Answers To Chapter 6 Problems.

1. (a) A new $\mathrm{C}-\mathrm{C}$ bond is formed between a nucleophilic $\mathrm{C}-\mathrm{Zn}$ and an electrophilic $\mathrm{C}-\mathrm{Br}$. This Pd-catalyzed reaction proceeds through the standard oxidative addition, transmetallation, reductive elimination process characteristic of Pd -catalyzed cross-couplings. The oxidative addition requires $\mathrm{Pd}(0)$. The role of the DIBAL is to reduce the $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(0)$ by two transmetallations and reductive elimination of H_{2}.

(a) transmetallation; (b) reductive elimination; (c) oxidative addition.
(b) An allylic leaving group is replaced by a nucleophile. This reaction proceeds through the standard sequence for allylic substitutions catalyzed by Pd, i.e. two sequential backside displacements. The chiral ligand causes the nucleophile to attack only one of the two prochiral termini of the meso π allyl intermediate. The N may be deprotonated before or after it attacks the π allyl complex.

(c) A new $\mathrm{C}-\mathrm{C}$ bond is formed between a nucleophilic terminal alkyne $\mathrm{PhC} \equiv \mathrm{CH}$ and an electrophilic $\mathrm{C}-\mathrm{I}$.

This Sonogashira reaction proceeds through the standard oxidative addition, transmetallation, reductive elimination process characteristic of Pd -catalyzed cross-couplings. The terminal alkyne is converted to a $\mathrm{Cu}(\mathrm{I})$ acetylide before transmetallation to Pd occurs. The mechanism was discussed in the text (Section C.2.d).
(d) A new $\mathrm{C}-\mathrm{C}$ bond is formed between a nucleophilic $\mathrm{C}-\mathrm{B}$ and an electrophilic $\mathrm{C}-\mathrm{I}$. This Suzuki coupling proceeds through the standard oxidative addition, transmetallation, reductive elimination process characteristic of Pd-catalyzed cross-couplings. The mechanism was discussed in the text (Section C.2.d).
(e) There is no nucleophile in this Heck reaction. The first step must be oxidative addition of $\operatorname{Pd}(0)$ to the Ar-I bond to give a $\mathrm{Pd}(\mathrm{II})$ complex. (Before this can occur, the $\mathrm{Pd}(\mathrm{II})$ complex that is added to the reaction mixture must be reduced to $\operatorname{Pd}(0)$. In this system, it is not clear how it happens. Either the I^{-}or the S in a small amount of heterocycle might act as a reducing agent.) The crucial $\mathrm{C}-\mathrm{C}$ bond is then formed by coordination of the π bond of acrylate to the $\operatorname{Pd}(I I)$ complex and migratory insertion. β-Hydride elimination gives the organic product and $\mathrm{I}-\mathrm{Pd}(\mathrm{II})-\mathrm{H}$. Deprotonation and dissociation of I^{-}regenerates the $\mathrm{Pd}(0)$.

(a) oxidative addition; (b) coordination; (c) insertion; (d) β-hydride elimination; (e) deprotonatior
(f) An allylic C with a leaving group is being epimerized by the $\mathrm{Pd}(0)$ complex. One possible mechanism is simple displacement of N by $\operatorname{Pd}(0)$ to form the π allyl complex, then displacement of $\operatorname{Pd}(0)$ by N to reform the ring. The problem with this mechanism is that allylic substitution reactions catalyzed by Pd proceed with retention of configuration (two S_{N} 2-type displacements), whereas this reaction proceeds with inversion of configuration. In this particular molecule, the anionic N can coordinate to the $\mathrm{Pd} \pi$ allyl
intermediate in an intramolecular fashion; reductive elimination from this chelate would give the product with overall inversion of configuration.

(g) Make: C4-C5, C1-H. Break: C5-H.

C5 is extremely acidic, and once deprotonated it is nucleophilic. C4, though, is not electrophilic, so we need to convert it to an electrophilic C . Looking at the product, one sees that the new $\mathrm{C}-\mathrm{C}$ bond is allylic. This suggests attack of C 5 on a π allyl complex. This complex could be made by insertion of the $\mathrm{C} 1 \equiv \mathrm{C} 2 \pi$ bond into a $\mathrm{Pd}-\mathrm{H}$ bond. This last could be made by protonation of $\mathrm{Pd}(0)$ by C 5 .

