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1 Introduction

We propose an estimator combining the �exibility of the Generalized Method of Moments (GMM) estimator,

which allows the moment vector to be non-zero, with that of Empirical Likelihood (EL), which allows the weighting

vector to be non-�xed.1 The new Penalized Method of Moments (PMM) estimator lets the sample average moment

vector deviate from zero, but the deviation is costly through a GMM-type quadratic penalty function. The weighting

vector can deviate from n�1, but the deviation is costly through EL�s Kullback-Leibler Information Criterion

(KLIC) penalty function. The PMM objective function combines the GMM and EL objective functions. By

including parameter � 2 (0; 1) PMM becomes a continuum of estimators with behavior approaching GMM when �

approaches zero and with behavior approaching EL when � approaches one.

The next section presents the PMM estimator, lists PMM�s asymptotic properties, shows how PMM adopts

features of GMM and EL, and details a speci�cation test based on overidentifying restrictions. In practice, EL

and PMM could be unde�ned at or near the population parameter values because their objective functions are

unde�ned for non-positive sample weights. This possibility increases as the sample size decreases, the number of

moments increases, or when the model is misspeci�ed. However, Section 3 demonstrates how the PMM estimator

allows the econometrician to increase the support of the parameter space by adjusting � to shrink the optimal

weights towards GMM�s �xed weights. Section 3 also summarizes the results of a series of Monte Carlo simulation

experiments on a Hall and Horowitz (1996) style model. As theory predicts, the restricted parameter space a¤ects

the estimates if the number of moment conditions is large relative to the sample size. In this case, PMM�s estimates

are more accurate on average, display far less variance over the simulations, and have less mis-sized hypothesis tests

than EL. The complete Monte Carlo simulation results and all derivations and proofs of PMM�s properties can be

found in the online Appendix.

2 The Penalized Method of Moments Estimator

Let xi be a sequence of iid random vectors taking values in X � R
p. Let � denote the parameter vector of

interest belonging in the space �, a compact subset of Rk. The vector of equations g(xi; �) takes values in R
m with

m � k and identi�es the population parameter vector �0

E [g(xi; �0)] = 0 E [g(xi; �0)g(xi; �0)
0] = �:

1Several researchers have designed estimators to improve on the small-sample properties of GMM. The Exponential Tilting estimator
of Kitamura and Stutzer (1997) and Imbens, Johnson, and Spady (1998), the Continuous Updating GMM estimator of Hansen, Heaton,
and Yaron (1996), and the EL estimator of Owen (1988), Qin and Lawless (1994), and Imbens (1997) have received special attention.
We focus on EL because it is the most widely used alternative to GMM. In related work, Ragusa (2008) and Corocoran (1998) examine
the asymptotics for the class of minimum discrepancy estimators.
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Let n denote the sample size and let all summations be over 1; : : : ; n. Let ! denote a vector of weights on the

(n � 1) dimensional unit simplex given by 	 = f! = (!1; : : : ; !n)j!i � 0;
P

i !i = 1g. Let gi(�) represent g(xi; �)

and de�ne mi(�) � @gi(�)=@�0, vi(�) � gi(�)gi(�)0, and

Gn(�) =
1

n

P

i gi(�) Gn(�) � Gn(!; �) =
P

i !igi(�)

Mn(�) =
1

n

P

imi(�) Mn(�) �Mn(!; �) =
P

i !imi(�)

Vn(�) =
1

n

P

i vi(�) Vn(�) � Vn(!; �) =
P

i !ivi(�)� Gn(�)Gn(�)0:

In addition G, G, M , M, V , and V refer to the limiting value as n ! 1 of the respective functions evaluated at

the true parameter value �0. Let Wn refer to an m�m full rank symmetric positive de�nite weighting matrix with

limiting value W as n!1.

2.1 PMM De�ned

In the limit, the equal-weight sample average moment vector converges to its expected value of zero. However,

the sample average moments are a random vector, and in small samples adding �exibility by allowing some deviation

from the expected values may provide desirable estimation properties. For example, GMM sets k sample moments

to zero, and m � k sample moments are not restricted and may deviate from zero; GMM restricts the weights on

individual observations to n�1. In contrast, EL allows the weights to deviate from n�1, but restricts all m sample

moments to zero. We propose an estimator that allows both the weights and the moment vector to deviate from

n�1 and zero respectively. Deviation of the weighted-average moment vector is costly through a quadratic penalty

function and deviation of the sample weights is costly through a KLIC penalty function. We de�ne the Penalized

Method of Moments (PMM) estimator as follows.

