1. Introduction

A lump theorist claims that ordinary objects are spread out across possible worlds, much like many of us think that tables are spread out across space. We are not wholly located in any one particular world, the lump theorist claims, just as we are not wholly spatially located where one’s hand is. We are modally spread out, a trans-world mereological sum of world-bound parts. We are lump sums of modal parts. And so are all other ordinary objects. Below, I explore lump theory and investigate five arguments against it. These arguments may be the primary reasons why lump theory has not been accepted (or even relatively decently explored) until now. I maintain that these arguments can be answered, and moreover, that accepting lump theory has distinct advantages, making it a competitive view in its own right.

2. Lumps and Modal Parts

Let us make two initial controversial assumptions: realism about times and realism about possible worlds. A lump theorist accepts spatial, temporal, and modal parts; she thinks that ordinary objects are spatially, temporally, and modally extended.

1 Lump theory is just one way of embracing modal parts. Lewis (1986), (1993) accepts modal parts—and trans-world sums of modal parts—but he doesn’t think that such objects are metaphysically interesting or relevant. Paul (2002) and McDaniel (2004) argue for distinct views, each of which may be considered a ‘modal parts’ view, in virtue of the fact that individuals (on Paul’s view) have modal properties as parts, or because individuals (on McDaniel’s view) wholly exist in more than one possible world. Paul’s and McDaniel’s views differ from the one I am endorsing here, however, which is discussed (but not endorsed) in Weatherson (ms(a)) and (ms(b)), and Kaplan(1979). My use of ‘lump’ to designate trans-world sums is borrowed from Weatherson (ms(a)) and (ms(b)). To my knowledge, the modal parts view defended here is not endorsed elsewhere, except my (2011) and (forthcoming).

2 While I do not give a full defense of lump theory in this paper, I hope that what follows is a descent start, and may encourage a fuller defense at another time.

3 It is possible to commit to lump theory without committing to spatial or temporal parts. However, it is (to my mind) conceptually easier to consider a position that maintains symmetry with respect to its view on space, time and worlds.
Sider (2001) gives the following mereological definition of a temporal part: \(x \) is an instantaneous temporal part of \(y \) at an instant \(t = _a \) (i) \(x \) exists at, but only at, \(t \), (ii) \(x \) is part of \(y \) at \(t \); and (iii) \(x \) overlaps at \(t \) everything that is part of \(y \) at \(t \). Analogously, we may define modal part: \(x \) is a world-bound modal part of \(y \) at a world \(w = _d \) (i) \(x \) exists at, but only at, \(w \), (ii) \(x \) is part of \(y \) at \(w \); and (iii) \(x \) overlaps at \(w \) everything that is part of \(y \) at \(w \).

A lump theorist claims that ordinary objects are trans-world sums of world parts. Moreover, these world parts make certain modal facts about these objects true. We think, for example, that objects (such as my desk) can gain and lose parts. We think that even if my desk is in fact composed of parts \(p_1, \ldots, p_n \), it could have been composed of parts \(p_1, \ldots, p_m, p_{n+1} \) instead. According to the lump theorist, my desk, a trans-world object, has one modal part in the actual world, composed of (spatio-temporal) parts \(p_1, \ldots, p_m, p_n \) and another modal part in another world, composed of (spatio-temporal) parts \(p_1, \ldots, p_m, p_{n+1} \). This is how my desk (a trans-word sum or lump) could have had more parts than it actually does. An ordinary object, having a rich modal profile, has at least one (world) part in one world and another (world) part in another world. Any differences between these parts will ground the modal facts about the object.

According to lump theory, ordinary objects—including you and me—are much larger than initially thought. We not only have spatial parts that you don’t see (my back when you are viewing my front, say), and temporal parts that you don’t see (my younger temporal parts when you are only acquainted with my older ones, say), but we also have modal parts that you don’t see—parts in other, spatio-temporally and causally isolated possible worlds.

Moreover, such a view has the advantage of having a unified solution to metaphysical puzzles (which I discuss below). So I will only focus on a lump theory that embraces spatial, temporal, and modal parts in this paper. But variations are theoretically available. See Weatherson (ms(a) and (ms(b)) for a brief discussion.

4 By ‘trans-world’ in ‘trans-world object’ or ‘trans-world individual’ I mean something similar to ‘trans-continental’ in ‘trans-continental country’. An object (country) is stretched out across worlds (continents), yet is not wholly located in one world (continent). I do not mean by ‘trans-world individual’ (as it is sometimes used) to indicate an individual that is wholly located in more than one world, as in ‘trans-world identity’ (see Lewis (1986) section 4.3; Kaplan (1967), etc.).
The difference in the underlying metaphysics of ordinary objects between someone who believes in trans-world objects (as the lump theorist does) and someone who believes in trans-world identity is analogous to the difference in the metaphysics of ordinary objects as understood by the perdurantist and endurantist, respectively. An endurantist believes that ordinary objects are wholly present whenever they are located. A perdurantist (or temporal parts theorist) believes that ordinary objects are never wholly located at (in) a particular time. What the endurantist considers the whole object, the perdurantist will argue, is really just a time-slice of a much larger object composed of various temporal parts. Similarly, an ordinary object is not wholly located in one world, according to the lump theorist. What many of us consider to be the whole object is really just a world-chunk of a much larger object composed of various world parts. So those who endorse trans-world objects, as the lump theorist does, and those who believe in trans-world identity differ greatly as to what they think ordinary objects are, as well as what it is that makes the modal facts true.

The difference between someone who accepts lump theory and a modal realist like Lewis—someone who accepts that there are, in fact, trans-world sums of modal parts—is analogous to the difference between the temporal worm theorist and the temporal stage theorist. A worm theorist believes that ordinary objects are temporally spread out—a trans-temporal sum of various temporal parts. A stage theorist accepts temporal parts, but maintains that ordinary objects are temporal stages, with temporal parts as counterparts. So the lump theorist and the Lewisian modal realist are two different ways of accepting modal parts. One could argue that the only difference between them is linguistic: they merely disagree about the referent of ordinary object terms such as ‘table’ and ‘chair.’ But this is too quick: they also disagree about what it is that grounds the modal truths of ordinary objects, which is a significant metaphysical difference.

5 Assuming that no ordinary object is instantaneous.
The above sketch of lump theory may be coherent enough—simply extend the analogy of a certain view of space and time to worlds. Nonetheless, you might think, the resulting view is incredible. Indeed, its incredibleness may be the primary reason why lump theory has yet to be taken seriously in the philosophical literature. Yet philosophers have a long history of tolerating the incredible, so this can’t be reason enough to reject the view. In the next section I explore five substantive objections to lump theory, each of which goes beyond a mere incredulous stare.

