

islands are composed of spatially interactive land-

scape elements as postulated (Odum, Smith, and

Dolan 1987; Feagin et al. 2005; Feagin and Wu

2007), elevation and topography should be charac-

terized in multiple ways. Elevations can also be rep-

resented as an area bounded by contour lines. As in

a classed choropleth map, elevation point observa-

tions can be reclassified into discrete intervals to

form polygons or patches of different sizes and

shapes. Elevation also has properties arising from its

continuous distribution as a spatially explicit gradi-

ent representation (Kedron et al. 2018). Singular

measures of elevation might be useful, but they are

also incomplete descriptions of spatial pattern. By

using multiple representations of topography like

these, one can extract more information and make

more nuanced pattern comparisons. This also allows

different conceptual paradigms to contribute to pat-

tern-process interpretations. The choice of paradigm

can influence the outcomes of inquiry. Conclusions

about ecological and geomorphic phenomena can

differ based on whether a patch or a gradient para-

digm was employed (van Coller, Rogers, and

Heritage 2000; Stallins 2006; Collins et al. 2018).

Combining multiple representations of dune topogra-

phy is also strategic because of the uncertainties

inherent to reliance on a few measures of elevation

(Wernette, Thompson, et al. 2018).
Yet even if multiple representations of topo-

graphic pattern improve comparisons, what still

remains a challenge is ensuring that pattern reflects

process. For them to remain linked, a larger theoreti-

cal framework is needed to guide what data represen-

tations are selected and how they can be combined

prior to making comparisons (Praskievicz 2018). In

this study, the ecological concept of cross-scale resil-

ience provided the framework to ensure that pattern

and process were linked. Cross-scale resilience postu-

lates how variability in pattern and process within

and across scales confers resistance and resilience

(Nash et al. 2014; Allen et al. 2016). Its origins bor-

row from hierarchy theory, but cross-scale resilience

accounts for more of the adaptive and evolving

nature of biophysical systems. Cross-scale resilience

is not just a conceptual description. Many authors

use the term cross-scale resilience to acknowledge that

interactions promoting resilience occur across scales.

The concept of cross-scale resilience comes with

empirics (Allen et al. 2016; Sundstrom et al. 2018).

Cross-scale resilience provides a theory-based meth-

odology to account for resilience properties gener-

ated through the structural relationships among a

few key driving variables.

Operationalizing Cross-Scale Resilience to

Compare Dune Topography

Cross-scale resilience properties have been quanti-

fied in terrestrial, marine, and socioecological sys-

tems (Nash et al. 2014; Sundstrom et al. 2014;

Sundstrom et al. 2018). Modeling cross-scale resil-

ience begins with the specification of variables, or

metrics, that represent compartmentalized but nested

cycles of pattern and process. In resilience theory,

these are known as adaptive cycles. When linked

across local to landscape extents, these cycles sum-

marize successional development (Allen et al. 2014;

Hortob�agyi 2018). This linked structure is known as

a panarchy. The metrics that specify the individual

cycles of development in a panarchy should target

the key structuring processes occurring at different

scalar extents (e.g., Walker et al. 2017), thereby

entailing the use of different representations of pat-

tern. Based on Stallins and Corenblit (2018), what

Multiple Representations of Topographic Pattern 5



follows is an explanation of how the metrics selected

in our cross-scale model correspond to resistance or

resilience, what facet of dune topography they repre-

sent, and how these metrics can be integrated to

compare dune topographies and link them to resil-

ience properties.
The geomorphic processes that determine eleva-

tion comprise the lowest compartment in our cross-

scale data model. For a given location, elevation

encompasses cycles of sediment deposition and ero-

sion derived through wind and wave energy as well

as sediment availability. Elevation is a foundational

resistance metric. It plays a large role in how high-

water events affect topography. The next compart-

mentalized cycle of our data model spans the addi-

tional resistance conferred by the anchoring effects

of vegetation and the development of dune land-

forms of different size and shape. Resistance here

varies with cycles of dune plant population expan-

sion and destruction associated with geomorphic dis-

turbances like blowouts and overwash. Low levels of

resilience can emerge through the processes summa-

rized in this second compartment, because the size

and shape of individual dune landforms and dune

plant abundances could reinforce each other in a

positive feedback under the prevailing geomorphic

disturbance regime. These dune landforms can be

represented by metrics expressing the different sizes

and shapes of polygons or patches formed by classifi-

cation of elevational intervals.
Resilience is potentially at a maximum in the

next highest compartment. Biogeomorphic processes,

ecological interactions, and topography can become

spatially integrated and reinforce one another

through positive feedbacks encoded across the land-

scape as a form of ecological memory. This resilience

can be represented by metrics that capture the con-

tinuous surface features of topography. These gradi-

ent metrics reflect how topography can shape the

connectivity or resistivity to flows of sediments,

storm surge, and plant propagules. In dunes, interac-

tions at one point on the landscape can influence

conditions at another (Reiners and Driese 2001;

Feagin et al. 2005; Feagin and Wu 2007).