PMM Estimator

�̂ = argmin
�2�

!2	

Q(!; �)
PM M

=
1

�(1� �)

"

�nGn(�)0WnGn(�)� 2(1� �)
X

i

ln(n!i)

#

(1)

The sample weights must sum to one (
P

i !i = 1), and � 2 (0; 1) allows for the relative importance of the quadratic

penalty versus the KLIC penalty to be adjusted. The division by �(1 � �) ensures proper scaling for Q(!̂; �̂) to

serve as a test statistic of model speci�cation based on the overidentifying restrictions.

We follow Qin and Lawless (1994) and use Lagrange multipliers to solve the optimization problem. Let

L = 1

�(1� �)

"

�nGn(�)0WnGn(�)� (1� �)2
X

i

ln(n!i)

#

� �
 

X

i

!i � 1
!

; (2)
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where � is the Lagrange multiplier. Di¤erentiating with respect to !i gives the �rst set of �rst-order conditions

@L
@!i

=
2

�(1� �)

�

�ngi(�)
0WnGn(�)�

1� �
!i

�

� � = 0: (3)

Multiplying by !i and summing over i provides

X

i

!i
@L
@!i

=
2

�(1� �) [�nGn(�)
0WnGn(�)� n(1� �)]� � = 0: (4)

Solving for �

� =
2

�(1� �) [n�Gn(�)WnGn(�)� n(1� �)] : (5)

Substituting � from equation (5) into (3) and rearranging terms results in the following system of n equations to

identify the n probability weights

!i =
1

n

 

1

1 + �
1��

(gi(�)� Gn(�))0WnGn(�)

!

: (6)

Equation (6) does not emit a closed form solution for the weights because Gn(�) is a function of the weight vector.

However, the n equations imply a solution to the n unknowns conditional on �, and the implied weights, !(�), are

a function of the parameter vector. In the Appendix, we apply the implicit function theorem to verify an implicit

function !(�) exists asymptotically. For PMM, all three components, Gn(�),Mn(�), and Vn(�), use the same vector

of weights.

Because the optimal PMM weights are an implicit function of the parameter vector, the optimally weighted

objective function may be written as a function of only the parameter vector

Q(!̂; �)
PM M

= Q(!(�); �)
PM M

= Q(�)
PM M

:

So far, only the optimal weights have been de�ned. Di¤erentiating (2) with respect to � gives the second set of

�rst-order conditions that identify �̂

Mn(�̂)
0WnGn(�̂) = 0: (7)

Equation (7) is a system of k equations in k unknowns. The �rst-order conditions are a function of the optimal

weights, but the optimal weights are implicitly a function of the parameter vector. Hence, equations (6) and (7)

can be solved simultaneously for the n optimal weights and the k optimal parameters. The �rst-order conditions

for PMM have the familiar form in which a linear combination of an estimate of the orthogonality condition is set

to zero. Next, we list PMM�s asymptotic properties.
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2.2 PMM Asymptotic Properties

PMM inherits most of the asymptotic properties of GMM and EL. We postpone the discussion of higher-order

bias until Section 2.4.

Let f(n) = O (g(n)) denote an asymptotic upper bound

f(n) = O (g(n)) , lim sup
n!1

�

�

�

�

f(n)

g(n)

�

�

�

�

<1;

and f(n) = o (g(n)) denote asymptotic negligibility

f(n) = o (g(n)) , lim
n!1

f(n)

g(n)
= 0:

Theorem 1 (Limiting Behavior)

Suppose � 2 (0; 1), Wn is a full rank positive de�nite symmetric m � m matrix, and !(�) is the vector of

weights implied by the �rst order conditions of equation (2) and de�ned by (6). In addition, suppose that Wn =

��1 +O
�

n�
1

2

�

is symmetric positive semi-de�nite. Then,

(i) !i(�0)� n�1 = O
�

n�
3

2

�

8i; (8)

(ii) Gn(�0) = (1� �)Gn(�0) +O
�

n�1
�

; (9)

(iii) Vn(�0) = � +O
�

n�
1

2

�

; (10)

(iv) Mn(�0) =Mn(�0) +O
�

n�
1

2

�

: (11)

Theorem 1 describes the limiting behavior of the probability weights, moment vector, second moment matrix,

and Jacobian term. The weights converge to �xed weights, and the weighted-average Jacobian and second-moment

matrices converge to the limiting value of their respective equal-weight counterparts. The weighted average moment

vector, on the other hand, converges to the sample average scaled by (1 � �). As � approaches one and PMM�s

�rst-order conditions approach those of EL, Gn(�0)! 0, which is the constraint imposed by EL estimation.

