
Web Appendix

Appendix A contains the proofs and derivations of the main theoretical results. Appendix B provides the full

details for the Monte Carlo simulations.

Appendix A: Proofs

Proof that weights may be implicitly de�ned as a function of the parameter vector. Let F (!) be

the n dimensional vector of equations (6) that de�nes the n weights

Fi(!) = !i �
1

n

 
1

1 + �
1�� (gi(�)� Gn(�))0WnGn(�)

!
: (A-1)

Then,

@Fi(!)

@!i
= 1 +

1

n

�

1� �

 
1

1 + �
1�� (gi(�)� Gn(�))0WnGn(�)

!2

� (gi(�)0Wngi(�)� 2gi(�)0WnGn(�)) (A-2)

@Fi(!)

@!j
=
1

n

�

1� �

 
1

1 + �
1�� (gi(�)� Gn(�))0WnGn(�)

!2

� (gi(�)0Wngj(�)� 2gj(�)0WnGn(�)) (A-3)

As n ! 1, the matrix @F (!)=@! p�! In, which is invertible. By the inverse function theorem, ! = !(�) is a

continuous di¤erentiable function of �.

Proof of Theorem 1. First, by the law of large numbers and central limit theorem Vn(�0) and Mn(�0) are

consistent estimates of � and M respectively such that Vn(�0) = � +O(n�
1

2 ) and Mn(�0) =M +O(n� 1

2 ).

By equation (21)

n
�
!i(�0)� n�1

�
= � y

1 + y
(A-4)

where

y = �gi(�0)Sn(�0)Gn(�0)� �(1� �)Gn(�0)0Sn(�0)W�1
n Sn(�0)Gn(�0):

By Taylor expansion around y = 0

� y

1 + y
� �y � 1

2
y2: (A-5)

Suppose Vn(�0) = � +O(n�
1

2 ). Then, Sn(�0) = ��1 +O(n�
1

2 ). Because Gn(�0) = O(n�
1

2 )

�gi(�0)Sn(�0)Gn(�0) = �gi(�0)
�
��1 +O

�
n�

1

2

��
O
�
n�

1

2

�
= O

�
n�

1

2

�
(A-6)
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Because the second term of y is quadratic in Gn(�0), it can similarly be shown that

�(1� �)Gn(�0)0Sn(�0)W�1
n Sn(�0)Gn(�0) = O

�
n�1

�
: (A-7)

Combining the two components of y, we have n
�
!i(�0)� n�1

�
= O

�
n�

1

2

�
if our initial assumption that Vn(�0) =

� +O(n� 1

2 ) is true. By de�nition,

Vn(�0) =
X

i

!i(�0)gi(�0)gi(�0)
0 � Gn(�0)Gn(�0)0

= Vn(�0) +
X

i

�
!i(�0)� n�1

�
vi(�0)� (1� �)2Gn(�0)0Sn(�0)W�2

n Sn(�0)Gn(�0)

=
�
�+O

�
n�

1

2

��
+O

�
n�

1

2

�
+O

�
n�1

�

= �+O
�
n�

1

2

�
(A-8)

Hence, the assumed order of Vn(�0) is veri�ed to be correct. Thus, part (iii) of the Theorem is proved directly, and

the proof for part (i) is now complete. Further, we now have Sn(�0) = �+O
�
n�

1

2

�
. Part (ii) is proved as follows

p
nGn(�0) = (1� �)W�1

n Sn(�0)
p
nGn(�0)

= (1� �)
�
�+O

�
n�

1

2

���
��1 +O

�
n�

1

2

��p
nGn(�0)

= (1� �)���1
p
nGn(�0) +O

�
n�

1

2

�
: (A-9)

Simplifying the last equation in the series completes the proof. Finally, part (iv) of the Theorem is proved using

part (i)

Mn(�0) =
X

i

!i(�0)mi(�0)

=Mn(�0) +
1

n

X

i

n
�
!i(�0)� n�1

�
mi(�0)

=M +O
�
n�

1

2

�
+
1

n

X

i

O
�
n�

1

2

�
mi(�0): (A-10)

Simplifying the �nal equation in the series �nishes the proof.
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Proof of Theorem 2. The form of the proof follows Qin and Lawless (1994). Denote � = �0 + un
�', for