3. 5 Objections

Perhaps first and foremost is the fact that lump theory assumes modal realism. Very few of us are modal realists, so this should be enough to undermine lump theory (as described here). Let’s call this the Modal Realism Worry.

Second, even the most ardent modal realist, David Lewis, while fully willing to admit that there are trans-world objects in the sense described above, does not think that such objects would be metaphysically relevant. Lewis claims,

“I oppose trans-world individuals not by denying their existence—not when I quantify without restriction—but rather by denying that they deserve our attention.”

So if even Lewis would deny that trans-world individuals are metaphysically relevant—i.e., that such objects would be the referent of ordinary object terms such as ‘table’ and ‘chair’—then those of us who reject modal realism have a further reason to reject modal parts. For even if we did accept modal realism, why should we think that trans-world composite objects deserve our attention? Let’s call this the Relevancy Worry.

6 Idealism, Platonism, Skepticism, belief in a-being-than-which-no-greater-can-be-conceived, Modal Realism, Nihilism (about ordinary objects), Universalism (about ordinary objects), and so on, just to name a few.

7 See Lewis (1986) section 4.3. His admittance of trans-world individuals follows from his commitment to universalism, the view that for any two objects, there is a mereological sum or fusion of those objects—any two objects, so this includes objects in different possible worlds, thus leading to trans-world sums.
A third concern involves the fact that even if we accept modal realism, possible worlds are spatio-temporally and causally isolated. So the only (relevant) relation that world parts can have to each other is similarity. A trans-world individual would have world-parts that are spatio-temporally and causally isolated. Contrast this with temporal parts, where the relevant parts are connected by causal—as well as similarity—relations. Lewis maintains that these relations are integral to accounting for gradual change over time. A leaf gradually changes from green to red. The temporal worm theorist accounts for this by appealing to the fact that “…the way it is at any time depends causally on the way it was at the time just before.” Trans-world lumps have parts that are not so casually connected or united, and hence lack similar explanatory utility. Let’s call this the Causal Isolation Worry.

A fourth concern involves strange cases of fission. In a temporal case of fission, what appears to be one person gradually splits into (what appears to be) two. In such cases, prior to the split, do we have one person or two? A temporal parts theorist has at least two ways to answer this question. She may claim that prior to the split, we have two persons in front of us (not one) because persons are trans-temporal objects that merely overlap some of their temporal parts (this is worm theory). Or she may say that at any given moment prior to the split there is only one person, since there is only one person stage (and persons are stages), but that this stage has two equally good (distinct) temporal counterparts (this is stage theory). Neither option coheres with common sense, Lewis admits. Moreover, the worm-theorist’s answer is theoretically counter-intuitive because of the fact that how many people there are is “extrinsic to the time in question.”

“It seems for all the world there is only one. We will have to say something counter-intuitive, but we get a choice of evils. We could say that there are two people; or that there is really

8 This objection, and the two that follow, are modified versions of the arguments Lewis gives for rejecting the claim that trans-world individuals are metaphorically relevant. As noted above, Lewis grants that such objects exist (Lewis (1986) section 4.3). But one could easily adapt his arguments to the stronger conclusion that trans-world objects do not exist, and that lump theory is false. This is what I have done here.
one, but really we’re counting stages rather than people, but we’re not counting all the people who are present; or that there is one, and we’re counting people, but we’re not counting them by identity. It really isn’t nice to have to say any of these things—but after all, we’re talking about something that doesn’t really ever happen to people except in science fiction stories and philosophy examples, so is it really so very bad that peculiar cases have to get described in peculiar ways? We get by because ordinary cases are not pathological.” (Lewis (1986: 218-9))

Strange cases of fission are purportedly rare in the temporal case. But they are rampant in the modal case.

If persons are trans-world lumps, then there will very often be competing potential world parts. Take some world-bound, lonely individual \(A \) in \(w_A \). Suppose \(A \) has (on Lewis’s view) a counterpart \(B \) in \(w_B \) and another counterpart \(C \) in \(w_C \). Also suppose that \(B \neq C \) and \(B \) and \(C \) are not counterparts of each other. Then according to lump theory, there is a trans-world individual that is the sum of \(A \) and \(B \) (call this \(AB \)) and another that is the sum of \(A \) and \(C \) (call this \(AC \)). So if we are in \(w_A \), looking at \(A \), how many individuals are (partially) before us? Analogous to the worm theorist’s response in the temporal case of fission, the lump theorist will claim that we have two individuals (partly) in \(w_A \)—\(AB \) and \(AC \)—both of whom are trans-world objects that merely overlap some of their world parts—namely, \(A \). But as with the temporal case, this may be counterintuitive.

Moreover, this has the odd consequence that the answer to \textit{how many individuals are there?} (while looking at \(A \)) is extrinsic to the world under consideration. What’s worse is the epistemic fact that we can never get outside of our world to ascertain the count!\(^9\) Finally, one might insist that unlike the temporal case, the modal cases are ubiquitous. Any situation where an individual has—on Lewis’s view—distinct counterparts in distinct worlds (or twin counterparts in the same world), where such counterparts are not counterparts of each other, we will have a modal case of fission. So while fission cases are somewhat problematic in the temporal case, their scarcity minimizes the

\(^9\) To be clear, Lewis himself does not make this point—perhaps because he has epistemic worries of his own to address.
threat to temporal parts theory. However, in the modal case “pathology is everywhere,” making lump theory implausible.10 Let us call this the Pathology Argument.

Finally, one might object that, other ordinary objects aside, \textit{we human beings} are not (and cannot be) trans-world. We simply do not care what happens to individuals that are spatio-temporally isolated from us! Moreover, given the vastness and variety of modal parts, you simply could not (and do not) have collective self-interest for all of your modal parts. Contrast this with the temporal case—you \textit{do} care about other temporal parts. So we, ourselves, could (in principle) be \textit{trans-temporal} individuals, but we cannot be \textit{trans-world}.11 Let’s call this the Argument from Self-Interest.