Let jj � jj denote the Euclidean norm and de�ne Sn(�) as

Sn(�) �
�

�Vn(�) + (1� �)W�1
n

��1
: (12)

The matrix Sn(�) is a continuously updated weighting matrix. The inverse of Sn(�) is a convex combination of the

e¢ciently estimated second moment matrix and the inverted weighting matrix provided by the econometrician.2

PMM exhibits consistency according to the following theorem.

2E¢cient GMM sets the inverted weighting matrix equal to a consistent estimate of �. If the PMM weighting matrix is also a
consistent estimate, then S�1n (�̂) is an estimate of �.
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Theorem 2 (Consistency)

If E[gi(�0)gi(�0)
0] is positive de�nite, mi(�) is continuous in the neighborhood of the true value �0, kmi(�)k

and kgi(�)k3 are bounded by some integrable function H(x) in this neighborhood, and E[mi(�0)] has rank k. Then

as n ! 1, with probability one Q(�)
PMM

attains its minimum value at some point �̂ in the interior of the ball

k� � �0k � n�' where 0 < ' < 1

2
and �̂ satis�esMn(�̂)

0Sn(�̂)Gn(�̂) = 0.

Theorem 3 provides the �rst order asymptotic distribution of the parameter estimate for any supplied symmetric

positive de�nite weighting matrix Wn.

Theorem 3 (Asymptotic Normality)

Suppose �̂ satis�es equation (7) where Wn
p�! W , Wn is full rank and symmetric positive semi-de�nite, and

�̂
p�! �0. Let S denote the limiting value of Sn(�0) as n!1, and assume

1. �0 2 interior(�)

2. Gn(�) and Gn(�) are continuously di¤erentiable in a neighborhood N of �0

3.
p
nGn(�0)

d�! N (0;�)

4. there exists M(�) that is continuous at �0 and sup�2N kMn(�)�M(�)k p�! 0

5. there existsM(�) that is continuous at �0 and sup�2N kMn(�)�M(�)k p�! 0

6. for M =M(�0), M
0SM is nonsingular.

Then
p
n(�̂ � �0) d�! N

�

0; (M 0SM)�1M 0S�SM(M 0SM)�1
�

.

The asymptotic variance is similar in form to that of non-e¢cient GMM, except that S, a function of the

weighting matrix W , takes the place of W in GMM.3

Theorem 4 (E¢ciency)

If all the conditions of Theorem 3 hold and Wn
p�! ��1, then �̂ is e¢cient in that it achieves the lowest �rst

order asymptomatic variance and
p
n(�̂ � �0) d�! N

�

0; (M 0��1M)�1
�

.

PMM shares GMM�s main drawback; PMM is a two-step estimator. Thus, PMM has the same e¢ciency

condition as GMM � Wn must be a consistent estimate of �
�1.

3See equation (15) in the next section.
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2.3 The Ingredients: GMM and EL

The PMM family of estimators merges the objective functions of GMM and EL. GMM, EL, and PMM estimation

equations build o¤ of the moment conditions, which have expectation zero. The objective is to select a �̂ that agrees

with the information contained in the moment conditions. GMM uses �xed weights to estimate the expected value

of the estimating equations. If there are more moments than parameters, then not all m moment conditions can

be jointly satis�ed because the sample weights are �xed to n�1. GMM sets k dimensions of the moment vector to

zero and measures the distance from zero of the remaining m � k dimensions with a quadratic penalty function.

Optimality is de�ned by the parameter value associated with the lowest penalty. The GMM estimate of �̂ solves

the following optimization problem.