� 2 f�jk� � �0k = n�'g, where kuk = 1. The objective function may be rewritten

Qn(�)
PM M

=n(1� �)Gn(�)0Sn(�)W�1
n Sn(�)Gn(�)

+
2

�

X

i

ln
�
1 + �gi(�)

0Sn(�)Gn(�)� �(1� �)Gn(�)0Sn(�)W�1
n Sn(�)Gn(�)

� (A-11)

Taylor approximating the log term by ln(1 + x) = x� 1
2x

2 + o(x2), the objective function is approximated by

Qn(�)
PM M

=n(1� �)Gn(�)0Sn(�)W�1
n Sn(�)Gn(�) + 2nGn(�)0Sn(�)Gn(�)

� 2n(1� �)Gn(�)0Sn(�)W�1
n Sn(�)Gn(�)� n�Gn(�)0Sn(�)Vn(�)Sn(�)Gn(�)

+ o(nGn(�)
0Sn(�)W�1

n Sn(�)Gn(�))

(A-12)

Using the de�nition of Sn(�), the following expression emerges

Qn(�)
PM M

= nGn(�)
0Sn(�)Gn(�) + o(nGn(�)0Sn(�)W�1

n Sn(�)Gn(�)): (A-13)

By Taylor expansion around �0, we have (uniformly for u),

Qn(�)
PM M

=n
h
Gn(�0) +Mn(�0)un

�')
i0
Sn(�)

h
Gn(�0) +Mn(�0)un

�')
i

+ o

�
n
h
Gn(�0) +Mn(�0)un

�')
i0
Sn(�)W�1

n Sn(�)
h
Gn(�0) +Mn(�0)un

�')
i�
:

(A-14)

By the law of iterated logarithms and ' < 1
2 ,

Qn(�)
PM M

=n
h
O(n� 1

2 (log log n)
1

2 ) + E[Mn(�0)]un
�')
i0
�
�
�E[vi(�0)] + (1� �)W�1

n

��1

�
h
O(n� 1

2 (log log n)
1

2 ) + E[Mn(�0)]un
�')
i
+ o

�
n1�2'

�

� (c� ")n1�2';

(A-15)

where c� " � 0 and c is the smallest eigenvalue of

E (mi(�0))
0
�
�E[vi(�0)] + (1� �)W�1

n

��1
E (mi(�0)) : (A-16)
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Substituting �0 into equation (A-13)

Qn(�0)
PM M

= nGn(�0)
0Sn(�0)Gn(�0) + o(nGn(�0)0Sn(�0)W�1

n Sn(�0)Gn(�0))

= O(log log n) + o(1)

= O(log log n): (A-17)

Because the objective function is continuous around � as � belongs to the ball k� � �0k � n�' and on the surface

of the ball the objective function is order O(n1�2') while the order of the objective function at the population

parameter value is O(log log n), the objective function achieves its minimum value within the interior of the ball.

Proof of Theorem 3. We follow Newey and McFadden (1994)�s proof of asymptotic normality for GMM.

By assumptions (1) and (2), with probability approaching one the �rst-order conditionsMn(�̂)
0WnGn(�̂) = 0 are

satis�ed. Expand Gn(�) around �0 to obtain

Gn(�̂) = Gn(�0) +Mn(��)
0(�̂ � �0); (A-18)

where �� represents a mean value. Substitute in the relationship

Gn(�̂) =
1

1� �Sn(�̂)
�1WnGn(�̂) (A-19)

and multiply byMn(�̂)
0Sn(�̂) to obtain

0 =
1

1� �Mn(�̂)
0WnGn(�̂) =Mn(�̂)

0Sn(�̂)Gn(�0) +Mn(�̂)
0Sn(�̂)Mn(��)(�̂ � �0): (A-20)

Rearrange to obtain
p
n(�̂ � �0) =

�
Mn(�̂)

0Sn(�̂)Mn(��)
��1

Mn(�̂)
0Sn(�̂)Gn (�0) : (A-21)

By assumption (4) and �̂
p�! �0, with probability approaching one

kMn(��)�Mk � kMn(��)�M(��)k+ kM(��)�Mk

� sup
�2�

kMn(�)�M(�)k+ kM(��)�Mk
p�! 0: (A-22)

Also by assumption (4), �̂
p�! �0, and Theorem 1 (iv) with probability approaching one

kMn(�̂)�Mk � kMn(�̂)�M(�̂)k+ kM(�̂)�Mk+ kM�Mk

� sup
�2�

kMn(�)�M(�)k+ kM(�̂)�M�k+ kM�Mk p�! 0: (A-23)
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Applying assumptions (3), (6), and the Slutsky theorem yields the result.

