
Mobile Application
Development

MAS 490: Theory and Practice of Mobile Applications

Professor John F. Clark

What is Interface Builder?

  Interface Builder is a software development application for
Apple’s Mac OSX operating system.

  It is part of Xcode, the Apple developer’s toolkit

  Interface Builder allows Cocoa and Carbon developers to
create interfaces for applications using a graphical user
interface (GUI).

  The resulting interface is stored as a .nib file, short for NeXT
Interface Builder

  As of Xcode 4, Interface Builder is no longer a stand-alone
application and is fully integrated into Xcode

History of Interface Builder

  Interface Builder dates back to 1986. It was originally
written in LISP, which is the second-oldest high-level
programming language still in use. It was deeply
integrated into the Macintosh toolbox in the days of Mac
OS 8.

  It was introduced to Steve Jobs when he was running
NeXT. By 1988 it was incorporated in NeXTSTEP.

  It was the first commercial application that allowed
buttons, menus, and windows to be placed in an
interface using a mouse.

Tim Berners-Lee

Tim uses a NeXT computer to
design the first web browser

NeXTSTEP Desktop

How does it work?

  Interface Builder provides collections (or palettes) of user
interface objects (text fields, data tables, sliders, and pop-up
menus, for example) to the Objective-C programmer.

  The palettes are extensible, meaning you can customize and
develop new objects that can be added to new or existing
palettes.

  To build an interface, the developer just drags and drops
objects into a window or menu. Actions that the objects can
perform are connected to targets in the code and outlets
(pointers) declared in the code are connected back to
objects.

How does it work? Part II

  Interface Builder saves an application's interface as a
bundle that contains the interface objects and
relationships used in the application.

  These objects are archived into either an XML file or a
NeXT-style property list file with a .nib extension.

 Upon running an application, the proper NIB objects are
unarchived, connected into the binary of their owning
application, and awakened.

 NIBs are often referred to as freeze dried because they
contain the archived objects themselves, ready to run.

Basic Tools

 Xcode developer environment
 For writing code

 Interface Builder
 GUI for designing interfaces

 Connections:
 Xcode has IBOutlet and IBAction types to

connect Interface Builder elements to
code objects.

Some User Interface (UI)
Elements

 NavigationController (optional)
 ViewController
 View
 Image
 Label
 Button
 TextField

Varieties of “C” Code

 Objective-C basics:
  Simple method, no parameters:

  [robot stand];
  robot.stand();

  Method with one parameter:
  [robot walkDistance:(int)distance];
  robot.walk(int distance);

  Method with two parameters:
  [robot walkDistance:(int)distance inDirection:

(float)direction];
  robot.walk(int distance, int direction);

View Controller

 Most interface logic belongs in a view
controller subclass

 Event Driven
 Init/InitWithNibName:Bundle:
 ViewDidLoad
 ViewWillAppear:
 ViewDidAppear:
 ViewWillDisappear:
 ViewDidDisappear:

Common Usage

 ViewDidLoad
 Called once when view is finished

initializing and is added to the view stack
 Use this for code that you want to run

only once before the user sees anything
 Example:
 Set the title of the view
 [self setTitle:@”My View”];

Common Usage, Part II

 ViewWillAppear
 Called just before the view becomes visible,

can be called multiple times (back button)
 Use this for code that you want to run every

time the view is displayed
 Example:
 Reload a page’s dynamic contents
 [self setViewCounter:viewCounter + 1];
 self.counterLabel.text = self.viewCounter;

Common Usage, Part III

 ViewDidDisappear
 Called after the view becomes invisible,

can be called multiple times
 Use this for code that you want to run

every time the view is gone
 Example
 Stop refreshing a timer
 [self stopMyTimer];

A More Complicated Example

 Let’s suppose a View Controller
contains six labels.
 The content of three of the labels is

dynamic and could be longer than
one line.

 The code must resize the labels and
move down the remaining labels.

// Category for UIView
@interface UIView (UIKitExtensions)
- (void)moveDown:(int)pixels;
- (void)updateSize:(CGSize)newSize;
@end

@implementation UIView (UIKitExtensions)

- (void)moveDown:(int)pixels {
 self.frame = CGRectMake
(self.frame.origin.x, self.frame.origin.y +
pixels, self.frame.size.width, self.frame.size.height);
}

- (void)updateSize:(CGSize)newSize {
 self.frame = CGRectMake
(self.frame.origin.x, self.frame.origin.y, newSize.width,
newSize.height);
}

@end

int labelWidth = challenges.frame.size.width;
int labelHeight = challenges.frame.size.height;
int extraHeight = 0;
int labelMaxHeight = 2000;
int originalHeight;
UIFont *font = challenges.font;
CGSize size;

challenges.text = issue.challenges;
contributingFactors.text = issue.contributingFactors;
consequences.text = issue.consequences;

// size challenges
originalHeight = challenges.frame.size.height;
size = [challenges.text sizeWithFont:font
 constrainedToSize:CGSizeMake(labelWidth, labelMaxHeight)];
size.height = (size.height < labelHeight ? labelHeight : size.height);
[challenges updateSize:size];

// update next label
extraHeight += size.height - originalHeight;
[contributingFactorsHeader moveDown:extraHeight];
[contributingFactors moveDown:extraHeight];

//…continued

// size contributingFactors
originalHeight = contributingFactors.frame.size.height;
size = [contributingFactors.text sizeWithFont:font
 constrainedToSize:CGSizeMake(labelWidth, labelMaxHeight)];
size.height = (size.height < labelHeight ? labelHeight : size.height);
[contributingFactors updateSize:size];

// update next label
extraHeight += size.height - originalHeight;
[consequencesHeader moveDown:extraHeight];
[consequences moveDown:extraHeight];

// size consequences
originalHeight = consequences.frame.size.height;
size = [consequences.text sizeWithFont:font
 constrainedToSize:CGSizeMake(labelWidth, labelMaxHeight)];
size.height = (size.height < labelHeight ? labelHeight : size.height);
[consequences updateSize:size];