Protonation of $\mathrm{Pd}(0)$ gives $[\mathrm{Pd}(\mathrm{II})-\mathrm{H}]^{+}$. Coordination and insertion of the $\mathrm{C} 1 \equiv \mathrm{C} 2 \pi$ bond gives the $\mathrm{Pd} \pi$ allyl complex. Attack of the nucleophile on the less hindered terminus gives the observed product.

(h) This reaction is simply a Wacker oxidation. Its mechanism was discussed in the text (Section C.2.f). The key steps are attack of $\mathrm{H}_{2} \mathrm{O}$ on an electrophilic Pd -alkene complex, then β-hydride elimination to give the enol.
(i) Make: C1-C5, N4-C5, C3-O6. Break: C1-Br.

Incorporation of CO into an organic substrate usually occurs by insertion of CO into a C -metal bond. The requisite $\mathrm{C} 1-$ metal bond is formed by oxidative addition of a $\mathrm{Pd}(0)$ species into the $\mathrm{C} 1-\mathrm{Br}$ bond, the normal first step upon combining a $\operatorname{Pd}(0)$ compound and an aryl halide. Coordination and insertion of CO follows. Addition of N to the carbonyl and loss of $\mathrm{Pd}(0)$ gives an iminium ion, which is trapped by EtOH to give the product.

(j) This is another Heck reaction. After the insertion to give the σ bound $\operatorname{Pd}(\mathrm{II}), \beta$-hydride elimination occurs in the direction of the OH to give an enol. The enol tautomerizes to the aldehyde.
(k) Make: C1-Cl, C2-C3. Break: none.

In fact, a mechanism for this reaction can be drawn that does not involve Pd at all, but let's assume that Pd is required for it to proceed. Cl^{-}must be nucleophilic. It can add to C 1 of the alkyne if the alkyne is activated by coordination to $\mathrm{Pd}(\mathrm{II})$. (Compare Hg -catalyzed addition of water to alkynes.) Addition of Cl^{-} to an alkyne- $\mathrm{Pd}($ II $)$ complex gives a σ-bound $\mathrm{Pd}($ II) complex. Coordination and insertion of acrolein into the $\mathrm{C} 2-\mathrm{Pd}$ bond gives a new σ-bound $\mathrm{Pd}(\mathrm{II})$ complex. In the Heck reaction, this complex would undergo β-hydride elimination, but in this case the Pd enolate simply is protonated to give the enol of the saturated aldehyde.

(1) A new $\mathrm{C}-\mathrm{C}$ bond is formed between a nucleophilic $\mathrm{C}-\mathrm{Sn}$ and an electrophilic $\mathrm{C}-\mathrm{Br}$. This Stille coupling proceeds through the standard oxidative addition, transmetallation, reductive elimination process characteristic of Pd-catalyzed cross-couplings. The mechanism was discussed in the text (Section C.2.d).
(m) Make: C1-C10', C2-C10, C3-C7, C8-C10, C10'-O11. Break: C1-O9.

The first step is oxidative addition to the $\mathrm{C} 1-\mathrm{O} 9$ bond to make a $\mathrm{Pd} \pi$ allyl complex. Both C 1 and C 3 are rendered reactive by this step. At this point, we can either make the $\mathrm{C} 1-\mathrm{C} 10^{\prime}$ bond by CO insertion, or we can make the $\mathrm{C} 3-\mathrm{C} 7$ bond by insertion of the $\mathrm{C} 7=\mathrm{C} 8 \pi$ bond into the $\mathrm{C} 3-\mathrm{Pd}$ bond. The first alternative would be followed by displacement of Pd from C 10 ', requiring a new activation step to incorporate Pd into the substrate and allow the formation of the other bonds. After insertion of the $\mathrm{C} 7=\mathrm{C} 8 \pi$ bond into the $\mathrm{C} 3-\mathrm{Pd}$ bond, though, we get a $\mathrm{C} 8-\mathrm{Pd}$ bond. This can insert CO to give the $\mathrm{C} 8-\mathrm{C} 10$ bond. The $\mathrm{C} 1=\mathrm{C} 2 \pi$ bond can now insert into the $\mathrm{C} 10-\mathrm{Pd}$ bond, giving a $\mathrm{C} 1-\mathrm{Pd}$ bond. A second equivalent of CO then inserts. Finally, displacement of Pd from C 10 ' by MeOH gives the product. The mechanism by which the Pd displacement proceeds is written as acid-promoted because the by-product of the reaction is AcOH .
6.7