Proof of Theorem 4. Hansen and Newey and McFadden show that when the asymptotic variance of
p
n(�̂��0)

takes the form
�
(M 0SM)�1M 0S�SM(M 0SM)�1

�
, the minimum variance is obtained when S = ��1. Because

Wn
p�! ��1 by assumption and Vn(�0)

p�! �, we verify that Sn(�0)
p�! ��1 the asymptotic variance reduces to

(M 0SM)�1.

Proof of Theorem 5. Equation (6) may be rewritten

n�1 = !i + !i
�

1� � (gi(�)� Gn(�))
0
WnGn(�): (A-24)

Multiply (A-24) by gi(�) and sum over i to obtain

Gn(�) = Gn(�) +
�

1� �

 
X

i

!igi(�)gi(�)
0 � Gn(�)Gn(�)0

!
WGn(�)

= Gn(�) +
�

1� �Vn(�)WnGn(�): (A-25)

Rearrange to obtain

Gn(�) = (1� �) (�Vn(�)Wn + (1� �)Im)�1Gn(�) (A-26)

= (1� �) (�WnVn(�) + (1� �)Im)�1Gn(�)

= (1� �)W�1
n

�
�Vn(�) + (1� �)W�1

n

��1
Gn(�)

= (1� �)W�1
n Sn(�)Gn(�);

where the second line is because Wn and Vn(�) are positive-de�nite.

Proof of Theorem 6. Equations (12), (19), and (21) provide the result. When � approaches one, PMM�s

weights limit to those of EL and Sn(�) ! V�1n (�). When � approaches zero, PMM�s weights limit to the �xed

weights of GMM and Sn(�)!Wn.

Proof of Theorem 7. The �nal form of the higher order asymptotic expansion is the result of a number of

linearizations. First, we give the linear approximations of Sn(�̂) andMn(�̂), the derivations of which are included

at the end of the proof.

Sn(�̂) = ��1 � ��1
�
Vn

�
b�
�
� �

�
��1 (A-27)

+��1

0
@�2 1

n

X

i

gi

�
b�
�0�1

Gn

�
b�
�
vi

�
b�
�
+ (1� �)

kX

j=1

b�jGn (�0)0
�
e���

�0
ej

1
A��1

+O
�
n�1

�
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and

Mn(�̂) =M +

 
Mn(�̂)� �

1

n

X

i

mi(�̂)gi(�̂)
0�1Gn(�̂)�M

!
+O

�
n�1

�
; (A-28)

where �̂j = @Vn(�̂)=@�j . In each equation, the �rst term is the limiting value of the respective equation as n!1

evaluated at the true parameter value and is O(1), the �nal term is O
�
n�1

�
, and the middle term(s) is the

estimation error and is O
�
n�1=2

�
. The sample average Jacobian matrix is rewritten as

Mn(�̂) =M +
�
Mn(�̂)�M

�
: (A-29)

Again the �rst term is the limiting value as n ! 1 of the estimated Jacobian evaluated at the true parameter

value, the second term is the estimation error, which is O
�
n�1=2

�
, and in this case there is no approximation error.

The next step is to expand the sample average moment condition Gn(�̂) around the true value �0

Gn(�̂) = Gn(�0) +Mn(�̂)
�
�̂ � �0

�
+ 0:5Hn(�̂)

h�
�̂ � �0

�


�
�̂ � �0

�i
+O

�
n�

3

2

�
: (A-30)

Equation (7) provides the �rst-order condition that Mn(�̂)
0Sn(�̂)Gn(�̂) = 0. Multiply (A-30) by Mn(�̂)

0Sn(�̂) to

eliminate the left hand side.