Topographic comparisons can then be made by

assessing the variance structure of these data.

Because the metrics of a cross-scale data model are

hierarchically nested, they will have multicollinear-

ity. Through dimensionality reduction techniques

like ordination, the variance comprising this

multicollinearity can be partitioned across different

dimensions, typically orthogonal axes. As visualized

in a scatterplot, the position of island sites in this

space reflects their topographic differences. Each axis

can then be affiliated with trends in resistance or

resilience based on which topographic metrics load

more strongly on them (Lamothe, Somers, and

Jackson 2019). In this topographic state space,

topography and resilience properties can be com-

pared simultaneously. Geomorphologists have

employed analogous approaches, like morphospace,

phase space, or evolution space (Inkpen and Petley

2001; Phillips 2009; Baas and Nield 2010; Inkpen

and Hall 2016; Phillips 2018b). Any single land-

scape should be capable of being located within a

larger state space derived from multiple landscapes

or else expand the boundaries of this state space if it

has not been encountered before.

For a state space constructed in this manner, the

number of axes (i.e., its dimensionality) summarizes

the nonindependent relationship between resistance

and resilience. Following Donohue et al. (2013),

Hillebrand et al. (2018), and Radchuk et al. (2019),

resilience is a higher dimensional property that

emerges out of the resistance that develops at lower

dimensions. As expressed in terms for barrier island

dunes, lower dimensional axes of state space summa-

rize trends in geomorphic resistance. Higher dimen-

sional axes summarize trends in resilience. This

resilience arises through biogeomorphic and ecologi-

cal processes that modify the geomorphic template

and shape landscape spatial structure. Thus, the

number of axes as well as how individual variables

load on these axes becomes the basis for comparing

topography and for inferring how resistance and

resilience covaries with topography.

Methods

Study Area and Sampling Design

Dune topography in the Georgia Bight was char-

acterized on five islands: Cape Canaveral (Florida),

Sapelo Island (Georgia), Bull Island (South

Carolina), Kiawah Island (South Carolina), and

South Core Banks (North Carolina). Dune topogra-

phy was characterized for seven islands along the

Virginia and Maryland coasts, from north to south,

Assateauge Island, Metompkin Island, Cedar Island,
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Hog Island, Parramore Island, Wreck Island, and

Ship Shoal Island.

The general locations to sample topography along

the shore of each island were first visually identified

in Google Earth imagery. The time frame was lim-

ited to the most recent years for which LiDAR data

were available that spanned multiple islands. This

visual method encompassed identification of the

topographically distinctive, contiguous coastal

strands along an island. It was analogous to how the

fluvial unit of the river reach guides field sampling

in fluvial settings. Criteria to detect the predominant

topographies within an island included beach width,

the width of the dune field, linearity of the dunes,

and type of habitat behind dunes. Areas of pervasive

human impact and locations directly on tidal inlets

were excluded. Three to five distinctive stretches of

topography were adequate to capture the range of

topographies on each island. A square plot was ran-

domly located within each distinctive reach of bar-

rier island dune shoreline. Study plots initiated at

the mean high-water mark datum (MHW) and

extended inland to where salt marsh or dense stabi-

lized woody vegetation developed. Fifty-two sites

from twelve islands were sampled.

LiDAR Data

Digital elevation models (DEMs) were constructed

for sites along each island using LiDAR ground ele-

vations obtained online from the National Oceanic

and Atmospheric Administration’s (NOAA’s)

Coastal Services Center. Dune topographic metrics

for the Georgia Bight utilized a 2010 LiDAR data

set collected by the U.S. Army Corps of Engineers

for four of five islands. Vertical (horizontal) accuracy

was 15 cm (75 cm) and nominal point space was 2m.

Due to small gaps in this 2010 data set, topographic

metrics for South Core Banks were constructed from

post-Sandy LiDAR data sets collected by the U.S.

Geological Survey in 2012. For these data, vertical

(horizontal) accuracy was 7.5 cm (19.4 cm) and nomi-

nal point space was 1m. A post-Hurricane Sandy

data set (2014) collected by the NOAA National

Geodetic Survey was used to construct DEMs for sites

on the Virginia islands. Vertical (horizontal) accuracy

was 6.2 cm (100 cm) and nominal point space was

0.3m. To assess the sampling design, Parramore

Island was sampled twice, independently, first with

the 2012 LiDAR data set in Monge and Stallins

(2016) and a second time as part of the Virginia sam-

pling with the 2014 LiDAR data set.
LiDAR point elevations were resampled to a reso-

lution of 1m and then interpolated using inverse

distance weighing to fill any gaps. LiDAR processing

was performed in ArcGIS using LAStools (Isenburg

2014). The Virginia MHW shoreline was defined as

the 0.7m contour line relative to the NAVD 88

datum following Rogers et al. (2015). The islands in

the Georgia Bight and the replicate plots for sites on

Parramore were referenced to the MHW mark using

VDatum (NOAA 2012).