(a) coordination, insertion.
(n) Make: $\mathrm{C} 1-\mathrm{C} 7, \mathrm{C} 2-\mathrm{C} 5, \mathrm{C} 6-\mathrm{C} 7$. Break: $\mathrm{C} 1-\mathrm{B}, \mathrm{O} 3-\mathrm{C} 4 . \mathrm{C} 1$, with its bond to a negatively charged B , is nucleophilic.

A simple Suzuki-type coupling would form a bond between C1 and either C4 or C6. Obviously that isn't happening here. The $\mathrm{O} 3-\mathrm{C} 4$ bond is propargylic, so $\mathrm{Pd}(0)$ can undergo oxidative addition here to make a propargyl-Pd(II) complex. No new bonds are formed to C4, but the propargyl complex is in equilibrium with an allenyl complex with a C6-Pd bond. Insertion of CO into this bond gives the C7-C6 bond. Now transmetallation with the $\mathrm{C} 1-\mathrm{B}$ bond and reductive elimination gives the $\mathrm{C} 1-\mathrm{C} 7$ bond. At this point, the C2-C5 bond still needs to be formed. An electrocyclic ring-closing forms this bond and gives a zwitter-
ionic oxyallyl. Proton transfer from C2 to C6 reestablishes indole aromaticity and completes the sequence.

(a) coordination, insertion; (b) transmetallation; (c) reductive elimination.
(o) The simplest mechanism that can be drawn for this reaction is as follows. First the $\mathrm{Pt}(\mathrm{IV})$ precatalyst needs to be reduced to $\mathrm{Pt}(\mathrm{II})$. This can be accomplished by σ bond metathesis of two $\mathrm{Pt}-\mathrm{Cl}$ bonds with $\mathrm{Cl}_{3} \mathrm{Si}-\mathrm{H}$ to give a $\mathrm{Pt}(\mathrm{IV})$ dihydride, which can undergo reductive elimination to give a $\mathrm{Pt}(\mathrm{II})$ species. (The Pt species are shown as PtCl_{4} and PtCl_{2}, but of course other ligands may be present.) The catalytic cycle then proceeds by oxidative addition of $\mathrm{Cl}_{3} \mathrm{Si}-\mathrm{H}$ to $\mathrm{Pt}(\mathrm{II})$, coordination and insertion of the alkene into the $\mathrm{Pt}-\mathrm{H}$ bond, and reductive elimination of the product, just like a Pd-catalyzed hydrogenation.

Experiments show that the actual mechanism of this reaction is considerably more complex than the one shown [radicals may be involved, especially in the reduction of $\mathrm{Pt}(\mathrm{IV})$ to $\mathrm{Pt}(\mathrm{II})$], but the simple mechanism above provides a starting point for further investigation.
(p) The reaction is a carbonylative Stille coupling. The mechanism was discussed in the text (Section C.2.d).
(q) Addition of a nucleophile to an alkene is catalyzed by $\mathrm{Pd}(\mathrm{II})$ salts. The Pd (II) coordinates to the alkene and makes it electrophilic, and the nucleophile attacks to give a $\mathrm{C}-\mathrm{Pd}$ bond. In this case, because the substrate is a diene, the product is an allylpalladium(II) complex, a good electrophile. It is attacked by AcO^{-}to give the organic product plus $\mathrm{Pd}(0) . \mathrm{O}_{2}$ then oxidizes the $\mathrm{Pd}(0)$ back to $\mathrm{Pd}(\mathrm{II})$.