GMM estimator

�̂ = argmin
�2�

Q(�)
GM M

= nGn(�)
0WnGn(�) (13)

Wn is a symmetric positive de�nite m�m weighting matrix. The �rst-order conditions for GMM are

Mn(�̂)
0WnGn(�̂) = 0; (14)

which is a k � 1 vector identifying the k parameters. GMM is estimated e¢ciently by setting Wn
p�! ��1, which

is typically accomplished by using equation (13) twice. The �rst step uses a weighting matrix ~W , the identity

matrix for example, to generate the �rst round consistent estimate ~�. The second step sets Wn = V
�1
n (~�), which

is a consistent estimate of ��1. Under standard regularity conditions, the estimator �̂GMM is consistent and

asymptotically normally distributed

p
n(�̂ � �0) d�! N

�

0; (M 0WM)
�1
M 0W�WM (M 0WM)

�1
�

: (15)

EL takes a di¤erent approach. EL calculates the sample average moment vector allowing weights to deviate

from GMM�s �xed weights and constrains the sample average moment vector to zero. Because sample weights are

not �xed, it is possible to select a vector of non-negative probability weights under which the expected value of the

estimating equations is equal to zero so long as zero is contained in the convex hull of the points g(x1; �); : : : ; g(xn; �).

EL is de�ned over the set of weights and parameter values where this condition is satis�ed (i.e. Gn(�) = 0 and

! > 0).4 When the system is overidenti�ed, EL�s moment vector constraint may not be satis�ed under �xed

weights. EL measures the distance from n�1 with a penalty function de�ned by the KLIC and with optimality

de�ned by the parameter and weighting vectors associated with the lowest penalty.

4EL may select a � such that the estimated parameter values are distant from the population parameter values because the condition
! > 0 must also be satisi�ed. This point will be discussed further below.
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EL Estimator

�̂ = argmin
�2�

!2	

Q(!)
E L

= �2
X

i

lnn!i subject to Gn(�) = 0 (16)

EL minimizes the empirical discrepancy as measured by the KLIC. In other words, EL maximizes the likelihood of

the multinomial distribution for the data subject to binding orthogonality conditions.5 Unlike GMM, EL requires

no iteration to achieve e¢ciency. The probability weights satisfying the �rst-order conditions solve

!i =
1

n

�

1

1 + gi(�)0V�1n (�)Gn(�)

�

: (17)

The weights cannot be found explicitly because Vn(�) is a function of the probability weights. Denote the implicit

solution to (17) by !i(�). These optimal weights are conditional on � and may be negative. In order for ! to be in

	, the estimation procedure restricts the parameter space to the region in which the optimal weights are positive.

If this region is the null space, then the EL estimator is unde�ned for the combined model and data set.

Newey and Smith (2004) show that the EL estimator �̂ solves the following �rst-order conditions.

Mn(�̂)V�1n (�)Gn(�̂) = 0 (18)

The k � 1 vector in Equation (18) represents the identifying space for the k parameters and depends on the

probability weights. Hence equations (17) and (18) must be solved jointly for the n weights and the k parameters.

Note the similar structure between the �rst-order conditions provided by equations (7), (14), and (18). In each

set of �rst-order conditions, a linear combination of the sample average moment vector is set to zero. The linear

combination is comprised of estimates of the Jacobian and the second moment matrix. For EL, calculation of

the expected Jacobian uses the probability weights minimizing the objective function with the weighting matrix

calculated simultaneously. GMM, on the other hand, uses �xed weights to calculate the average score with the

weighting matrix supplied a priori. PMM combines the two approaches.

Theorem 5 relates the optimally weighted to the equally weighted sample average moment vector for any � in

PMM estimation. The two estimates are explicitly related and � has an important role in the relationship.

Theorem 5

Suppose � 2 (0; 1), Wn is a full rank positive de�nite symmetric m�m matrix, and !(�) is the vector of weights

implied by the �rst order conditions of equation (2) and de�ned by (6). Then

Gn(�) = (1� �)W�1
n Sn(�)Gn(�) (19)

Theorem 5 may be used to provide a second view of the two sets of PMM �rst-order conditions de�ning �̂ and

5When the system is just identi�ed, the moment conditions can be set to zero under �xed weights, which results in the same solution
provided by GMM.
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the optimal weights. Substituting equation (19) into equation (7) gives an equivalent set of �rst-order conditions.