0 =Mn(�̂)
0Sn(�̂)Gn(�0) +Mn(�̂)

0Sn(�̂)Mn(�̂)
�
�̂ � �0

�

+ 0:5Mn(�̂)
0Sn(�̂)Hn(�̂)

h�
�̂ � �0

�


�
�̂ � �0

�i
+O

�
n�

3

2

� (A-31)

De�ne


n(�̂) �Mn(�̂)
0Sn(�̂)Mn(�̂) 
�1n (�̂)Mn(�̂)

0Sn(�̂) (A-32)

and rearrange equation (A-31) to obtain

�̂ � �0 = ��n(�̂)Gn(�0)� 0:5�n(�̂)Hn(�̂)
h�
�̂ � �0

�


�
�̂ � �0

�i
+O

�
n�

3

2

�
: (A-33)
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Next, approximate 
�1n (�̂) with a two-term Taylor Expansion


�1n (�̂) = 
�1 � 
�1
�

n(�̂)� 


�

�1 +O

�
n�1

�

= 
�1 � 
�1
�
Mn(�̂)�M

�0�1
M +M 0

�
Sn(�̂)� ��1

�
M
�1 (A-34)

� 
�1
�
M 0�1

�
Mn(�̂)�M

��

�1 +O

�
n�1

�

= 
�1 � 
�1
 
Mn(�̂)� �

1

n

X

i

mi(�̂)gi(�̂)
0�1Gn(�̂)�M

!0�1
M
�1

+�
�
Vn(�̂)� �

�
��1M
�1

��

0
@�2 1

n

X

i

gi(�̂)
0�1Gn(�̂)vi(�̂) + (1� �)

kX

j=1

�̂jGn(�0)
0( ~���)0ej

1
A��1M
�1

��
�
Mn(�̂)�M

�

�1 +O

�
n�1

�
:

The �nal equation in the series is the result of substituting in the approximations provided by equations (A-27) to

(A-29). The �rst term is O(1) and the next three terms are O
�
n�1=2

�
.

In equation (A-33), the �rst term includes Gn(�0) which is O
�
n�1=2

�
and the second term includes (�̂ � �0)


(�̂ � �0) which is O
�
n�1

�
. Hence, because we are investigating the O

�
n�1

�
properties of the estimator �̂, for the

�rst term, we only require the O
�
n�1=2

�
components of 
�1n (�̂), Mn(�̂), and Sn(�̂). For the second term, only

their limiting values as n ! 1 evaluated at the true parameter value �0 are needed. The rest of the terms are
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O
�
n�3=2

�
. After substituting in the relevant terms

�̂ � �0 =��Gn(�0) (A-35)

+
�1

 
Mn(�̂)� �

1

n

X

i

mi(�̂)gi(�̂)
0�1Gn(�̂)�M

!0�1
M
�1M 0�1Gn(�0)

��
 
Vn(�̂)� �2

1

n

X

i

gi(�̂)
0�1Gn(�̂)vi(�̂)� �

!
��1M
�1M 0�1Gn(�0)

+ �

0
@(1� �)

kX

j=1

�̂jGn(�0)
0( ~���)0ej

1
A��1M
�1M 0�1Gn(�0)

+ �
�
Mn(�̂)�M

�
�Gn(�0)

� 
�1
 
Mn(�̂)� �

1

n

X

i

mi(�̂)gi(�̂)
0�1Gn(�̂)�M

!
��1Gn(�0)

+ �

 
Vn(�̂)� �2

1

n

X

i

gi(�̂)
0�1Gn(�̂)vi(�̂)� �

!
��1Gn(�0)

��

0
@(1� �)

kX

j=1

�̂jGn(�0)
0( ~���)0ej

1
A��1Gn(�0)

� 0:5�Hn(�̂)
h�
�̂ � �0

�


�
�̂ � �0

�i

+O
�
n�

3

2

�
:

The �rst line of (A-35) is O
�
n�1=2

�
and lines two through nine are O

�
n�1

�
. Lines two through �ve are from the

O
�
n�1=2

�
component of the expansion of 
�1n (�̂). The second line is due to Mn(�̂)

0. Lines three and four are

attributed to Sn(�̂). The �fth line is from Mn(�̂). In addition, O
�
n�1=2

�
terms are embedded in theMn(�̂)

0 and

Sn(�̂), the other two components of �n(�̂). Line six is due to Mn(�̂)
0 and lines seven and eight are from Sn(�̂).