(r) Addition of a nucleophile to an alkene is catalyzed by $\mathrm{Pd}(\mathrm{II})$ salts. The product, an alkylpalladium(II) compound, usually undergoes β-hydride elimination, but in this case insertion of CO occurs to give an acylpalladium(II) complex. Displacement of $\mathrm{Pd}(0)$ by MeOH gives the product. $\mathrm{Pd}(0)$ is reoxidized to $\mathrm{Pd}(\mathrm{II})$ by CuCl_{2}.

(a) coordination; (b) coordination, insertion; (c) β-hydride elimination.
2. (a) Make: $\mathrm{C} 2-\mathrm{C} 6, \mathrm{O}-\mathrm{Si9}$. We also remove one H from $\mathrm{Si9}$ and add one to $\mathrm{C} 7 . \mathrm{Ti}$ is in the (II) oxidation state. Low-valent Ti compounds are commonly used for reductive coupling reactions. We can form the C6-C2 bond by such a reductive coupling.

Dissociation of $\mathrm{Me}_{3} \mathrm{P}$ from the 18-electron complex gives a 16-electron complex. Association of the carbonyl group gives a $\mathrm{Ti}(\mathrm{II}) \pi$ complex that can also be described as a $\mathrm{Ti}(\mathrm{IV})$ metallaoxirane. Dissociation of the second $\mathrm{Me}_{3} \mathrm{P}$, association of the alkene, and migratory insertion into the $\mathrm{C} 2-\mathrm{Ti}$ bond gives a fivemembered metallacycle.

We still need to form the $\mathrm{O} 8-\mathrm{Si9}$ bond, break the $\mathrm{C} 7-\mathrm{Ti}$ bond, and regenerate $\mathrm{Ti}(\mathrm{II})$. A σ bond metathesis between the $\mathrm{Si} 9-\mathrm{H}$ and $\mathrm{Ti}-\mathrm{O} 8$ bonds can occur to give a very strong $\mathrm{Si} 9-\mathrm{O} 8$ bond and a $\mathrm{Ti}-\mathrm{H}$ bond. No change in the $\mathrm{Ti}(\mathrm{IV})$ oxidation state occurs. Reductive elimination from $\mathrm{Ti}(\mathrm{IV})$ gives the product and regenerates $\mathrm{Ti}(\mathrm{II})$.

(b) Make: $\mathrm{C} 4=\mathrm{C} 5$ ' and $\mathrm{C} 4{ }^{\prime}=\mathrm{C} 5$ (x^{\prime} indicates that atom in another molecule). Break: $\mathrm{C} 4=\mathrm{C} 5$. Mo is in the (VI) oxidation state, so it is d^{0}. The complex is a 14 -electron complex. (The $\mathrm{ArN}=$ group uses the N lone pair to contribute another pair of electrons.) This is a ROMP reaction, i.e. ring-opening metathesis polymerization (Section C.3.c).

Compounds containing $\mathrm{M}=\mathrm{C}$ bonds can undergo [2+2] cycloadditions, and this reaction allows olefin metathesis to occur. The $\mathrm{Mo}=\mathrm{C}$ bond $[2+2]$ cycloadds to the $\mathrm{C} 4=\mathrm{C} 5$ bond to give a metallacyclobutane. A retro $[2+2]$ cycloaddition cleaves the $\mathrm{C} 4=\mathrm{C} 5$ bond and makes a $\mathrm{Mo}=\mathrm{C} 4$ bond. This new bond cyclo-
adds across another $\mathrm{C} 4^{\prime}=\mathrm{C} 5^{\prime}$ bond to make a new $\mathrm{C} 4-\mathrm{C} 5$ ' bond; retro [2+2] cycloaddition cleaves the $\mathrm{C} 4=\mathrm{C} 5$ bond and completes the formation of the $\mathrm{C} 4=\mathrm{C} 5$ ' bond. The process repeats itself many times over to make the polymer. No change in Mo's oxidation state or d electron count occurs in any step.