Topographic Metrics

The broad-extent, high-resolution coverage of

LiDAR point data aids in the derivation of multiple

representations of topography (Fonstad and Marcus

2010; Long and Robertson 2017). Three sets of topo-

graphic metrics were produced, one for each compart-

ment. LiDAR point observations were (1) analyzed at

the site level to derive elevational descriptive statis-

tics (resistance metrics); (2) categorized into intervals

within sites to produce indexes of landform patch

structure (resistance and resilience metrics); and (3)

summarized across the continuous surface of a site as

a gradient representation (resilience metrics).
The first set of metrics, elevational descriptive sta-

tistics, included mean, maximum, median, 25th per-

centile, and 75th percentile elevations derived from

the 1-m point observations of each site DEM. These

low-dimension metrics target geomorphic resistance,

the susceptibility to exposure to maritime inputs.

The second set of metrics consisted of indexes pro-

duced from FRAGSTATS software (McGarigal,

Cushman, and Ene 2012). These metrics capture

resistance as well as any nascent biogeomorphic

resilience expressed in the size and shape of individ-

ual dune landforms. Landforms’ size and shape influ-

ence response and recovery to high-water events. To

derive the patches demarcating dune landforms, raster

DEMs were converted into areal representations fol-

lowing Wu et al. (2017) and Ryu and Sherman

(2014). The number of elevation classes was reclassi-

fied from all possible centimeter intervals in the

LiDAR point observations to one based approxi-

mately on decimeter intervals. A patch is the areal

form taken by these decimeter elevation intervals.
Eight FRAGSTATS indexes were deemed well

suited for discerning dune pattern–process
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relationships following Kupfer (2012). The aggrega-

tion index (AI) increases with greater patch coales-

cence and size. The area-weighted mean shape index

(SHAPE_AM) increases as patches become more

curvilinear. Higher values for the interspersion and

juxtaposition index (IJI) indicate that patches are

equally adjacent to all other patches. Higher values

for the largest patch index (LPI) imply a greater

dominance of a single patch type. A higher

Simpson’s diversity index (SIDI) implies higher

patch richness and more equitable patch abundance.

For the perimeter-area fractal dimension index

(PAFRAC), all patch shapes tend to be convoluted

when this value is large. The contagion index

(CONTAG) increases as patches become larger and

dominated by a single elevational range. The land-

scape shape index (LSI) increases as intervals of ele-

vation become less clumped and more aggregated.

Erosional, low-relief barrier dunes would be expected

to have a high aggregation (AI), more pronounced

curvilinear and convoluted landforms (SHAPE_AM,

PAFRAC), and the dominance of one or few patch

type and decimeter elevational ranges (LSI, LPI,

CONTAG). Patch diversity (SIDI) and the intermix-

ing of patches (IJI) would be expected to decline.

Conversely, barrier dunes with less erosion would be

expected to have less patch aggregation, more recti-

linear patch forms, and less dominance of a single

patch elevational range. Patch diversity and the inter-

mixing of patches would be expected to increase.
The third set of metrics summarizes resilience

encoded in the continuous, gradient spatial structure

of the landscape. They reflect the connectivity

among different biogeomorphic components of the

landscape. They included the skewness and kurtosis

of point elevation values, the spatial autocorrelation

structure of elevation, and plot size. Skewness, kurto-

sis, and spatial autocorrelation are properties associ-

ated with critical transitions in resilience (Scheffer

et al. 2015). Skewness and kurtosis were derived

from all point observations across a site DEM.

Spatial autocorrelation was summarized in direc-

tional correlograms derived from the 1-m DEM sur-

face in GSþ software (Robertson 2008). These were

constrained to directions perpendicular to the water

line. Autocorrelation was assessed up to the distance

lag representing the width of the plot. Six Moran’s I
values from the major breaks along the plot of

Moran’s I were taken from each correlogram and ordi-

nated with principal coordinates analysis (PCoA) to

convert correlogram structure into values that could

be ordinated with the other dune topographic metrics.

All PCoA ordinations reduced down to one signifi-

cant axis, and the x coordinate for this axis was used

as the autocorrelation metric. The size of the plots,

expressed as the length of an edge of a site DEM in

meters, was included as a metric because this parame-

ter is the constraint within which any topographic

pattern and its resilience properties are confined.