4. A Defense of Modal Parts

4.1 The Modal Realism Worry

Let’s begin with the Modal Realism Worry. I assume that the majority of philosophers disagree with modal realism because of the concreteness of possible worlds, not because of the commitment to possible worlds \textit{per se}. I do not mean to suggest that the \textit{only} relevant difference between an ersatzer and a modal realist is that, while both of them believe in possible worlds, the modal realist believes these worlds are concrete, whereas the ersatzer thinks that they are abstract.12

10 “If trans-world individuals are oddities we mostly ignore, no harm done if we have puzzles about how to count them from the standpoint of a world where they share stages. But if they are said to be ordinary things that we cannot ignore, then these puzzles are much more obnoxious.” (Lewis (1986: 219))

11 “Consider the various desires of my temporal stages in this world. They differ, of course; but there is plenty of common purpose to it...Not so across worlds. My this-worldly self has no tendency to make the purposes of its other-worldly counterparts its own. Far from wishing good fortune to all the counterparts alike, what it wants is that it should be one of the most fortunate among them. There is no common purpose....” (Lewis (1986: 219-20))

12 As Lewis claims, this “understates the extent to which they disagree with me (and with one another)...Compare the foolish suggestion that all of us at least agree that God exists, although we disagree about His nature: some say He's a supernatural person, some say He's the cosmos in all its glory, some say He's the triumphal march of history,... Given that much disagreement about 'His' nature, there is nothing we all believe in.” (1986 sec. 3.1: 140)
But the substantial differences between the ersatzer and modal realist are negligible when considering the viability of lump theory. The crucial characteristic of lump theory (as I envision it) is that whatever it is that plays a certain theoretical role are parts of individuals (via mereological sums). If possible worlds are, for you, abstract—sets of sentences, say—then let the various parts of these worlds be parts of individuals. Lump Theory with ersatzism (call this LTE) would maintain that ordinary objects—tables, chairs, you and me, etc.—are mereological sums of concrete objects and parts of (abstract) possible worlds. The details of a particular version of LTE would depend on the type of ersatzism accepted. But if possible worlds are abstract sets of propositions, then these propositions (or parts of these propositions) would be proper parts of ordinary objects. Many individuals, then, would be partly concrete and partly abstract; they would be trans-world because part of them overlaps (abstract) possible worlds.

Van Inwagen (1987) would likely protest against such objects:

“…though I think that color blue and I both exist, I am unable to form a sufficiently general conception of parthood to be able to conceive of an object that has me and a color as parts.”

(1987: 35)

But just because van Inwagen, an anti-compositional-universalist (and semi-nihilist), is not able to imagine such hybrid concrete/abstract composite objects does not mean others are so imaginatively challenged. I know what the color blue is. I know who van Inwagen is. So I can easily imagine an object that is the mereological sum of the color blue and Peter van Inwagen. I can (in principle) say where it is and what it is doing, since I know where the parts are and what they are doing. Part of this sum is a talented philosopher, and another part is (partly) instantiated where my coffee mug is. It is no different than imagining a mereological sum of the Statue of Liberty and Peter van Inwagen, except that the color blue is of a different ontological category. But if I already have the color blue in my ontology, in the way that the Statue of Liberty and Peter van Inwagen are in my ontology, then never mind what ontological category it falls under: I can imagine a mereological sum of the color
blue and Peter van Inwagen. We can disagree as to whether such hybrid concrete/abstract objects exist, surely, but imagining them seems relatively easy enough. Similarly, if possible worlds are abstract, then we can easily imagine that various parts of these worlds are parts of other things. Mereological sums of flesh and blood and whatever (abstract) thing that plays the role of individuals in your (abstract) possible worlds can simply be an entire individual. So there is no reason in principle why abstracta cannot be parts of things—especially if you already think that abstracta are part of what there is! (Whether we should think this is a different issue; we’ll get to that in a moment.)

Moreover, the coherence of lump theory relies on the coherence of a definition of modal parts, which does not assume a particular metaphysics of worlds. You need not be a modal realist, in other words, to accept the definition of modal parts given above. The definition uses world-talk such as ‘exists-at’ and ‘world’ as well as mereological talk such as ‘part-of’ and ‘overlaps.’ But an ersatzer presumably already has an adequate concept of world-talk. One of the main motivations for being an ersatzer in the first place is to take advantage of the theoretical benefits of having possible worlds in one’s ontology, but avoiding the ontological burdens that come with the concreteness of them. So, at the very least, the world-talk needed for making the definition of (world-bound) modal parts coherent does not assume a metaphysics of worlds.

As for the mereological notions, I assume that Lewis (1991) is right, and that our mereological notions are ontologically neutral. Idealists, for example, may genuinely disagree about how best to answer van Inwagen’s Special Composition Question. Whether bricks and houses are material or immaterial is independent from the issue of whether some bricks compose a house. We can imagine a compositional nihilist idealist and a compositional universalist idealist—both of whom

13 I am also assuming that our mereological notions such as ‘part of’—and the parthood relation in general—are univocal, contra Fine (2010)

14 Special Composition Question: When do some objects compose something?
agree that all that there is are minds and ideas, but disagree about whether there are (immaterial) composite tables and chairs. So our concept of composition is separable from the metaphysical make-up of the (alleged) composers. So whether possible worlds are abstract or concrete is separable from the issue of whether individuals are trans-world composites. So lump theory with abstract possible worlds is coherent.

Finally, mereological sums with (abstract) worlds (or parts of abstract worlds) as parts is coherent if compositional universalism is true. Given universalism, a mereological sum can have concrete and abstract parts; individuals (e.g., human beings) may have more than just concrete parts, depending on what you already think is in the world.\(^{15}\) This certainly makes LTE more plausible. I'll merely assume universalism in this paper, but in fact I think that (i) a modal parts theorist can provide an argument for universalism, via an argument from vagueness, and so she need not merely assume it,\(^ {16}\) and (ii) universalism isn’t even necessary to make lump theory coherent. We need only have a permissive notion of parthood, such that trans-world sums are in, e.g., but other random sums are out.\(^ {17}\) So it is theoretically available to accept lump theory without accepting universalism. But my response to the modal realism worry is smoother if we assume it, since my main point is to push the coherence of LTE.

The preceding paragraphs consider rejecting LTE on the ground that abstracta cannot be parts of things—i.e., that a hybrid abstract/concrete composite object such as Peter van Inwagen

\(^{15}\)Van Inwagen (1987) makes a distinction between universalism and super-universalism: the former is a claim only about concrete objects and the latter is a claim about any objects whatsoever, concrete, abstract, or what have you. However, given that I am following Lewis (1991)—i.e., assuming that our theory of parts should be ontologically neutral—our commitment to universalism is independent from our other ontological commitments. If we have abstracta and concreta in our ontology, and we commit to universalism in our mereology, then we commit to van Inwagen’s super-universalism. So my point in this section is: if you are an ersatzer, then you already have abstracta in your ontology. If you are committed to universalism as well, then you are already committed to mereological sums that have abstracta as parts. So the idea of trans-world individuals that have (parts of) abstract worlds as parts is not incoherent. (Again: you might not think such things exist, but that’s a different point I’ll address below.)

\(^{16}\)See Wallace (ms).

\(^{17}\)One way to do this, as mentioned in footnote 3, is to accept modal parts, but reject temporal or spatial parts.
and the color blue is incoherent. But you may object to the coherence of modal parts in general (including LTE) on the grounds that modal facts (or whatever it is that grounds the modal facts) simply are not part of ordinary objects. That is, you may think that the relation between you and your modal profile (or whatever grounds your modal profile) is not mereological.