(c) Make: $\mathrm{C} 1-\mathrm{C} 5, \mathrm{C} 2-\mathrm{H}$. Break: $\mathrm{C} 5-\mathrm{H}$. Rh is in the (I) oxidation state, hence it is d^{8}; the two acetone molecules are counted as two-electron donors, so it is a 16-electron complex.

Essentially the $\mathrm{C} 1=\mathrm{C} 2$ bond is inserted into the $\mathrm{C} 5-\mathrm{H}$ bond. This suggests that the Rh oxidatively adds across the $\mathrm{C} 5-\mathrm{H}$ bond. Rh can do this with aldehydes. After oxidative addition to the $\mathrm{C} 5-\mathrm{H}$ bond to give a $\mathrm{Rh}(\mathrm{III})$ complex, insertion and reductive elimination give the product and regenerate $\mathrm{Rh}(\mathrm{I})$. Solvent molecules may be associating or dissociating at any point in the sequence.

(d) Alkene isomerization can proceed by an oxidative addition (to the allylic $\mathrm{C}-\mathrm{H}$ bond)/ reductive elimination sequence or by an insertion/ β-hydride elimination sequence. Wilkinson's catalyst normally isomerizes alkenes by the first mechanism. However, in this case BuLi is added to the catalyst first. This will give a Rh-alkyl bond, which can decompose by β-hydride elimination (as many metal alkyls do) to a Rh-H bond. Now the catalyst can carry out the insertion/ β-hydride elimination sequence to isomerize the alkene to a thermodynamic mixture of isomers. The most conjugated alkene is the lowest in energy and is obtained in greatest proportion.

(e) The product is missing C 1 and C 8 . They are lost as $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$. Make: $\mathrm{C} 2=\mathrm{C} 7, \mathrm{C} 1=\mathrm{C} 8$. Break: $\mathrm{C} 1=\mathrm{C} 2, \mathrm{C} 7=\mathrm{C} 8$. The Ru complex is 16 -electron, $\mathrm{d}^{2}, \mathrm{Ru}(\mathrm{IV})$. This is another olefin metathesis reaction, except this time it is ring-closing metathesis. The mechanism proceeds by a series of [2+2] and retro [2+2] cycloadditions. The R group starts off as $\mathrm{CH}=\mathrm{CPh}_{2}$, but after one cycle $\mathrm{R}=\mathrm{H}$.

(f) Make: C6-C2, C6-H. Break: C6-N8, C2-H.

The interaction of diazo compounds with $\mathrm{Rh}(\mathrm{II})$ complexes produces carbenoids, $\mathrm{L}_{\mathrm{n}} \mathrm{Rh}=\mathrm{CR}_{2}$, with Rh in the (IV) oxidation state. The carbenoids do typical reactions such as $\mathrm{C}-\mathrm{H}$ insertion. The mechanism of C-H insertion involves $[2+2]$ cycloaddition with the $\mathrm{C}-\mathrm{H} \sigma$ bond, followed by reductive elimination. The S-mandelate ligands on Rh ensure that the insertion reaction is enantioselective.

(g) Make: C3-C7 (x2), C4-C6 (x2), C6-C7. Ni is in the (0) oxidation state. $\mathrm{Ni}(\operatorname{cod})_{2}$ is an 18 -electron
complex. $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Ni}($ cod $)$ is also an 18 -electron complex. The fact that we are making six-membered rings from isolated π bonds suggests a cyclotrimerization.

Coordination of $\mathrm{Ni}(0)$ to the alkyne gives a π complex, which can be written in its $\mathrm{Ni}(\mathrm{II})$ resonance form. Coordination and insertion of another alkyne forms the new C6-C7 bond and gives a nickelacyclopentadiene. Maleimide may react with the metallacycle by coordination, insertion, and reductive elimination to give a cyclohexadiene. Alternatively, [4+2] cycloaddition to the metallacycle followed by retro [4+1] cycloaddtion to expel $\mathrm{Ni}(0)$ gives the same cyclohexadiene. The cyclohexadiene can undergo Diels-Alder reaction with another equivalent of maleimide to give the observed product.