Constructing State Space

The cross-scale topographic metrics for the

Georgia Bight region and the Virginia coast data

sets were ordinated using nonmetric multidimen-

sional scaling (NMDS) separately and then as a

combined data set. The NMDS algorithm first calcu-

lated a similarity distance matrix based on the sev-

enteen metrics of dune topography characterized for

each island site. The next step in NMDS was to fit

these similarity distances into a low (typically two-

or three-) dimensional state space. This required

iteratively shuffling the positions of sites in this state

space until an optimal solution was found, one that

preserved the similarities in the original distance

matrix while minimizing the number of dimensions,

or axes. Stress is a measure of how well matrix simi-

larity distances correspond with their graphical solu-

tion. NMDS solutions can be assessed for significance

by comparing reduction in stress in the actual data

with reduction observed with randomizations of these

data. All topographic metrics were relativized as z
scores prior to ordination. Similarity distances were

Euclidean. The final solution was subjected to an

orthogonal rotation to maximize variance in the data

set along the first and succeeding axes. Pearson’s cor-

relation coefficients were derived from the coordi-

nates of island sites along each NMDS axis and the

standardized values for the topographic metrics.

Hierarchical cluster analysis of the final combined

data set was performed using a flexible beta group

linkage method (b ¼ �0.25). Ordinations and clus-

tering were performed in PC-Ord Version 7 (McCune

and Mefford 2016).

Hypotheses

The islands from the Georgia Bight were expected

to have more varied topography because of this region’s

greater contrasts in nearshore conditions and barrier
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island morphology. The islands sampled in the Georgia

Bight are also not as consistently low and erosional as

those in Virginia. Consequently, we expected that the

state space solution for the Georgia Bight would have

a higher dimensionality. Dune elevation statistics,

patch indexes, and gradient metrics should separate

out along multiple axes and exhibit less multicolli-

nearity because of the potentially stronger influence of

dune vegetation on the secondary modification of

topography. Because the Virginia barrier islands are

experiencing rapid rates of retreat and sea-level rise,

we expected their dimensionality to be lower. With

Figure 2. DEMs for study sites along the Georgia Bight, scaled to local minimum and maximum elevations. Letters indicate position

along the island from A (northernmost) to D (southernmost). Site DEMs differed in size, although they are scaled to be the same here.

The conversion factors below each DEM can be used to derive their size relative to the largest site, South Core Banks C (215m �
215m). For example, the observed dimensions of site C on Sapelo Island are 112m � 112m (0.52� 215m¼ 111.8m). DEM ¼ digital

elevation model.
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more frequent high-water events, higher dimension

spatial metrics for patch and gradient representations

should have greater collinearity with elevation.
Lower resistance and resilience were expected for

the Virginia islands because the patterns of topogra-

phy should be more directly coupled to frequent
storms and the low, erosional status of the islands.

On islands in the Georgia Bight, resistance and

resilience were expected to be greater. The second-

ary modification of topography through biogeomor-
phic processes should be less affiliated with erosion,

thereby facilitating the development of positive

feedbacks among landforms, vegetation, and over-
wash disturbance regime associated with high

Figure 3. Nonmetric multidimensional scaling topographic state space for (A) the Georgia Bight and (B) the Virginia coast. Symbol

colors indicate island membership.
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resilience. All of these hypotheses were expected to

be reflected in the position of island sites relative to

the low- and high-dimensional axes of state space.

Results

Georgia Bight Topographic State Space

Topographies in the Georgia Bight (Figure 2)

varied from shore-parallel, rectilinear dune ridges

and swales (Kiawah B, Sapelo A, Canaveral D) to

patchy, overwash topographies (Kiawah A, South

Core Banks C, Bull A). The optimal NMDS solu-

tion for the Georgia Bight required three dimen-

sions (Figure 3A). Stress on all three axes was

lower than randomizations (Table 1). Dune topog-

raphy differed within individual islands to the

extent that many site topographies had greater simi-

larity to sites on other islands. For example, Sapelo

C was more similar to Parramore B than to other

Sapelo sites. Pearson’s correlations for the first

NMDS axis were strongest for elevational statistics,

patch aggregation, patch shape, and patch diversity

(Table 2). Thus, to the left in state space along the

first axis, elevations became higher and less aggre-

gated and exhibited variability over relatively small

distances. Dunes were more rectilinear in shape.

Toward the right along the first axis, site elevation

decreased and exhibited less variability over wider

areas. Elevation patches became more aggregated and

curvilinear in shape. For the second axis, stronger

correlations developed for patch interspersion, the

landscape shape index, spatial autocorrelation, and

plot size. Thus, island plots toward the top of state

space are areally small and no one decimeter eleva-

tional interval was dominant. Spatial autocorrelation

of elevation remained near zero at increasing distance

lags because of their more variable topography. Sites

toward the bottom of state space were larger in size

and patches had little elevational variability. The spa-
tial autocorrelation of elevation became increasingly

negative at greater distance lags. The third axis

exhibited a robust correlation only with skewness.