Finally, the ninth line is the third term in the expansion of Gn(�̂). In order to calculate the O
�
n�1

�
bias, take

expectations of (A-35) and rearrange to obtain

E

h
�̂ � �0

i
= �E

h
Mn(�̂)�Gn(�0)

i
� 0:5�HE

h�
�̂ � �0

�


�
�̂ � �0

�i
(A-36)

� 
�1E

2
4
 
Mn(�̂)� �

1

n

X

i

mi(�̂)gi(�̂)
0�1Gn(�̂)

!0� 1

2

P
?

M
��

1

2Gn(�0)

3
5

+�E

" 
Vn(�̂)� �2

1

n

X

i

gi(�̂)
0�1Gn(�̂)vi(�̂)

!
��

1

2P
?

M
��

1

2Gn(�0)

#

��E

2
4
0
@(1� �)

kX

j=1

�̂jGn(�0)
0( ~���)0ej

1
A�� 1

2P
?

M
��

1

2Gn(�0)

3
5

+O
�
n�

3

2

�
;
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where P?
M
� Im � ��

1

2M(M 0��1M)�1��
1

2M is a projection matrix orthogonal to the space spanned by the

asymptotic normalized Jacobian. Before proceeding, note

gi(�̂) = gi(�0) +O
�
n�

1

2

�
(A-37)

mi(�̂) = mi(�0) +O
�
n�

1

2

�
(A-38)

Gn(�̂) = Gn(�0) +M
0

�
�̂ � �0

�
+
�
Mn(�̂)�M

�0 �
�̂ � �0

�
+O

�
n�1

�
(A-39)

nGn(�0)Gn(�0)
0��1 = Im +

�
nGn(�0)Gn(�0)

0��1 � Im
�

| {z }
O(n�1=2)

: (A-40)

Using the result of the expansion of Gn(�̂): �̂ � �0 = �(M 0�1M)�1M 0�1Gn(�0) + O
�
n�1

�
, the assumption that

the observations are independent, and equation (A-38), the �rst line of (A-36) may be rewritten

BI = n
�1�(E [mi(�0)�gi(�0)]� a) ; (A-41)

where a is an m� 1 matrix such that

aj � 0:5tr
�

�1E

�
@2gij(�0)

@�@�0

��
(j = 1; : : : ;m); (A-42)

and gij(�0) represents the jth element of gi(�).

The next step is to rewrite the second line of (A-36). The three approximations given by equations (A-37)

through (A-39) are substituted into the second line of (A-36). Note that the second term of (A-38) is orthogonal

to P?
M
and the third term is O

�
n�1

�
.

�
�1E

2
4
 
Mn(�̂)� �

1

n

X

i

mi(�̂)gi(�̂)
0�1Gn(�̂)

!0� 1

2

P
?

M
��

1

2Gn(�0)

3
5

= �
�1E
"
1

n

X

i

mi(�̂)
0� 1

2P
?

M
��

1

2Gn(�0)

#

+
�1E

"
�
1

n

X

i

mi(�̂)
0gi(�0)

0�1Gn(�0)
0� 1

2P
?

M
��

1

2Gn(�0)

#
+O

�
n�

3

2

�
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= �
�1E
"
1

n

X

i

mi(�̂)
0� 1

2P
?

M
��

1

2Gn(�0)

#

+
�1E

"
�
1

n

X

i

mi(�̂)
0� 1

2P
?

M
��

1

2Gn(�0)Gn(�0)
0�1gi(�0)

#
+O

�
n�

3

2

�

= �
�1E
"
1

n

X

i

mi(�̂)
0� 1

2P
?

M
��

1

2Gn(�0)

#

+
�1E

"
�
1

n2

X

i

mi(�̂)
0� 1

2P
?

M
��

1

2 (nGn(�0)Gn(�0)
0) ��1gi(�0)

#
+O

�
n�

3

2

�

= �
�1E
"
1

n2

X

i

mi(�̂)
0� 1

2P
?