(h) Make: $\mathrm{C} 1-\mathrm{Si} 7, \mathrm{C} 6-\mathrm{C} 2, \mathrm{C} 5-\mathrm{H}$. Break: $\mathrm{Si} 7-\mathrm{H}$. Y is in the (III) oxidation state in the d^{0}, 14-electron complex.

The overall transformation involves insertion of the $\mathrm{C} 5=\mathrm{C} 6$ and the $\mathrm{C} 2=\mathrm{C} 1 \pi$ bonds into the $\mathrm{Si} 7-\mathrm{H}$ bond. An oxidative addition of $\mathrm{Si}-\mathrm{H}$ to Y , insertion, insertion, reductive elimination sequence might occur. The problem with this is that the $\mathrm{d}^{0} \mathrm{Y}$ complex can't do oxidative addition. The alternative by which the $\mathrm{Si}-\mathrm{H}$ bond is activated is a σ bond metathesis process. $\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}-\mathrm{Me}$ undergoes σ bond metathesis with the $\mathrm{Si}-\mathrm{H}$ bond to give $\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}-\mathrm{H}$. Coordination and insertion of the $\mathrm{C} 5=\mathrm{C} 6 \pi$ bond into the $\mathrm{Y}-\mathrm{H}$ bond gives the C5-H bond and a C6-Y bond. Coordination and insertion of the $\mathrm{C} 1=\mathrm{C} 2 \pi$ bond into the $\mathrm{C} 6-\mathrm{Y}$ bond gives the key C6-C2 bond and a C1-Y bond. Finally, σ bond metathesis occurs once more to make the $\mathrm{C} 1-\mathrm{Si}$ bond and regenerate $\mathrm{Cp}^{*}{ }_{2} \mathrm{Y}-\mathrm{H}$.

(a) σ bond metathesis; (b) coordination, insertion.
(i) Make: C6-C1. Break: C6-B7.

The reaction looks like a conjugate addition. A $\mathrm{C} 6-\mathrm{Rh}$ bond could insert into the $\mathrm{C} 1=\mathrm{C} 2 \pi$ bond. The C6-Rh bond could be made by transmetallation.

(j) Make: C1-C12, C2-C6, C7-C11.

The overall reaction is a cyclotrimerization. Cyclotrimerizations are usually catalyzed by low-valent Co or Ni complexes by a reductive coupling mechanism, but the $\mathrm{Ru}=\mathrm{C}$ complex lives to do [2+2] cycloadditions, so let it. Cycloaddition to the $\mathrm{C} 1=\mathrm{C} 2$ bond gives a ruthenacyclobutene, which can undergo electrocyclic ring opening to give a $\mathrm{Ru}=\mathrm{C} 2 \pi$ bond. This π bond can do $\mathrm{a}[2+2]$ cycloaddition to the $\mathrm{C} 6=\mathrm{C} 7 \pi$ bond. Another ring opening, another [2+2] cycloaddition, another ring opening, another [2+2] cycloaddition, and $\mathrm{a}[2+2]$ retrocycloaddition give the product and regenerate the catalyst.

(k) Make: Si1-C2, C3-C4. Break: None.

Insertion of a $\mathrm{Rh}-\mathrm{Si}$ bond into the $\mathrm{C} 2=\mathrm{C} 3 \pi$ bond will give the $\mathrm{Si} 1-\mathrm{C} 2$ bond. The requisite $\mathrm{Si}-\mathrm{Rh}$ bond can be made by oxidative addition of $\mathrm{Rh}(\mathrm{I})$ to the $\mathrm{Si}-\mathrm{H}$ bond. After the insertion, coordination of CO to Rh , insertion of CO into the $\mathrm{Rh}-\mathrm{C} 3$ bond, and reductive elimination give the product.

3. (a) Make: $\mathrm{C} 1-\mathrm{C} 11, \mathrm{C} 8-\mathrm{C} 10$. Break: $\mathrm{C} 1-\mathrm{OAc}, \mathrm{C} 8-\mathrm{C} 9 . \mathrm{Co}_{2}(\mathrm{CO})_{6}$-alkyne complexes are prone to form cations at the propargylic position because the C-Co bonds hyperconjugatively stabilize the cation. The $\mathrm{C} 10=\mathrm{C} 11 \pi$ bond can add to a C 1 cation. Pinacol rearrangement (1,2-shift) then breaks the $\mathrm{C} 8-\mathrm{C} 9$ bond. Loss of H^{+}from O completes the sequence.