Virginia Dune Topographic State Space

The DEMs for Virginia exhibited patchy, frag-

mented topographies (Assateague B, Wrecks A and
B, Cedar D, Ship Shoal C) as well as broad areas of

low, flat topographies (Cedar A, Metompkin B, and

Wreck D; Figure 4). Shore-parallel rectilinear ridges

were weakly expressed and tended to occur as a sin-
gle feature in the middle or rear of a site

(Metompkin C, Hogs A and C). The optimal

NMDS solution required two dimensions (Figure 3B;

Table 1). Axis correlations were weaker (Table 3).
Robust correlations for the first axis included only

elevational statistics, patch aggregation, and patch

diversity. Topographies along the second axis varied

according to changes in plot size and in the skew-
ness and kurtosis of elevation. To the left (right) of

state space along the first axis, sites become higher

(lower) and patch elevations are more (less) diverse

and less (more) aggregated. To the top (bottom) of
the scatterplot, plots become smaller (larger), more

negatively (positively) skewed, and more negatively

(positively) kurtotic. Dune habitats on Wreck D and

Parramore B, for example, are smaller and have a
long tail of elevations in the direction of a few low

elevations. On Hog A and Cedar E, the distribution

of elevations is strongly peaked around low elevations
with a long tail of observations in the direction of a

few higher elevations.

Table 1. Dimensionality, stress, and variance extracted for state space axes

Axis 1 Axis 2 Axis 3

Final stress or total

variance extracted

Virginia state space (n¼ 30 plots)

Stress 42.0 13.7 11.5

Variance 43.7 22.2 65.8

Georgia Bight state space (n¼ 22 plots)

Stress 45.6 15.5 5.1 4.5

Variance 40.6 27.9 15.0 83.5

Combined state space (n¼ 52 plots)

Stress 41.8 12.8 11.1

Variance 48.6 20.7 69.3

Notes: All values significant (p< 0.01) based on Monte Carlo permutations of the observed data. Variance derived from principal

coordinates analysis.
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Combined Topographic State Space

A two-dimensional NMDS solution was optimal

(Table 1). Sites as well as island centroids indicated

that the Georgia Bight and Virginia topographies

occupied distinct regions in state space (Figure 5A).

With hierarchical clustering into two groups (Figure

5B), only one site from the Georgia Bight (Bull B)

fell within the cluster for the Virginia barrier islands.

Virginia sites from Metompkin, Hog, Assateague, and

Wreck clustered with the Georgia Bight data. The site

topographies for Parramore Island sampled indepen-

dently plotted close to one another, signifying that

the sampling design was not unduly biased. Clustering

at the level of seven groups (Figure 5C) differentiated

dune topographies along the second axis. The variabil-

ity in topography expressed along the second axis was

contained mostly within islands in the Georgia Bight.

The first axis of combined state space was struc-

tured by trends in elevation and FRAGSTATS

indexes (Table 4). Elevations became lower and topo-

graphic homogeneity increased to the right of state

space. To the left, elevations were higher and more

variable over smaller distances and dune landforms

became more rectilinear. The second axis correlations

were higher for kurtosis, the landscape shape index,

and plot size. Toward the top (bottom) of the

combined state space, the size of the dune habitat

became smaller (larger), patches of elevation were less

(more) dominated by a few elevation intervals, and

elevations had a less (more) peaked distribution

of elevations.

Discussion

The concept of disturbance-resisting and distur-

bance-reinforcing barrier island stability domains and

attributions of their resilience properties originated

from a small set of field observations on two greatly

contrasting island morphologies, the tidally domi-

nated island of Sapelo Island, Georgia, and the

wave-dominated island of South Core Banks, North

Carolina (Stallins 2005). The stability domain idea

was then extended to the Virginia barrier islands

(Wolner et al. 2013; Brantley et al. 2014; Zinnert,

Stallins, et al. 2016). The Virginia islands became

the setting for the development of the high and low

island state model of Vinent and Moore (2015). The

modeling and remotely sensed field verifications that

inform the Virginia model were derived from dune

elevations, a singular but important determinant of

the outcome of exposure to high water levels (e.g.,

Sallenger 2000). By contrast, the more descriptive,

Table 2. Pearson’s correlation coefficients for plot nonmetric multidimensional scaling axis
coordinates and topographic metrics for the Georgia Bight

Axis 1 Axis 2 Axis 3

Descriptive statistics (resistance)

Mean elevation 20.89 �0.26 �0.29

Max elevation �0.56 �0.22 0.19

25th percentile elevation 20.71 �0.62 �0.23

50th percentile elevation 20.80 �0.33 �0.45

75th percentile elevation 20.88 �0.02 �0.37

Patch metrics (resistance and resilience)