However, many of us think that integral to ordinary objects—tables, chairs, you and me, etc.—is their rich modal profile. Ordinary objects are often defined by what they can and cannot do, by their persistence conditions, etc. A modal profile plus Leibniz’s Law distinguishes (seemingly) coincident entities. The statue and the lump of clay have exactly the same (spatial) parts at the exact same time. Yet the lump can be squished and survive, but the statue cannot. This isn’t just an epistemic point—it’s not just that we know that the lump of clay and the statue are distinct objects by considering their modal profiles. Rather, it’s because the lump and statue have different modal profiles that they are in fact distinct objects. The modal features are difference makers (some might say). If modal profiles are enough to make a metaphysical difference (i.e., non-identity), then it is not a far leap from this to think that an object’s modal profile is part of the object—i.e., that how a thing could and couldn’t be is part of what that thing is. One easy way to accommodate this intuition is to have whatever it is that grounds the modal facts literally be part of the objects—in other words, to accept lump theory.

This isn’t an argument for lump theory—yet. It is merely a way of massaging intuitions away from the complaint that the relationship between an ordinary object and its modal profile cannot be mereological. On the contrary, careful reflection reveals just the opposite.

The coherence of LTE demonstrates that whatever one’s view of the metaphysics of worlds, one can still accept that ordinary objects have world parts (are trans-world)—i.e., that lump theory is coherent. This is certainly enough to answer the Modal Realism Worry as presented here. Moreover, reflections on ourselves (and other ordinary objects) as having a rich modal profile fits in
well, intuitively, with the idea that certain modal facts are literally parts of us (although more on this last point later).

So the **Modal Realism Worry** can be answered—assuming we are committed to possible worlds, either concrete or abstract. If you do not commit to worlds at all, then I have no ready response, except to point out all of the burdens of accounting for the modal truths without possible worlds. Unfortunately, I do not have the space in this paper to elaborate on this objection. I hope we may take some comfort in the fact that the Modal Realism Worry is traditionally launched by ersatzers, who do commit to possible worlds, so they have been the primary target of my response here.

4.2 The Relevancy Worry

Suppose that all of the above is right, and that the modal realism worry can be allayed. Even so, why think that trans-world objects are metaphysically relevant?

I propose that we let an answer to the **Relevance Worry** be determined by utility. The theoretical advantages of our lump theory will determine whether trans-world objects are deserving of our attention.

Lump theory is theoretically elegant and gives a unified solution to puzzles of constitution and composition. For comparison: worm theorists maintain that one of the (better) reasons to think that a temporal parts theory is true is because of its ability to solve certain metaphysical puzzles. A lump of clay is distinct from the statue it is molded into because both are temporally extended objects, with qualitatively distinct temporal parts. So, contrary to appearances, the statue and the lump of clay are not completely coincident; they merely overlap some of their spatio-temporal parts.

18 See Lewis (1986), (1993), Sider (2001) Ch. 5, etc.
Since overlap is unproblematic in the spatial cases (intersecting roads, e.g.), it is unproblematic in the
temporal ones. Puzzle of co-incidence solved.

But temporal parts theory (on its own) has no solution to such paradoxes of coincidence
where the relevant objects have completely overlapping temporal careers. Take Gibbard’s Goliath
and Lumpl, for example.\(^{19}\) A lump of clay, Lumpl, and a statue, Goliath, come into and go out of
existence at the exact same time, existing in the exact same place, for the entirety of their existence.
If Goliath and Lumpl have completely overlapping spatio-temporal careers, then there are not \textit{two}
coincident entities; there is just \textit{one}. But this is unsatisfactory. There is something in front of us.
What is it? A statue? A lump? Goliath and Lumpl have different modal properties: Goliath cannot
survive being squished, but Lumpl can. So, according to Leibniz’s Law, Goliath and Lumpl are
distinct.

A temporal parts theorist may resort to a separate solution here—as Sider (2001) does.\(^{20}\) But
this is an admittance that temporal parts—by itself—does not deliver a unified answer to similar
problematic cases of coincidence. Yet delivering a unified response to metaphysical puzzles of co-
incidence is supposed to be an advantage—and even an argument—\textit{for} temporal parts.

In contrast, a lump theorist has an answer to the forgoing coincidence puzzle, and one that
is parallel to her spatial and temporal explanation of change. A road is bumpy here and smooth there
by being an extended object that has one spatial part that’s smooth and another spatial part that’s
bumpy. A person goes from being short to being tall by being a temporally extended object that has
an (earlier) temporal part that is short and a (later) temporal part that is tall. Similarly, you \textit{could be} tall
by being a modally extended object that has one world part that is short and another world part that
is tall.

\(^{19}\) Gibbard (1975).

\(^{20}\) By adopting a particular view about \textit{de re} predication. See Sider (2001) 5.8 pp. 205-8.
In the Goliath and Lumpl case, the lump theorist will maintain that Goliath and Lumpl are each trans-world objects that merely overlap some of their world parts. One of the instances of overlap (this world, say) is one where they share all of their spatio-temporal parts. But what distinguishes Goliath from Lumpl is all of the world parts that do not overlap. Goliath cannot survive being squished, but Lumpl can. So Goliath (the trans-world object) has a world part that is squished, but Lumpl (the trans-world object) does not. The modal differences between Goliath and Lumpl are accounted for by qualitative differences of their modal parts. This mirrors our explanation of spatial (or temporal) coincidence, giving a unified solution to the puzzles. This is theoretically elegant, and as such, is an advantage for lump theory.

Moreover, lump theory avoids some of the unintuitive consequence of accepting only temporal parts. Let’s examine some cases to demonstrate. Imagine a lump of clay, LUMP\textsubscript{1}, exists for time \(t_1, \ldots, t_n\). At \(t_2\), LUMP\textsubscript{1} is molded into a statue, STAT\textsubscript{1}. STAT\textsubscript{1} and LUMP\textsubscript{1} exist from \(t_2\) to \(t_n\). At \(t_n\), both LUMP\textsubscript{1} and STAT\textsubscript{1} are destroyed. Let us call this Case 1.

According to temporal worm theory, LUMP\textsubscript{1} is distinct from STAT\textsubscript{1} because LUMP\textsubscript{1} has a temporal part, at \(t_1\), that STAT\textsubscript{1} does not. Moreover this validates our intuition that LUMP\textsubscript{1} and STAT\textsubscript{1} are
distinct because the former has the property of \textit{existed before STAT}_1. The fact that LUMP_1 and STAT_1 overlap nearly their entire temporal career—from \(t_2 \) to \(t_n \)—is irrelevant, since overlap in general is assumed to be unproblematic. But if this overlap is unproblematic, then why does it become problematic when something happens to a temporal part \textit{extrinsic} to the section of overlap?

