## David S. Moore • George P. McCabe

# Introduction to the Practice of Statistics Fifth Edition

Chapter 10:

Inference for Regression



Figure 10-2
Introduction to the Practice of Statistics, Fifth Edition
© 2005 W. H. Freeman and Company

#### SIMPLE LINEAR REGRESSION MODEL

Given n observations on the explanatory variable x and the response variable y,

$$(X_1, y_1), (X_2, y_2), \ldots, (X_n, y_n)$$

the **statistical model for simple linear regression** states that the observed response  $y_i$  when the explanatory variable takes the value  $x_i$  is

$$y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Here  $\beta_0 + \beta_1 x_i$  is the mean response when  $x = x_i$ . The deviations  $\epsilon_i$  are assumed to be independent and normally distributed with mean 0 and standard deviation  $\sigma$ .

The parameters of the model are  $\beta_0$ ,  $\beta_1$ , and  $\sigma$ .

Figure 10-5b Introduction to the Practice of Statistics, Fifth Edition

© 2005 W. H. Freeman and Company

|           | Root MSE<br>Dependent Mean |                       |                   | 0.99952<br>17.72500 |         |             | .8950<br>.8932 |
|-----------|----------------------------|-----------------------|-------------------|---------------------|---------|-------------|----------------|
|           | C                          | oeff Var              |                   | 5.63902             |         |             |                |
| Variable  | DF                         | Parameter<br>Estimate | Standard<br>Error | t Value             | Pr >  t | 95% Confide | ence Limits    |
| Intercept | 1                          | -7.79625              | 1.15494           | -6.75               | <.0001  | -10.10812   | -5.48438       |
| logmph    | 1                          | 7.87422               | 0.35411           | 22.24               | <.0001  | 7.16539     | 8.58305        |

Figure 10-5e
Introduction to the Practice of Statistics, Fifth Edition
© 2005 W. H. Freeman and Company

# CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS FOR REGRESSION SLOPE AND INTERCEPT

A level C confidence interval for the intercept  $\beta_0$  is

$$b_0 \pm t^* SE_{b_0}$$

A level C confidence interval for the slope  $\beta_1$  is

$$b_1 \pm t^* SE_{b_1}$$

In these expressions  $t^*$  is the value for the t(n-2) density curve with area C between  $-t^*$  and  $t^*$ .

To test the hypothesis  $H_0$ :  $\beta_1 = 0$ , compute the **test statistic** 

$$t = \frac{b_1}{SE_{b_1}}$$

The **degrees of freedom** are n-2. In terms of a random variable T having the t(n-2) distribution, the P-value for a test of  $H_0$  against

$$H_a$$
:  $\beta_1 > 0$  is  $P(T \ge t)$ 



$$H_a$$
:  $\beta_1 < 0$  is  $P(T \le t)$ 



$$H_a: \beta_1 \neq 0 \text{ is } 2P(T > |t|)$$

#### **CONFIDENCE INTERVAL FOR A MEAN RESPONSE**

A **level** *C* **confidence interval for the mean response**  $\mu_y$  when *x* takes the value  $x^*$  is

$$\hat{\mu}_y \pm t^* SE_{\hat{\mu}}$$

where  $t^*$  is the value for the t(n-2) density curve with area C between  $-t^*$  and  $t^*$ .

**Definition, pg 647**Introduction to the Practice of Statistics, Fifth Edition © 2005 W. H. Freeman and Company



Figure 10-9
Introduction to the Practice of Statistics, Fifth Edition
© 2005 W. H. Freeman and Company

#### PREDICTION INTERVAL FOR A FUTURE OBSERVATION

A **level** C **prediction interval for a future observation** on the response variable y from the subpopulation corresponding to  $x^*$  is

$$\hat{y} \pm t^* SE_{\hat{y}}$$

where  $t^*$  is the value for the t(n-2) density curve with area C between  $-t^*$  and  $t^*$ .

**Definition, pg 649**Introduction to the Practice of Statistics, Fifth Edition
© 2005 W. H. Freeman and Company



Figure 10-10
Introduction to the Practice of Statistics, Fifth Edition
© 2005 W. H. Freeman and Company

# SUMS OF SQUARES, DEGREES OF FREEDOM, AND MEAN SQUARES

**Sums of squares** represent variation present in the responses. They are calculated by summing squared deviations. **Analysis of variance** partitions the total variation between two sources.