Aggregation index 0.89 �0.17 �0.35

Contagion 0.59 �0.66 0.05

Interjuxtaposition �0.56 0.74 0.11

Large patch index 0.57 0.52 0.05

Landscape shape index �0.33 20.87 0.15

Perimeter-area fractal dimension �0.60 �0.14 0.31

Mean shape index 0.78 �0.39 �0.34

Patch diversity 20.80 0.27 �0.30

Gradient surface metrics (resilience)

Skewness of point elevations �0.12 0.16 0.87

Kurtosis of point elevations �0.03 �0.66 0.68

Directional spatial autocorrelation of elevation �0.17 20.75 0.59

Plot size 0.17 20.93 �0.13

Notes: Correlations deemed important were >0.70 and not influenced by outliers (shown in bold).
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field-based stability domain model places more
emphasis on the landscape interactions of landforms
and dune plant functional abundances affiliated with

the two prominent classes of barrier island morphol-
ogy. Although each model relies on different repre-
sentations of topography, this is likely a function of

Figure 4. Digital elevation models of Virginia study plots, scaled to local minimum and maximum elevations. See Figure 2 for

explanation. The largest island site is Cedar D (295m � 295m).
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methodological preferences more than any lack of

awareness about the range of geomorphic and eco-

logical processes at play. Our results, however, indi-

cated that the sampled islands of these two regions

have differing but overlapping topographies. Their

topographies plotted in distinct but adjacent posi-

tions in state space, implying that these two biogeo-

morphic models might emphasize different levels of

resistance and resilience.

Topographic Differences

As hypothesized, only two dimensions were

needed to define the state space of the Virginia

islands. Elevation was the overriding influence on

topography. Other dune metrics had a weaker influ-

ence on topography and exhibited greater multicolli-

nearity. This confirms that topography across all

scales appears to be more coupled to exogenous geo-

morphic disturbances like overwash. In contrast, the

Georgia Bight state space had three dimensions and

less multicollinearity. As hypothesized, spatial struc-

turing was better developed. Patch and gradient met-

rics loaded more robustly on higher dimensional axes

and were less collinear with elevation. This points

toward a greater role for endogenous biogeomorphic

development. Topography is certainly subject to

storm inputs in the Georgia Bight, but because the

islands sampled there are not as low and erosional as

the Virginia coast, dune vegetation might contribute

more to landscape structure. Dune vegetation in

Virginia might be more limited to anchoring func-

tions, with less propensity for biogeomorphic feed-

backs to become entrained into topography at

landscape extents.
The combined state space corroborated that the

topographies of the two regions were distinct but

overlapping. Virginia island sites occupied a mostly

separate area from those of the Georgia Bight.

Based on the first axis of state space, Virginia dunes

are lower and vary less in elevation over a given

distance. Dune landforms are more curvilinear. The

Georgia Bight topographies exhibited more rectilin-

ear shore-parallel landforms. Topography is higher

and more variable over shorter distances. The sec-

ond axis of combined state space distinguished

island sites based on the kurtosis, plot size, and var-

iability in elevation within a site. The Georgia

Bight islands were distributed along a longer

length of the second axis than the Virginia islands,

confirming that they are more strongly structured

by these higher dimension resilience metrics. Dune

topography tracked with island morphology along

the second axis and mostly for islands in the

Georgia Bight.

The separation of the Virginia barrier islands in

state space is likely a consequence of their higher

rates of sea-level rise and erosion. Their size and

morphology might also play a role. Most of the

Virginia barrier islands are tidally dominated mor-

phologies. They are also smaller than their tidally

dominated counterparts in Georgia and

South Carolina. Because inlets at either end of tid-

ally dominated islands are sources and sinks for sedi-

ments that shape adjacent shorelines, the smaller,

rapidly eroding barrier islands of Virginia might have

greater variability in alongshore depositional and

erosional conditions (Haluska 2017) and thus dis-

tinctive topographies. Mulhern, Johnson, and Martin

(2017) observed that tidally-dominated island mor-

phologies exhibit more variability in shape than

wave-dominated morphologies, a finding that can be

extended to their dunes.
The distinctiveness of the Virginia islands could

also be a consequence of the impacts of Hurricane

Sandy in 2012. The two independent samplings of

Table 3. Pearson’s correlation coefficients for plot of
nonmetric multidimensional scaling axis coordinates and

topographic metrics for Virginia barrier islands

Axis 1 Axis 2

Descriptive statistics (resistance)

Mean elevation 20.91 �0.24

Max elevation �0.64 �0.65

25th percentile elevation 20.70 �0.17

50th percentile elevation 20.85 �0.08

75th percentile elevation 20.95 �0.14

Patch metrics (resistance and resilience)