Take another lump of clay, LUMP_2, that exists for time \(t_1, \ldots, t_n \). When LUMP_2 comes into existence at \(t_1 \), a statue is also formed, STAT_2, which exists in the exact same place as LUMP_2 from time \(t_1 \) to \(t_n \). At \(t_n \), LUMP_2 and STAT_2 are destroyed. (This is just the Goliath and Lumpl case described above.) Let us call this \textbf{Case 2}.

So LUMP_2 and STAT_2 exist at the exact same place for their entire temporal career. But the majority of the career—\(t_2 \) through \(t_n \)—is the exact same overlap that LUMP_1 and STAT_1 shared. Isolate this section of (purported) overlap. The temporal parts theorist will claim that in the case of LUMP_2 and STAT_2 we have just one object because LUMP_2 is \textit{identical} to STAT_2. There is no overlap from \(t_2 \) to \(t_n \) because there are no two things to overlap. Yet in the case of LUMP_1 and STAT_1, the fact that LUMP_1 has a temporal part at \(t_1 \) (and STAT_1 does not) is enough to make LUMP_1 distinct from STAT_1, despite the fact that they share every other temporal (and spatial) part.
But there’s a strong intuition that \(\text{STAT}_2 \) is just as distinct from \(\text{LUMP}_2 \) as \(\text{STAT}_1 \) is from \(\text{LUMP}_1 \). This intuition is no doubt driven by the fact that the similarity of the cases highlights the modal fact that in Case 2, \(\text{STAT}_2 \) could have come into existence a smidge later, resulting in a situation indistinguishable from Case 1. The minimal differences between Case 1 and Case 2 emphasizes the modal differences between \(\text{LUMP}_1 \) and \(\text{STAT}_1 \) (and \(\text{LUMP}_2 \) and \(\text{STAT}_2 \)), which presumably remains unchanged in the two cases. Intuitively, \(\text{LUMP}_1 \) and \(\text{STAT}_1 \) can do and cannot do everything that \(\text{LUMP}_2 \) and \(\text{STAT}_2 \) can do and cannot do. That is, the lumps and statues in Case 1 and Case 2 have similar modal profiles! But how can this be if in the first case there are two objects and in the second only one? Shouldn’t the modal facts be radically different as well? Are we really going to commit to the claim that, in Case 2, it is impossible that \(\text{STAT}_2 \) is created a smidge later, yet in Case 1 it is possible that \(\text{STAT}_1 \) is created a smidge later?

In contrast, we don’t have such unintuitive results on the modal parts view. \(\text{LUMP}_2 \) is distinct from \(\text{STAT}_2 \) (just as \(\text{LUMP}_1 \) is distinct from \(\text{STAT}_1 \)) because \(\text{LUMP}_2 \) and \(\text{STAT}_2 \) are each trans-world objects that happen to overlap all of their spatio-temporal parts in this world (and maybe some others). What distinguishes \(\text{LUMP}_2 \) from \(\text{STAT}_2 \) are all of the modal parts that they do not have in common, which is plausibly quite a few (not drawn).

But why isn’t modal parts subject to a similar objection as the one I pushed above against the temporal parts theorist? For example, we can imagine a third case—the modal version of Case 1—in which there is a lump of clay, \(\text{LUMP}_3 \), that overlaps nearly all of its world (and spatio-temporal) parts with a statue, \(\text{STAT}_3 \), except one. So, for example, we can imagine that \(\text{LUMP}_3 \) is composed of world parts in worlds \(w_1, \ldots, w_n \), whereas \(\text{STAT}_3 \) is composed of world parts in \(w_2, \ldots, w_k \). So \(\text{LUMP}_3 \) and \(\text{STAT}_3 \) overlap all but one world part, \(w_1 \). Given that \(\text{LUMP}_3 \) and \(\text{STAT}_3 \) have a part that distinguishes them, \(\text{LUMP}_3 \) is not identical to \(\text{LUMP}_3 \). Call this **Case 3**.
Case 3

Contrast this with the modal version of Case 2: imagine that LUMP₄ is a lump of clay that necessarily shares all of its spatio-temporal parts with a statue, STAT₄. That is, LUMP₄ is a trans-world object all of whose parts are modally and spatio-temporally co-incident with STAT₄. STAT₄ is a trans-world object, all of whose parts are co-incident with LUMP₄. So there is absolutely no part—spatial, temporal, or modal—that LUMP₄ has that STAT₄ does not, and none that STAT₄ has that LUMP₄ does not. Let us call this Case 4.

Case 4
The lump theorist claims that in Case 4, LUMP₄ is simply identical to STAT₄. So in Case 4 we have one object, and in Case 3 we have two, which mirrors the temporal part theorist’s diagnosis in Case 2 and 1, respectively.

Yet I complained that the difference between Case 1 and 2 highlighted the modal differences between the relevant entities. Since STAT₂ could have easily been formed just a smidge later, as Case 1 seems to show, we are attuned to the modal facts—including the fact that STAT₂ could have come into existence a smidge later, and could not have been squished and survive, etc.—giving us even more reason to think that STAT₂ is distinct from LUMP₂, contrary to what the temporal parts theorist claims. So why doesn’t a similar sort of worry apply to the modal parts theorist?

In Case 3 and 4, while there is a difference between the relevant STATs and LUMPs, this difference does not yield the same result. For it certainly doesn’t highlight a modal difference, since (according to the modal parts theory) modal facts are grounded in the modal parts. So we cannot truly say that STAT₄ could have had one less part than LUMP₄, as may be suggested by the case of LUMP₃ and STAT₃. If it were true that STAT₄ could have had one less part than LUMP₄, then STAT₄ (the trans-world object) would have a (world) part that distinguished it from LUMP₄, which directly contradicts our assumption.

So there isn’t any modal difference between the relevant objects in Case 3 and Case 4. But what other feature would distinguish LUMP₄ and STAT₄, if we think they should be distinct? Not any spatial, temporal, or modal properties, since LUMP₄ and STAT₄ were stipulated to have all of the same spatial, temporal, and modal parts. What’s left? Perhaps some hyper-intentional property? What would that be? It certainly isn’t obvious, in the way that the modal differences between LUMP₂ and STAT₂ are. Because LUMP₄ and STAT₄ share all of their spatial, temporal, and world parts, there is no spatial, temporal, or modal property to distinguish them. So the minimal difference between LUMP₃ and STAT₃ doesn’t direct us to some difference-making property distinguishing
LUMP₄ and STAT₄. Thus, we cannot lodge an analogous complaint against the modal parts theorist as I did against the temporal parts theorist.