(b) Addition of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ to an alkyne forms the $\mathrm{Co}_{2}(\mathrm{CO})_{6}$-alkyne complex. Propargyl cation formation is thereby enhanced. The Lewis acid coordinates to the less hindered OEt group, converting it into a good leaving group. It leaves to give the propargyl cation, which is attacked by the alkene to form the eightmembered ring. Loss of $\mathrm{Me}_{3} \mathrm{Si}^{+}$gives the product. Because of ring strain, the eight-membered ring could not form if the alkyne were not coordinated to $\mathrm{Co}_{2}(\mathrm{CO})_{6}$. The $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ both reduces the bond angles around the "alkyne" C's and reduces the entropic barrier to eight-membered ring formation by holding the two "alkyne" substituents near one another.

(c) Make: $\mathrm{C} 1-\mathrm{C} 8, \mathrm{C} 2-\mathrm{C} 6, \mathrm{C} 7-\mathrm{C} 8 . \mathrm{Break}: \mathrm{Co}-\mathrm{C} 1, \mathrm{Co}-\mathrm{C} 2, \mathrm{Co}-\mathrm{C} 8$.

Conversion of a $\mathrm{Co}_{2}(\mathrm{CO})_{6}$-alkyne complex into a cyclopentenone is the Pauson-Khand reaction. It proceeds by loss of CO from one Co to make a 16-electron complex, coordination and insertion of the $\mathrm{C} 6=\mathrm{C} 7 \pi$ bond into the $\mathrm{C} 2-\mathrm{Co}$ bond to make the $\mathrm{C} 2-\mathrm{C} 6$ bond and a C7-Co bond, migratory insertion of CO into the $\mathrm{C} 7-\mathrm{Co}$ bond to make the $\mathrm{C} 7-\mathrm{C} 8$ bond, reductive elimination of the $\mathrm{C} 1-\mathrm{C} 8$ bond from Co , and decomplexation of the other Co from the $\mathrm{C} 1=\mathrm{C} 2 \pi$ bond. The mechanism is discussed in the text (Section B.1.f).
(d) Make: C1-C11, C4-C8. Break: C8-C9. Ti is in the (IV) oxidation state, so it is d^{0}. Since we are forming new bonds from C 4 to C 8 and C 1 to C 11 , and both C 8 and C 11 are electrophiles, both C 1 and C 4 must act as nucleophiles Normally in a diene one terminus acts as a nucleophile and one terminus acts as
an electrophile. The role of the Ti, then, is to supply the necessary electrons. But $\mathrm{Ti}(\mathrm{IV})$ is not a reducing agent, so the role of the Grignard reagent must be to reduce the Ti.

Addition of the Grignard to $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ will displace two $i-\mathrm{PrO}^{-}$groups and give $(i-\mathrm{PrO})_{2} \mathrm{Ti}(i-\mathrm{Pr})_{2} . \beta-$ Hydride abstraction (or β-hydride elimination followed by reductive elimination) then gives a $\mathrm{Ti}(\mathrm{II})$-alkene complex \leftrightarrow titanacyclopropane. Coordination of the $\mathrm{C} 3=\mathrm{C} 4 \pi$ bond and loss of propene gives a new titanacyclopropane; coordination of O10 promotes the formation of this particular titanacyclopropane. Insertion of the $\mathrm{C} 8=\mathrm{C} 10$ bond into the $\mathrm{Ti}-\mathrm{C} 4$ bond forms the crucial $\mathrm{C} 4-\mathrm{C} 8$ bond. Expulsion of EtO^{-} from C 8 gives the lactone; the EtO^{-}can coordinate to $\mathrm{Ti}(\mathrm{IV})$. There is still a $\mathrm{Ti}-\mathrm{C} 3$ bond, so C 3 is nucleophilic, as is C 1 by vinylology. Nucleophilic addition of C 1 to C 11 and aqueous workup gives the product.