Aggregation index 0.80 0.15

Contagion 0.64 �0.65

Interjuxtaposition �0.66 0.33

Large patch index 0.63 �0.02

Landscape shape index �0.60 �0.59

Perimeter-area fractal dimension �0.62 �0.15

Mean shape index 0.65 �0.44

Patch diversity 20.81 �0.04

Gradient surface metrics (resilience)

Skewness of point elevations 0.04 20.77

Kurtosis of point elevations 0.39 20.74

Directional spatial autocorrelation of elevation 0.14 �0.38

Plot size 0.06 20.78

Notes: Bold values indicate statistical significance (p< 0.05).
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Figure 5. Nonmetric multidimensional scaling topographic state space for the combined data set: (A) island centroids, (B) two-cluster

solution, and (C) seven-cluster solution. Parramore sites sampled in Monge and Stallins (2016) are abbreviated “Parra.” Parramore sites

sampled for this study are abbreviated “Par.” Line and symbol colors indicate island membership.
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Parramore Island, however, each with different

LiDAR data sets (2012 and 2014), produced topog-

raphies that fell near each other in the combined

state space (Figure 5B–5C). Either the topographic

effects of Sandy persisted over the two years between

LiDAR flights or the effects were not so much out

of the ordinary for the Virginia coast. Hapke et al.

(2016) found that the response to Sandy at Fire

Island, New York, was not notable or distinguishable

from several other large storms of the prior decade.

Differences in Resistance, Resilience, and
Biogeomorphic Models

Because of its dominant association with eleva-

tion, we posit that the first axis of the state space

derived in this study represents resistance associated

with the low and high island states of Vinent and

Moore (2015). As originally based on dune topogra-

phies in Virginia, these high and low states relate to

whether a barrier coast can maintain enough eleva-

tion through geomorphic processes and the topogra-

phy-modifying capacities of dune plants to persist in

a relatively high-resistance state or remain trapped

in a low-resistance state subject to frequent overwash

and erosion. Islands of Virginia have lower resistance

than those of the Georgia Bight.
Metrics indicative of biogeomorphic resilience

were correlated with the second axis of state space.

Topographies along this axis spanned tidally

Table 4. Pearson’s correlation coefficients for plot of
nonmetric multidimensional scaling axis coordinates and

topographic metrics for the combined data set

Axis 1 Axis 2

Descriptive statistics (resistance)

Mean elevation 20.89 �0.27

Max elevation �0.67 �0.58

25th percentile elevation 20.70 �0.40

50th percentile elevation 20.86 �0.19

75th percentile elevation 20.92 �0.14

Patch metrics (resistance and resilience)

Aggregation index 0.87 0.07

Contagion 0.80 �0.50

Interjuxtaposition 20.71 0.37

Large patch index 0.73 0.10

Landscape shape index �0.49 20.70

Perimeter-area fractal dimension �0.68 �0.16

Mean shape index 0.78 �0.25

Simpson’s index for patch diversity 20.85 �0.01

Gradient surface metrics (resilience)

Skewness of point elevations 0.15 �0.54

Kurtosis of point elevations 0.40 20.72

Directional spatial autocorrelation of elevation 0.12 �0.61

Plot size 0.32 20.74

Notes: Bold values indicate statistical significance (p< 0.05).

Figure 6. Summary of resilience properties in barrier island dune topographic state space. Because the Virginia coast was sampled more

intensively and exerted more influence on the structure of state space, this summary also incorporates axis interpretations from the

Georgia Bight state space. Intermediate elevation is approximately 1.2 ± 0.5m relative to the high-water mark.
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dominated to wave-dominated morphologies of the

Georgia Bight. We suggest that this higher dimen-

sion axis captures aspects of stability domain struc-

ture affiliated with island morphology as postulated

by Stallins (2005). The islands at either end of

the second axis correspond to stability domain

for disturbance-reinforcing islands (Assateague

and South Core Banks) and disturbance-resisting

islands (Sapelo, Kiawah, and Bull). Resilience

might be maximized at either end of the second

axis, with diminishing resilience near the middle.

Based on their positions relative to the second

axis, the islands of Virginia have lower resilience

compared to the islands of the Georgia Bight.

Resilience in Virginia is likely more limited to

localized biogeomorphic feedbacks that bind and

anchor sediments.
Given the smaller length of the second axis and

the lower amount of variance extracted on it, resil-

ience is likely a less frequently observed property of

barrier coasts than resistance. Conditions for its

development might be harder to meet. The resil-

ience associated with island morphology developed

only at intermediate elevations along the middle of

this first axis. Studies from fluvial and periglacial

environments specify an analogous window or enve-

lope of conditions in which biogeomorphic resilience

can emerge (Corenblit et al. 2015; Eichel,

Corenblit, and Dikau 2016; Hortob�agyi et al. 2018).
Geomorphic disturbances might be too frequent at

low elevations (Ship Shoal) or too infrequent at

higher elevations (Canaveral) to allow the land-

scape-extent positive feedbacks among dune plant

functional types, topography, and sediment mobility

to evolve and generate landscape biogeomor-

phic resilience.
Figure 6 summarizes where islands plotted in rela-

tion to regions of resistance and resilience in state

space. The first axis spans the resistance imparted by

high to low elevations. It corresponds with the high

and low state model of Vinent and Moore (2015).