Mn(�̂)
0Sn(�̂)Gn(�̂) = 0 (20)

Equation (20) rewrites PMM�s �rst-order conditions as a linear combination of the equal-weight sample average

moment vector set to zero. The �rst-order conditions depend on the weights through Mn(�̂) and Sn(�̂) and the

optimal parameter vector and optimal weights are estimated simultaneously. Note, the PMM �rst-order conditions

still rely on a two-step approach because Sn(�) depends on Wn. Theorem 5 may also be used to rewrite the weights

in a form resembling the EL weights in equation (17).

!i(�) =
1

n

�

1

1 + �gi(�)0Sn(�)Gn(�)� �(1� �)Gn(�)0Sn(�)W�1
n Sn(�)Gn(�)

�

(21)

Theorem 6 (Equivalency)

Suppose the conditions of Theorem 5 are met. Let � approach zero. Then PMM�s �rst-order conditions limit to

those of GMM. Alternatively, let � approach one. Then PMM�s �rst-order conditions limit to those of EL.

According to Theorem 6, GMM and EL are special cases of PMM. Through �, PMM provides a continuum

of estimators with GMM and EL at the extremes. When � approaches one, PMM�s weights limit to those of EL.

When � approaches zero, PMM�s weights limit to the �xed weights of GMM.

2.4 Higher-order Bias and Tests of Overidentifying Restrictions

Let P?
M
� Im � ��

1

2M
�

M 0��1M
��1

M 0��
1

2 be the projection matrix orthogonal to the space spanned by

the asymptotic normalized Jacobian, where ��
1

2 is the Cholesky decomposition of ��1. De�ne 
 � M 0��1M ,

~
 � M 0 ~WM , � � 
�1M 0��1, and ~� � ~
�1M 0 ~W . The following four de�nitions will be used to compare the

higher-order bias of GMM, EL, and PMM

BI = n�1�(E [mi(�0)�gi(�0)]� a=2) (22)

BM = �n�1
�1E
h

mi(�0)
0� 1

2P
?

M
��

1

2 gi(�0)
i

B� = n�1�E
h

vi(�0)�
� 1

2P
?

M
��

1

2 gi(�0)
i

BW = �n�1�E

2

4

k
X

j=1

@Vn(�0)

@�j
( ~���)0ej

3

5 ;

where ej is the jth unit vector, a is an m� 1 vector with

aj � tr
�


E

�

@2gij(�0)

@�@�0

��

(j = 1; :::;m);
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and gij(�0) denotes the jth element of gi(�0).

Newey and Smith (2004) show that GMM�s higher-order O
�

n�1
�

bias is

Bias(�̂)
GM M

= BI +BM +B� +BW : (23)

The �rst component, BI , is the bias for an estimator with the optimal (non-random) transformation M
0��1

applied to the moment conditions Gn(�0). The second component and third components, BM and B�, are the bias

due to the estimation of the Jacobian and second moment matrices. The �nal term, BW , is the bias due to the

choice of the �rst-round weighting matrix.

Newey and Smith (2004) show that EL�s higher-order O
�

n�1
�

bias is

Bias(�̂)
E L

= BI : (24)

Comparing the higher-order bias of EL against GMM, three of the four components disappear. EL provides e¢cient

estimates of the Jacobian and second moment matrices, in that its estimates do not contribute to the higher order

bias. As a one-step estimator, EL has no bias component from the inclusion of a preliminary weighting matrix.

Interpretation of the bias requires caution. Although EL certainly has fewer higher-order bias contributors, EL

may not have the smaller higher-order bias in a given application. The four bias-terms do not necessarily have the

same sign and the three missing bias terms may cancel out some of the BI bias.

Theorem 7 provides the higher-order O
�

n�1
�

bias for the family of PMM estimators.

Theorem 7 (Higher-order O
�

n�1
�

Bias)

Suppose �̂ satis�es equation (7) where Wn
p�! ��1, �̂

p�! �0, and ~W is the preliminary �rst-round weighting

matrix. Then

Bias(�̂)
PMM

= BI + (1� �)BM +
�

1� �2
�

B� + (1� �)BW : (25)

The PMM bias has a similar form to that of GMM and EL and is comprised of the four bias components discussed

above. The bias for PMM is a continuous function of the � parameter. As � approaches zero, the coe¢cients on

BM , B�, and BW approach one and the PMM bias approaches that of GMM. Similarly, as � approaches one, the

coe¢cients to BM , B�, and BW approach zero and the PMM bias approaches that of EL.