(a) transmetallation; (b) β-hydride abstraction; (c) ligand substitution; (d) insertion; (e) β-alkoxy elimination; (f) coordination.
(e) Make: C2-I, C3-C4. Break: C2-Br. Since C4 is electrophilic, C3 must be made nucleophilic. This would be the role of the Zr complex.

Addition of BuLi to ArBr results in halogen-metal exchange to give ArLi . Addition of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{Me}) \mathrm{Cl}$ to ArLi gives transmetallation to give $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{Me}) \mathrm{Ar}$ and LiCl . We need to make a $\mathrm{Zr}-\mathrm{C} 3$ bond in order to render C3 nucleophilic. This can be done by a β-hydride abstraction reaction to give a zirconacyclopropane. Insertion of the $\mathrm{C} 4 \equiv \mathrm{~N}$ bond into the $\mathrm{C} 3-\mathrm{Zr}$ bond gives the crucial $\mathrm{C} 3-\mathrm{C} 4$ bond. We still need to form the $\mathrm{C} 2-\mathrm{I}$ bond. Addition of I_{2} cleaves the $\mathrm{C} 2-\mathrm{Zr}$ bond and gives the $\mathrm{C} 2-\mathrm{I}$ bond. Aqueous workup cleaves the $\mathrm{N}-\mathrm{Zr}$ bond to give the observed product.

(f) This reaction proceeds via mechanisms similar to the previous two problems. The Grignard reagent reduces $\mathrm{Ti}(\mathrm{IV})$ to a $\mathrm{Ti}(\mathrm{II})$-propene complex. Exchange of propene with the imine gives a titanaaziridine complex. Insertion of the alkyne into the $\mathrm{C}-\mathrm{Ti}$ bond gives a titanapyrrolidine. Addition of I_{2} cleaves the C-Ti bond in favor of a C-I bond. Aqueous workup then gives the product.
(g) Make: C2-C3. C3 is electrophilic, so C2 must be made nucleophilic.

Addition of an alkene to a compound containing a metal- H bond usually results in insertion, and it does in this case, too, to give the stabler 1° alkylmetal. Addition of CuBr to this complex might result in transmetallation, to give a $\mathrm{C} 2-\mathrm{Cu}$ bond. Addition of the copper compound to the unsaturated imide gives conjugate addition, perhaps by coordination of the $\mathrm{C} 3=\mathrm{C} 4 \pi$ bond and insertion into the $\mathrm{C} 2-\mathrm{Cu}$ bond. Workup gives the observed product.

(h) $\mathrm{Hg}(\mathrm{II})$ salts coordinate to alkenes and make them more electrophilic. In this case, the N can attack the alkene -Hg complex, giving an alkylmercury intermediate.

The NaBH_{4} replaces the $\mathrm{Hg}-\mathrm{O}_{2} \mathrm{CCF}_{3}$ bond with a $\mathrm{Hg}-\mathrm{H}$ bond.

Free-radical decomposition of the alkylmercury hydride then occurs to replace the $\mathrm{C}-\mathrm{Hg}$ bond with a $\mathrm{C}-\mathrm{O}$ bond, with the O coming from O_{2}. The free-radical reaction gives a hydroperoxide $\mathrm{C}-\mathrm{OOH}$.

Initiation:

Propagation:

Finally, the hydroperoxide is reduced to the alcohol C-OH by excess NaBH_{4}.

4. Oxidative addition of $\operatorname{Pd}(0)$ to a cis-dihaloethylene gives an intermediate that can undergo β-halide elimination. The $\mathrm{C}-\mathrm{Br}$ or $\mathrm{C}-\mathrm{I}$ bond is more prone to undergo β-elimination than the much stronger $\mathrm{C}-\mathrm{Cl}$ bond. The transmetallation and reductive elimination steps of the Sonogashira coupling have more time to occur when a $\mathrm{C}-\mathrm{Cl}$ bond is β to Pd than when a $\mathrm{C}-\mathrm{Br}$ or $\mathrm{C}-\mathrm{I}$ bond is β to Pd .