M

�
Im � ���

1

2 (nGn(�0)Gn(�0)
0) ��

1

2

�
��

1

2 gi(�0)

#
+O

�
n�

3

2

�

= �
�1E
"
1

n2

X

i

mi(�̂)
0� 1

2P
?

M
(Im � �Im) ��

1

2 gi(�0)

#
+O

�
n�

3

2

�

= �n�1 (1� �) 
�1E
h
mi(�̂)

0� 1

2P
?

M
��

1

2 gi(�0)
i
+O

�
n�

3

2

�

= �n�1 (1� �) 
�1E
h
mi(�0)

0� 1

2P
?

M
��

1

2 gi(�0)
i

| {z }
(1��)BM

+O
�
n�

3

2

�

The exact same procedure for the third line of equation (A-36) provides the bias term associated with the

estimation of the second moment matrix

B� = n
�1
�
1� �2

�
�E

h
vi(�0)�

� 1

2P
?

M
��

1

2 gi(�0)
i
. (A-43)

Finally, rewrite the fourth line of equation (A-36)

BW = ��E

2
4
0
@(1� �)

kX

j=1

�̂jGn(�0)
0( ~���)0ej

1
A�� 1

2P
?

M
��

1

2Gn(�0)

3
5

= ��E

2
4(1� �)

kX

j=1

�̂j�
� 1

2P
?

M
��

1

2Gn(�0)Gn(�0)
0( ~���)0ej

3
5

= �n�1�(1� �)E

2
4

kX

j=1

�̂j�
� 1

2P
?

M
��

1

2 (nGn(�0)Gn(�0)
0) ( ~���)0ej

3
5 (A-44)

The second line moves the scalar value Gn(�0)
0( ~� � �)0ej . The third line multiplies and divides by n and takes

(1� �) outside the expectation. Then, by noting P?
M
is symmetric and by applying the note from the proof of

Theorem 4.1 in Newey and Smith (2004) for ��
1

2P
?

M
��

1

2 and using the approximation given in equation (A-40)
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for nGn(�0)Gn(�0)
0 the result is obtained.

= �n�1�(1� �)E

2
4

kX

j=1

�̂j�
� 1

2P
?

M
��

1

2 (nGn(�0)Gn(�0)
0) ( ~���)0ej

3
5

= �n�1 (1� �)�E

2
4

kX

j=1

�̂j( ~���)0ej

3
5+O

�
n�

3

2

�
(A-45)

The �nal results

Bias
�
�̂PMM

�
= BI +BM +B� +BW (A-46)

BI = n
�1�(E [mi(�0)�gi(�0)]� a)

BM = �n�1 (1� �)
�1E
h
mi(�0)

0� 1

2P
?

M
��

1

2 gi(�0)
i

B� = n
�1
�
1� �2

�
�E

h
vi(�0)�

� 1

2P
?

M
��

1

2 gi(�0)
i

BW = �n�1 (1� �)�E

2
4

kX

j=1

�̂j

3
5 ( ~���)0ej :

The Three Linearizations: n!i(�̂), Sn(�̂), andMn(�̂)

The �rst step in the two linearizations is to linearize the probability weights !i(�̂). Recall the de�nition of the

optimal PMM weights conditional on � is

!i(�) =
1

n

1

1 + � gi(�)
0Sn(�)Gn(�)| {z }
O(n�1=2)

� �
(1+�)2 Gn(�)

0Sn(�)W�1
n Sn(�)Gn(�)| {z }

O(n�1)

: (A-47)

A geometric expansion provides the linearized weights

!i(�) =
1

n
� 1

n
�gi(�)

0Sn(�)Gn(�) +O
�
n�2

�
: (A-48)

Equation (A-48) can be further re�ned because Sn(�) is an estimate of the second moment matrix. Recall the

de�nition of Sn(�)

Sn(�̂) =
�
�Vn(�̂) + (1� �)W�1

n

��1
: (A-49)

Because W�1
n is a consistent estimate of �, Sn(�̂ may be approximated by

Sn(�̂) = ��1 � ��1
�
�Vn(�̂) + (1� �)W�1

n � �
�

| {z }
O(n�1=2)