The sums of squares are related by the formula

$$SST = SSM + SSE$$

That is, the total variation is partitioned into two parts, one due to the model and one due to deviations from the model.

**Degrees of freedom** are associated with each sum of squares. They are related in the same way:

$$DFT = DFM + DFE$$

To calculate **mean squares**, use the formula

$$MS = \frac{sum of squares}{degrees of freedom}$$

#### ANALYSIS OF VARIANCE F TEST

In the simple linear regression model, the hypotheses

$$H_0: \beta_1 = 0$$

$$H_a$$
:  $\beta_1 \neq 0$ 

are tested by the *F* statistic

$$F = \frac{\text{MSM}}{\text{MSE}}$$



The P-value is the probability that a random variable having the F(1, n-2) distribution is greater than or equal to the calculated value of the F statistic.

#### **ANOVA**b

| Model |            | Sum of<br>Squares | df | Mean Square | F       | Sig.  |
|-------|------------|-------------------|----|-------------|---------|-------|
| 1     | Regression | 493.989           | 1  | 493.989     | 494.467 | .000ª |
|       | Residual   | 57.944            | 58 | .999        |         |       |
|       | Total      | 551.932           | 59 |             |         |       |

a. Predictors: (Constant), LOGMPH

b. Dependent Variable: MPG

#### **Model Summary**

| Model | R     | R Square | Adjusted<br>R Square | Std. Error of the Estimate |
|-------|-------|----------|----------------------|----------------------------|
| 1     | .946ª | .895     | .893                 | .9995                      |

a. Predictors: (Constant), LOGMPH

#### Coefficients a

|       |            |        | lardized<br>cients | Standardized<br>Coefficients |        |      |
|-------|------------|--------|--------------------|------------------------------|--------|------|
| Model |            | В      | Std. Error         | Beta                         | t      | Sig. |
| 1     | (Constant) | -7.796 | 1.155              |                              | -6.750 | .000 |
|       | LOGMPH     | 7.874  | .354               | .946                         | 22.237 | .000 |

a. Dependent Variable: MPG

# STANDARD ERRORS FOR ESTIMATED REGRESSION COEFFICIENTS

The standard error of the slope  $b_1$  of the least-squares regression line is

$$SE_{b_1} = \frac{S}{\sqrt{\sum (X_i - \overline{X})^2}}$$

The standard error of the intercept  $b_0$  is

$$SE_{b_0} = s\sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum (X_i - \overline{X})^2}}$$

## STANDARD ERRORS FOR $\hat{\mu}$ AND $\hat{y}$

The standard error of  $\hat{\mu}$  is

$$SE_{\hat{\mu}} = s\sqrt{\frac{1}{n} + \frac{(X^* - \overline{X})^2}{\sum (X_i - \overline{X})^2}}$$

The standard error for predicting an individual response  $\hat{y}$  is<sup>4</sup>

$$SE_{\hat{y}} = s \sqrt{1 + \frac{1}{n} + \frac{(X^* - \overline{X})^2}{\sum (X_i - \overline{X})^2}}$$

#### TEST FOR A ZERO POPULATION CORRELATION

To test the hypothesis  $H_0$ :  $\rho = 0$ , compute the t statistic:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

where n is the sample size and r is the sample correlation.

In terms of a random variable T having the t(n-2) distribution, the P-value for a test of  $H_0$  against

$$H_a$$
:  $\rho > 0$  is  $P(T \ge t)$ 



$$H_a$$
:  $\rho < 0$  is  $P(T \le t)$ 



$$H_a: \rho \neq 0 \text{ is } 2P(T \geq |t|)$$



### **Correlations**

|        |                            | LOGMPH | MPG    |
|--------|----------------------------|--------|--------|
| LOGMPH | Pearson Correlation        | 1      | .946** |
|        | Sig. (2-tailed)            | •      | .000   |
|        | N                          | 60     | 60     |
| MPG    | <b>Pearson Correlation</b> | .946** | 1      |
|        | Sig. (2-tailed)            | .000   | •      |
|        | N                          | 60     | 60     |

\*\*. Correlation is significant at the 0.01 level (2-tailed).

Figure 10-14
Introduction to the Practice of Statistics, Fifth Edition
© 2005 W. H. Freeman and Company