Moreover, ordinary objects would not be the sort of objects described in Case 3. Any objects under consideration in the typical puzzles of co-incidence—a lump of clay, a statue, some cellulose molecules, a tree, Tib and Tbbles, etc.—will have more than one modal difference between them. That is, the relevant entities involved in ordinary objects will have (infinitely) many qualitatively distinct modal parts. For example: it is true that a lump of clay can be squished and survive but a statue cannot. But it is also true that a lump of clay can be squished and survive and grass is green, and a lump of clay can squished and survive and grass is blue, etc. If every way that the world could be is some way that some possible world is, then modal differences between trans-world objects will multiply infinitely, given the many fine-grained ways that this world could be different. This is not to say that Case 3 is impossible—it isn’t—but such minimal world-part differences between objects is rare, and only used in philosophy to make a point. Indeed, given all the many ways the world could be, and the many ways objects in this world could be different, we can be rest assured that ordinary objects, at least, are guaranteed not to have only minimal different world parts from other objects, even if such objects (such as a statue and a lump of clay) happen to overlap *this* world part.

Thus, a lump theorist gives a unified solution to paradoxes of coincidence, across the board. This is extremely theoretically elegant.

Again, this is not an argument for modal parts…yet. I’m merely responding to the Relevance Worry. That lump theory delivers a unified solution to metaphysical puzzles is certainly one reason to think that trans-world objects (if they existed) are metaphysically relevant.²¹ Whether some entities

²¹ Lump theory also has other independent arguments in its favor, modeled after arguments for temporal parts. If you think that the Argument from Vagueness for temporal parts is convincing, for example, then there is a parallel Argument form vagueness for modal parts. I do not have the space to discuss this argument here, but see Wallace (ms). You may not think that such an argument for modal parts is successful, so conditionally: if it were, then this would be yet another way to allay the relevancy worry.
are (or could be) metaphysically relevant is a matter of how much work they can do for us, overall, in our ultimate metaphysical theory. I hope the above examples show just some of the ways trans-world entities can be incredibly theoretically useful. If so, then they are in fact metaphysically relevant (if they exist).

4.3 The Causal Isolation Worry

In response to the Causal Isolation Worry: it is true that world parts would not be causally related because, assuming modal realism, worlds are causally isolated. But I do not see why this in itself is a problem. And Lewis (1986) does not elaborate. It is a difference, surely, but what does the difference signify? Perhaps the point is something like this. There is a dis-analogy between trans-temporal individuals (as the temporal parts theorist interprets them) and trans-world individuals. Trans-temporal individuals have parts that are causally related while the trans-world individuals have parts that are not. This dis-analogy is enough to show that we shouldn’t have analogous mereological views of individuals in the temporal and modal case. That is, we can have a mereological, trans-temporal view of individuals, but we cannot (or should not) have a mereological, trans-world view of individuals.

But this is a weak argument that a lump theorist could easily resist. Why should a lump theorist accept that the absence of causal relations between parts is enough to justify a non-mereological view of individuals? Clearly, she denies this: she accepts a mereological view of individuals across worlds and also accepts that these world parts are causally isolated from each other. So there has to be more than just mere intuition driving the complaint. Is there a principled reason for rejecting the claim that composite wholes can have causally isolated parts?

Perhaps the idea is that causation between parts is needed to account for gradual change (which is how Lewis pushes the point, as discussed in section 3). Temporally extended objects that
gradually change over time can be explained by appealing to the causal relations between the parts of such an object. The leaf was green but now is red. The leaf is a temporally extended object that has some green parts and red parts, and the red parts are a causal effect of earlier parts being green. (Quote Lewis here?) But there is no parallel for gradual change over worlds. That is, unlike gradual change over time, gradual change over worlds cannot be explained by causal relations between the relevant (modal) parts, because there are no causal relations between modal parts. So, objects must not be trans-world mereological sums.

But what do we mean by ‘change over worlds’ in any case? Puzzles of change over time are immediately motivating and relevant. We know what change over time is; many metaphysical puzzles of ordinary objects (Ship of Theseus, Tib and Tibbles, etc.) are the result of us reflecting on this. But what is the modal equivalent to these concerns? Plausibly, the unfamiliarity is in calling it ‘change’—really, it’s just an object’s persistence conditions. An object’s modal profile includes conditions under which that object will and will not survive. The statue can be painted and survive but cannot be squished and survive. But these possibilities are incremental. It is possible that the statue has one small bit of paint on it. It is also possible that it has two small bits of paint on it. And so on. For any situation that is possible for an object, the difference between how that object is and how it could be (and how it couldn’t) comes in varying degrees. Lewis captures the varying degrees of a non-actual possibility compared to the actual world by talking about ‘closeness’ of worlds. We can adapt something similar here. When we talk about the gradual ‘change’ of an object over possible worlds, what is meant is the degree to which a possibility varies from the actual world. Take any diachronic puzzle of change and one can transfer the problem to one across worlds—a dia-cosmic puzzle involving the object’s tolerance for possible variation.

Can we understand dia-cosmic change even admitting that worlds (and objects in those worlds) are causally isolated? I don’t see why not.
Take the case of mere spatially extended objects. It is not necessary that some spatial parts of a spatially extended object are causally connected in order to account for the fact that the object changes (spatially). A stretch of road may have sections that are (relatively) causally isolated, yet the road changes from bumpy to smooth. My body (spatially) changes from being hand-shaped in one region to being head-shaped in another. It is true that my head and my hand are causally connected, but this doesn’t account for the change in shape across the spatial region of my body. What accounts for it is simply qualitative difference of spatial parts of a spatially extended whole. And what counts for a gradual change over a spatial region is qualitative difference between spatial parts as well as gradations of similarity. The landscape gradually changes from mountain to valley by having spatial parts that differ qualitatively and by having those parts resemble (or differ) from each other in incremental degrees. But no appeal to the causal relations of the relevant parts is needed to account for gradual change over spatial regions. So why should we require such an appeal to account for gradual change over possible worlds?

We can account for gradual change over possible worlds by appealing to qualitative difference between world parts, and by having those parts resemble (or differ from) each other in incremental degrees. I admit that none of these parts will be ‘adjacent’ to each other as in the spatial case, but why is this necessary? We can take advantage of the notion of ‘closeness’, which can do the work that ‘adjacent-ness’ does in the spatial case.

Spatially extended objects with spatial parts and modally extended objects with modal parts are on a par here: the relevant parts lack significant causal dependence yet nonetheless there can be gradual change (over space or possible worlds). That is, in both the spatial and modal case we do not appeal to causal dependence of the parts to account for gradual change over space or worlds, respectively; we can easily account for gradual change in other ways. So assuming we accept spatially
extended (composite) objects, and gradual change of such objects over spatial regions, then we should not claim that causal dependence is necessary for gradual change.