Wernette, Thompson, et al. (2018), Wernette,

Houser, et al. (2018), and Houser, Wernette, and

Weymer (2018) posited that changes in the scales of

variability of elevation are indicative of barrier

island response and recovery. The axes of state space

in this study analogously summarize changes in the

scale of variability in topography. Based on patch

aggregation and diversity, elevation and topography

change from high and variable over short distances to

low and homogenous over larger areas along the first

axis. The second axis spans the resilience expressed

within stability domain topographies (e.g., Stallins

2005) at intermediate elevations. Transitions in skew-

ness, kurtosis, and autocorrelation are indicative of

abrupt transitions in resilience for a range of earth

surface systems (Scheffer et al. 2015). The potential

for these kinds of transitions was evident in this

study. These three metrics were correlated with

topographic changes along the second axis in the

combined state space (kurtosis) and in the state

space for the Georgia Bight (skewness and spatial

autocorrelation). Changes in topography along the

second axis might be more abrupt and threshold

driven. Transitions between high and low island

resistance states along the first axis might be

more gradual.

Conclusions

The Virginia and Georgia Bight barrier islands

occupied different regions in topographic state space.

Virginia barrier islands have lower resistance and

resilience. In the Georgia Bight, topographies exhib-

ited greater resistance and resilience. Resilience was

linked to wave-dominated and tidally dominated

barrier island morphologies. Yet as a conditioning

factor for resilience, island morphology is secondary

to elevation. Intermediate elevations were necessary

for resilience to be fully developed. The structure of

state space conveyed how the two models invoked

to describe the response and recovery of barrier

dunes, those of Vinent and Moore (2015) and

Stallins (2005), are complementary. They account

for different levels of resistance and resilience in bar-

rier dunes. Because each model was developed from

observations in separate regions with different meth-

ods and a few simple representations of topography,

it might be hasty to assume that either model has

universality to the exclusion of the other.

Because of the considerable topographic variabil-

ity expressed within individual islands, assuming that

there is a broad geographic gradient in resistance

and resilience from north to south along the south-

east Atlantic coast is simplistic. Centroids were nec-

essary to summarize the central tendencies in

topography and resilience properties for the islands.

Sankaran et al. (2018) argued that this kind of

coarsening is required to detect resilience that has a

spatial component. Spatial resilience has been shown
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to lack the discreteness it has in time (G�enin et al.

2018). We posit that resilience might be more het-

erogeneously distributed along barrier dune coasts

than previously assumed. Resistance is a more domi-

nant property, perhaps as a consequence of sea-level

rise underway. Phillips (2018a) also suggested that

the conditions for high resilience to develop might

be less dynamically favored. In this study, high resil-

ience developed only within circumscribed regions of

topographic state space.

Therefore, we caution against uncritical use of the

elevation values, the sizes and shapes of landforms,

and the spatial properties of dune landscapes we

have inferred from state space to categorize dune

topography at a specific location as resistant or resil-

ient. Not only is resilience a spatially dynamic pro-

cess but assigning resistance or resilience to

topography also has to be assessed relative to the

functional traits of dune vegetation, which can vary

considerably in time and across space (Harris,

Zinnert, and Young 2017; Goldstein et al. 2018). A

plant species can have different topography-modi-

fying functions because of its phenotypic plasticity.

How it modifies topography will vary according

to context. A grass species like Spartina patens
should be expected to vary in its topography-modi-

fying capacities from place to place (Mullins et al.

2019). Taxonomic categories like species are likely

to be far less relevant than plant functional traits

for understanding the vegetation component of

dune topography.
The findings of this study are limited in that veg-

etation was not sampled, although topography and

vegetation are highly interactive on coastal dunes.

Although Virginia and the Georgia Bight encompass

a wide range of barrier island types, we sampled only

eleven islands out of the approximately 2,100 barrier

islands globally (Stutz and Pilkey 2011). Adding

dune topographies from Texas, the northern Gulf of

Mexico, or even the German Bight are logical next

steps. With more islands and repeat characterizations

of topography through time, the structure of state

space should converge on a solution with more pre-

dictive potential. The resilience properties inferred

for regions of state space need to be assessed in terms

of plant functional traits. Techniques like the power

law approach of Houser, Wernette, and Weymer

(2018) should also be used to verify the resilience

properties of state space. Untangling the causality of

biogeomorphic feedbacks and their spatial expression

would give rigor to the use of the correlative associa-

tions in this study (Corenblit et al. 2019).
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