The objective function (1) value serves as a test statistic of overidentifying restrictions in PMM estimation when

the parameters are estimated e¢ciently.

Theorem 8 (Test of Overidentifying Restrictions)
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Suppose �̂ satis�es equation (7) and �̂
p�! �0. Further suppose that Wn

p�! ��1. Then

Q(�̂)
PMM

d�! �2m�k: (26)

The objective function (1) has two components. The �rst component is the quadratic penalty of GMM that, when

appropriately scaled, is similar in structure to GMM�s test statistic of overidentifying restrictions. The second

component is the KLIC penalty of EL that, when appropriately scaled, is similar in structure to EL�s likelihood

ratio test statistic of overidentifying restrictions.

3 PMM versus EL in Practice

The EL objective function is unde�ned for non-positive weights. Yet, the �rst-order conditions may imply

negative weights are optimal, conditional on �.6 The following must be satis�ed for EL to be de�ned at a given

parameter vector.

1 + gi(�)
0V�1n (�)Gn(�) � 0 (27)

Unfortunately, the above restriction may be violated at the population parameter vector. The probability of the

population parameter vector residing outside the support of the parameter space decreases with sample size because

Gn(�0) = O
�

n�
1

2

�

and increases with model misspeci�cation because E[Gn(�0)] 6= 0 in a misspeci�ed model. If

supx2X g(x; �0) is not bounded, then even with a correctly speci�ed model, restriction (27) may not be satis�ed at

the population parameter value as n!1.

Violation of condition (27) leads to two possible outcomes. First, the condition may be violated for only a

subset of the parameter space, restricting the parameter space. Second, the restriction could be violated for the

entire parameter space, which occurs when the convex hull of the moments g1(�); : : : ; gn(�) does not contain the

origin for any choice of �. In the second scenario, EL is unde�ned for the given model and sample. Non-positive

weights also leave PMM�s objective function unde�ned. For PMM to be de�ned for a given parameter vector, the

following must hold

1 + �gi(�)
0Sn(�)Gn(�)� �(1� �)Gn(�)0Sn(�)W�1

n Sn(�)Gn(�) � 0: (28)

Fortunately, PMM provides the econometrician with a solution to the negative weight problem. The coe¢cient �

may be selected to ensure positive weights in some region of the parameter space.

Using PMM estimation to increase the support of the parameter space may be desirable even when the parameter

6See Bertille, Bonnal, and Renault (2007) and Liu and Chen (2010) for more on negative weights in EL estimation.
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space support under EL is non-empty. Suppose

nGn(�1)
0V�1n (�1)Gn(�1) < nGn(�2)

0V�1n (�2)Gn(�2)

for parameter vectors �1 and �2. Ideally, the �rst parameter vector will be selected. However, for one or more

observations the following could be true

gi(�1)
0V�1n (�1)Gn(�1) < �1

and

gi(�2)
0V�1n (�2)Gn(�2) � �1:

EL is unde�ned at �1, so EL selects �2 to avoid the negative weight(s). This scenario is more likely to occur when

the sample size is small, the number of moments is large, the moments are unbounded, or the model is misspeci�ed.

By shrinking the weights through �, PMM o¤ers a less restricted parameter space than EL. We may select a � to

ensure positive weights for both �1 and �2, and PMM will select �1 over �2.

Why not let � approach zero and avoid the scenario outlined in the previous paragraph entirely? Because, doing

so prohibits us from attaining the desirable higher-order properties o¤ered by EL. PMM allows the econometrician to

continuously exchange the higher-order properties provided by EL for the less restricted parameter space associated

with GMM by adjusting �.

The increased support for the parameter space provided by PMM also o¤ers a practical advantage for opera-

tionalizing the estimator. To begin the numerical optimization, the econometrician must supply a starting value.

EL and PMM might be unde�ned at the supplied starting parameter vector due to a restricted parameter space.

When this problem occurs, the econometrician must search for a starting value in which the estimators are de�ned;

the search becomes increasingly di¢cult as the number of parameters increases. The larger support provided by

PMM can make �nding an appropriate starting value easier.