So, yes, there are no causal relations between word parts. But this is no problem, as qualitative difference and similarity relations (and closeness of worlds) will be sufficient to account for gradual change (over worlds).

4.4 The Pathology Argument

A lump of clay is molded into a statue. How many things are in front of us? Common sense says one. The temporal worm theorist says that we are only seeing part of two much ‘larger’ trans-temporal objects, which are qualitatively distinguished by later temporal parts. But this is an admittance that the number of things there are at any one time (the time of overlap, say) is extrinsic to the time in question, and this is supposed to strike us as peculiar.

Yet is it really so peculiar? Take a spatial case instead. Suppose I point to the intersection of Bardstown Rd and Eastern Parkway. Isolate just the section of overlap, the intersection. Do we have one thing or two? Silly question, we might think. Are we counting roads or sections of road? If we’re counting roads, we have to look outside of this spatial region to see how many roads there are—for sometimes intersections involve more than two roads passing through them. So the answer is one if you are counting particularly-sized sections of road, two (or more) if we are counting roads. In such a case, how many things there are is ‘extrinsic’ to the (exact) place in question.

This answer proliferates, given the abundance of spatial overlap. My fingers overlap my hand but they are distinct from it. I point to my hand. How many things are there? Well, one if we’re counting hands, five if we’re counting digits. I point to a table. How many things are there? Well, one if we’re counting tables, two (or more) if we’re counting parts of tables. Spatial composition is everywhere (many of us assume), and where composition occurs, the parts overlap the whole. The
answer in any given case of spatial overlap is not easy, and may be relative to what I have in mind when I’m pointing. My aim here is not to diagnose the correct answer to ‘how many?’ questions, but rather to show how supposedly peculiar cases of fission are not so peculiar or unusual after all. Complicated answers to counting questions occur not just in recherché science fiction cases, but in ordinary, ubiquitous cases of (spatial) overlap, and in all instances of composition, where parts overlap the whole. The supposed ‘pathology’ is abundant in the spatial case. Does that mean we should abandon our commitment to spatially extended composite objects? No. Likewise, the abundance of such ‘pathology’ in the modal case does not mean we should abandon modally extended objects.

Additionally, it may be true that there is, in fact, relatively few cases of fission of *persons* as described in science fiction and philosophy classrooms. But other temporally extended cases of fission may be less exotic: companies merge and split; events splinter off into other events; as do eras, wars, corporations, teams, childhood, adulthood, paper drafts, books, fan fiction, etc. So it is not even clear that in the temporal case fission are so exotic—for persons, maybe, but not for other temporally extended composites.

To press the above points further, consider the Problem of the Many.22 We think that there is just one table in front of us. Yet the table is composed of many molecules. Take the group of molecules that we think compose this table: m₁, m₂, …, mₙ. There is another, distinct group of molecules m₁, m₂, …, mₙ, mₙ₊₁ in the area. And there is another, distinct group of molecules m₂, m₃, …, mₙ. And so on. Each distinct group of molecules is an equally good candidate for being the molecules that compose a table; each is an equally good candidate for *being* the table. So either they are all tables or none of them are. So there are many tables or there are none. But either way this contradicts our assumption that there is exactly one table.

22 See Unger (1980) and Geach (1980).
We do not ordinarily think of the problem of the many as spatial problem of fission. Indeed, some maintain that these are separate issues.

“…the problems about counting raised by the problem of the many are orthogonal to those raised by the paradoxes of coincidence. Once the problem of the many is solved in some acceptable way, the co-incidence-based problems remain…” (Sider 2001: 192)

But even if this is right, it is irrelevant given our concerns. The purpose of making the comparison between the problem of the many and cases of fission here are to see if Lewis’s reasons for rejecting lump theory are credible.

Take one of Lewis’s preferred solutions to the problem of the many. There are many distinct sets of molecules, all of which are equally good candidates for composing (or being) the table. So we either have too many tables or none, neither of which coheres with our opinion that there is only one. It is strictly true, according to Lewis, that there are many tables there. But because the many tables overlap to such a high degree (indeed, by stipulation, any two differ by only a molecule or two from any other), the many tables are almost identical—i.e., they are almost one.

Contrast this with the pathological modal case. Suppose for a moment that lump theory is true. The lump theorist will claim—along with common sense—that there is just one table in front of us. Take the group of world parts that the lump theorist thinks compose this table: wp_1, wp_2, \ldots, wp_n. There is another, distinct group of world parts $wp_1, wp_2, \ldots, wp_{n-1}$ and wp_{n+1}. One of these groups includes wp_n, while the other includes wp_{n+1} instead of wp_n. We can imagine that wp_n and wp_{n+1} are individuals that would—on Lewis’s view—qualify as counterparts of wp_1, but would not qualify as counterparts of each other. And there is another, distinct set of world parts wp_1, wp_2, \ldots.

23 See Lewis (1993) and Sider (2001) 192-3, where he argues that the problem of the many is distinct from coincident fission problems. Sider’s reasons for distinguishing fission problems and the problem of the many are to motivate his preference for stage theory, and need not concern us here.

24 Lewis (1993)

25 The lump theorist will no doubt be more careful and explain that there is just one table partially in front of us—i.e., the table is a trans-world object that has many world parts.
wp_{n+1} and wp_{n+2}, such that wp_{n+2} would also qualify as a counter part of wp_{n}, even though wp_{n} and wp_{n+2} are not counterparts of each other. And so on. Each distinct set of world parts is an equally good candidate for being the world parts that compose our table, so each is an equally good candidate for being the table. So either they are all tables or none of them are. So there are many tables or there are none. But either way this contradicts our assumption that there is exactly one table. Yet, according to lump theory, the table candidates overlap significantly many of their world parts! Because the many tables overlap to such a high degree, one could make the Lewisian argument that the many tables are almost identical—i.e., they are almost one. So a solution to the spatial problem of the many transfers over to the modal problem of pathology.

Moreover, Lewis’s very own solution to the problem of the many can be transferred over to the modal cases he finds so disturbing. So if he thinks that he has a solution (or two) to the problem of the many, then we can simply apply this solution (or two) to the modal cases, thus undermining the ‘pathology’ complaint.