3.1 Monte Carlo Simulations

We use the Hall and Horowitz (1996) model as modi�ed by Schennach (2007) to compare EL to PMM with

� = 0:5.7 The orthogonality conditions are

gi(�) = r(xi; �) [1 xi2 (xi3 � 1) : : : (xiK � 1)]0 ; (29)

7The GMM estimator posseses notoriously poor properties when the sample size is small or number of moments is large, so GMM
has been left out of the comparison.
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where r(xi; �) = exp(�0:72� (xi1+xi2)�+3xi2)�1. When (xi1; xi2) � N(0; 0:16I2) and xik � �21, for k = 3; : : : ;K

the moment conditions are satis�ed at �0 = 3. The O(n�1) term does not trivially vanish because the third

moments of all elements of gi(�) are non-zero and gi(�) is a nonlinear function of �.

The simulations use small samples (n = 25, 50, and 100) with a large number of moment conditions to investigate

the properties of PMM when the restricted parameter space is likely to be problematic. We calculate the realized

estimator mean, volatility (standard deviation of the estimates across simulations), and Root Mean Squared Error

(RMSE) for PMM and EL. The size of the rejection region for the relevant test of the overidentifying restrictions

and the probability of rejecting the population parameter value are also calculated. Appendix B details how to

implement PMM and provides the complete simulation results; here, we only summarize the main �ndings.

PMM dramatically outperforms EL when the number of observations is low and the number of moments is

high. For example, with 25 observations and 5 moments, the volatility of the EL estimates is approximately 0.94

while the volatility of PMM�s estimates equals 0.85. At the 5 percent level, PMM rejects the population parameter

value 36 percent of the time and EL rejects 44 percent of the time. PMM and EL reject the model at the 5 percent

level 61 and 48 percent of the time, respectively. The average parameter estimate for PMM is about 2.9, while EL

is not close at 3.5. The results are similar for the 50 observation and 10 moment model. The volatility of EL�s

estimates equals 0.72, which is approximately 18 percent higher than for the PMM estimates. PMM and EL reject

the population parameter value at the 5 percent level approximately 26 and 43 percent of the time, respectively.

The model is rejected at the 5 percent level 63 percent of the time for PMM and 73 percent of the time for EL. For

the simulations with 100 observations, EL�s estimates are less volatile than PMM�s when the number of moments

are low, but the volatility of EL�s estimates increases more than for PMM as the number of moment conditions

grows. EL�s estimator volatility increases from 0.30 under 2 moments to 0.45 under 20 moments. PMM�s estimator

volatility increases from 0.32 under 2 moments to 0.37 with 20 moment conditions.8

When the sample size is large and the number of moments are low, EL sometimes slightly outperforms PMM

(with � = 0:5). In most of these cases, however, EL and PMM have similar properties, with hypothesis tests and

tests of model-speci�cation being equally mis-sized.

Overall, the simulations highlight the improvements achieved by expanding the parameter space through shrink-

age. The restricted parameter space due to negative weight avoidance can make EL have more volatile estimates

and greater over-rejection of hypothesis tests. Shrinking the weights towards �xed weights through PMM can

provide more desirable estimator properties.

Although the simulations consider the particular PMM estimator with � = 0:5, the results provide some guidance

on how to select �. If the sample size is small or there are many moments, then shrinkage towards GMM might be

best. While model estimation using larger samples or less moment conditions may have more desirable properties

8Appendix B visually depicts the PMM and EL parameter estimates for each set of simulations. In the 25x5, 50x5, 100x15, and
100x20 trials, PMM�s density functions have higher peaks and tighter distributions than those of EL. The di¤erences between EL
and PMM are striking. The distribution for EL is not even close to being centered on the true parameter value, demonstrating the
superiority of PMM in these particular examples.
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when PMM is selected to resemble EL. This is only an intuitive way to think about �. We hope future research

will uncover how to optimally select �.

4 Conclusion

This paper presents a new family of estimators by merging the objective functions of GMM and EL. GMM

allows the elements of the sample average moment vector to deviate from zero and requires the sample weights to

be �xed. EL allows the sample weights to vary and forces the weighted moments to equal zero. The PMM family

of estimators allows both weights and sample moments to deviate from n�1 and 0 and measures the respective

deviations with EL�s KLIC penalty function and GMM�s quadratic penalty function. Through a free parameter, a

continuum of estimators is obtained with GMM and EL at the extremes. When the sample size is small and the

number of moments is large, the new estimator outperforms EL in Monte Carlo simulations.
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