The Pathology Argument relies on the claim that cases of temporal fission are unusual, but not so in the modal case. I claim that (i) cases of spatial fission are not so unusual, and in fact are ubiquitous, (ii) that temporal cases of fission are not unusual either, if we consider entities beyond persons, and (iii) the modal cases can be solved by our favorite solution to the problem of the many. If all of this is right, then the fact that pathology abounds in the modal case is no reason to reject trans-world lumps. If we did think this, then we risk rejecting ordinary trans-spatial (and some ordinary trans-temporal) objects as well, which I’m assuming we do not want to do. So: yes, in the modal case, the supposed pathology is everywhere. So what? The abundance of fission in spatial and temporal cases shows that the pathology is familiar and unproblematic.
4.5 The Argument from Self-Interest

On one (uncharitable) read, the Argument from Self-Interest may be no more than a kind of intensional fallacy coupled with a fallacy of composition: I care about this worldly part, I don’t care about my other worldly parts, so I cannot be identical to a sum whose parts include this-worldly and other-worldly parts. This isn’t your typical intensional fallacy, of course, since the claim is not that some this-worldly part is identical to an other-worldly part (and you care about one, say, and don’t care about the other, thus they cannot be identical). Rather, the claim is that if you were a trans-world object, you would have all of these world parts with whom you should have collective self-interest or care. But you don’t care about other-worldly creatures; you only care about this-worldly creature. So you can’t be (identical to) a trans-world object with different modal parts.

This line of reasoning is flawed for the two reasons I claimed above: it is an intensional fallacy combined with a fallacy of composition. It is an intensional fallacy because having (or lacking) a particular attitude towards something does not entail metaphysical features of that object—in particular, it does not entail whether that object is identical to something you have an opposing attitude towards (under a different mode of presentation, say). No amount of my insisting that I care about my husband but don’t care about the man in the monkey suit will prove that my husband is not the man in the monkey suit. Likewise, no amount of insisting that you care about this-worldly things and don’t care about other-worldly things will entail metaphysical facts about those things—in particular, it won’t entail that they are not parts of a trans-world composite object that is identical to you. It is a fallacy of composition because properties of the parts do not always percolate to properties of the whole. The cells composing my body are invisible, but that does not entail that I myself am invisible. Having a certain attitude towards certain this-worldly things, but lacking that attitude towards certain other-worldly things, does not entail that one has (or lacks)—or should have or should lack—an attitude towards the composite whole of which the this-worldly and other-
worldly things are parts. So if this is what the Self-Interest Argument is, it can be dismissed as doubly fallacious.

The above discussion and the Argument from Self-Interest may sound strangely familiar. This is because the Argument from Self-Interest is similar to an objection that is typically launched against Lewis’s own modal realism—and in particular, counterpart theory. Sometimes known as The Humphrey Objection (Kripke) or The Argument from Concern (Rosen), the objections against modal realism and counterpart theory is as follows: Humphrey, after losing the election in 1972, cares very much about whether he could have won the election. But, presumably, he cares very little about whether some stranger, non-identical to himself, exiting in some spatio-temporally and causally isolated world has won the election, even if this stranger is very much like him in whatever ways you please.

Most do not take the Humphrey Objection to be effective against counterpart theory. For one thing, if there is a kind of Intensional Fallacy lurking, then the complaint is invalid. For another, it is question-begging against Lewis’s view. If Humphrey cares about what could have been, then Humphrey does care about the going-ons of a stranger in a spatio-temporally and causally isolated world—for according to Lewis, that’s just what it is for certain modal facts to hold of Humphrey. But what goes for the Humphrey Objection goes for the Argument from Self-Interest.

According to lump theory, you are a trans-world object that has many world parts. Your this-worldly part may think that she does not care about other-worldly parts. But she does! Your this-worldly part cares about other-worldly parts in virtue of the fact that you care about what can and cannot happen to you. You may get inspired to run a marathon because you think that you can. The possibility of success often encourages us to act. Now, true, you likely do not think of yourself as a trans-world individual who has other-worldly parts who run marathons and succeed. But you think modally, about your potential, and these modal truths inspire you to take certain courses of action.
According to modal parts theory, these modal truths are grounded in what your other-worldly parts are doing. You, the trans-world object, does not have mental states except in virtue of having world parts that have mental states. So you, the trans-world object, may have collective self-interest just in case there are world parts that care about other-worldly parts. But there is! Your this-worldly part cares about your other-worldly parts, insofar as your this-worldly part cares about what’s possible and impossible for you. And presumably other of your modal parts care about your this-worldly part, insofar as your other worldly parts are modally interested in themselves.

Moreover, we also often consider (or hope) that our moral character is a deep one—i.e., we hope that we retain our moral virtues in counterfactual situations. If you are brave, you hope that you are brave even if the situation is slightly altered. We desire that our virtues have stability. Insofar as this is important to us, then if the modal parts theorist is right, we do care about what our other-worldly parts are doing—in particular, we care about what our close world parts are doing.

One way to make the Humphrey Objection to have more force is to frame it as a metaphysical complaint: strangers in spatio-temporally isolated worlds are not the sort of thing that one can have propositional attitudes towards, whereas modal truths are, so the former cannot be the latter. One might interpret the Argument from Self-Interest similarly. Lewis maintains: “The supposed trans-world person… is not the sort of integrated self that is capable of self-interest” (my emphasis). So the idea is that a thing must be in principle capable of self-interest in order to be an adequate account of persons. But being capable of self-interest is a modal claim, and one that a lump theorist can account for. You—the trans-world object—are capable of self-interest just in case you have a world part that is self-interested (or is interested in other-worldly parts). But, according to lump theory, any modal concerns your this-worldly part has is a concern about other-worldly parts. So you (the trans-world object) is capable of self-interest!
Is this enough to account for an ‘integrated self’? Enough, it would seem, to roughly parallel the integrated self and collective self-interest we (presumably) have for our spatial and temporal parts. Our this-worldly parts may have a preference for certain good things happening in this world, but I do not see how that is much different than (in the temporal case) this temporal part wanting good things now, or (in the spatial case) this spatial part wanting good things here and not there. So, it seems, our trans-world self does have a kind of collective self-interest, making modal parts theory more plausible.

There is much more to say here, of course—both in response to the five objections raised, and to other objections that surely await the lump theorist theorist. But I hope the above brief defense at least paves the way for making modal parts a competitive metaphysical view of ordinary objects.

References

[26] There is an interesting comparison here between the above line of reasoning and the intuitions behind ‘thank goodness that’s over’ arguments against four-dimensionalism or eternalism. Unfortunately, discussion of this issue will have to wait for another time. See Prior (1976)

Weatherson, Brain (ms(b)) TAR entry 2003 http://tar.weatherson.org/2003/08/28/modal-parts/

Wallace (2011) ‘Composition as Identity: Part 2’ Philosophy Compass vol. 6(11): 817-827

Wallace (forthcoming) ‘Composition as Identity, Mereological Essentialism, and Modal Parts’ Composition as Identity, eds. Donald Baxter and Aaron Cotnoir, OUP.

Wallace (ms) ‘The Argument from Vagueness for Modal Parts’ http://www.uky.edu/~mwa229/AVMP_2.pdf