��1: (A-50)
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Before continuing with the approximation Sn(�̂), we substitute equation (A-50) into (4) to obtain

!i(�̂) =
1

n
� 1

n
�gi(�̂)

0�1Gn(�̂) +O
�
n�2

�
: (A-51)

Next, use equation (A-51) to approximate Vn(�̂)

Vn(�̂) =
X

i

!i(�̂)vi(�̂)

= Vn(�̂)� �
1

n

X

i

vi(�̂)gi(�̂)
0�1Gn(�̂) +O

�
n�1

�
(A-52)

and rewrite W�1
n = Vn(~�), where ~� is a �rst-round estimator of �, as

W�1
n = Vn(�̂) +

�
Vn(~�)� Vn(�̂)

�

Vn(~�) = Vn(�0) +

kX

j=1

@Vn(�0)

@�j

�
~�j � �0j

�
+O

�
n�1

�

= Vn(�0)�
kX

j=1

@Vn(�0)

@�j
ej

�
M 0 ~SM

��1
M 0 ~SGn(�0) +O

�
n�1

�
(A-53)

Vn(�̂) = Vn(�0) +
kX

j=1

@Vn(�0)

@�j

�
�̂j � �0j

�
+O

�
n�1

�

= Vn(�0)�
kX

j=1

@Vn(�0)

@�j
ej

�
M 0 ~SM

��1
M 0 ~SGn(�0) +O

�
n�1

�

W�1
n = Vn(�̂)�

kX

j=1

@Vn(�0)

@�j
e0j

�
~�� �̂

�
Gn(�0) +O

�
n�1

�

= Vn(�̂)�
kX

j=1

@Vn(�0)

@�j
Gn(�0)

0

�
~���

�0
ej +O

�
n�1

�
: (A-54)

The last line is because �̂ = � + O
�
n�1=2

�
. This is not the case for ~�, because ~S is a function of the the �rst

round weighting matrix ~W , which is not necessarily a consistent estimate of ��1. Substituting equations (A-52)

and (A-54) into (A-50) provides the result

Sn(�̂) =��1 � ��1
�
Vn(�̂)� �

�
��1

+��1

0
@(�)2 1

n

X

i

gi(�̂)
0�1Gn(�̂)vi(�̂) + (1� �)

kX

j=1

�̂jGn(�0)
0( ~���)0ej

1
A��1

+O
�
n�1

�
:

(A-55)
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Proof of Theorem 8. PMM�s objective function has two components, the quadratic penalty and the KLIC

penalty.

By Theorem 5, the quadratic component of the objective function is rewritten

n(1� �)Gn(�̂)0Sn(�̂)W�1
n Sn(�̂)Gn(�̂): (A-56)

Taylor approximating logarithms by ln(1 + x) = x � 1
2x

2 + O(x3) and substituting in the optimal PMM weights

conditioned on � given by equation (21) gives

ln(n!i(�̂)) =�gi(�)
0Sn(�̂)Gn(�)� �(1� �)Gn(�̂)Sn(�̂)W�1

n Sn(�̂)Gn(�)

� 1
2
�2Gn(�̂)Sn(�̂)gi(�̂)gi(�̂)0Sn(�̂)Gn(�̂) +O

�
n�

3

2

�
:

(A-57)

Summing equation (A-57) over i provides

X

i

ln(n!i(�̂)) =�nGn(�)
0Sn(�̂)Gn(�)� n�(1� �)Gn(�̂)Sn(�̂)W�1

n Sn(�̂)Gn(�)

� n
2
�2Gn(�̂)Sn(�̂)Vn(�̂)Sn(�̂)Gn(�̂) +O(n�

1

2 ):

(A-58)

Dividing equation (A-56) by 1 � � and equation (A-58) by � �
2 , adding the two components, and simplifying the

expression

Q(�̂)
PM M

= nGn(�̂)
0Sn(�̂)Gn(�̂) +O

�
n�

1

2

�
: (A-59)

The quadratic statistic is singular

nGn(�̂)
0Sn(�̂)Gn(�̂) = nGn(�̂)0Sn(�̂)

1

2 ImSn(�̂)
1

2Gn(�̂)

= nGn(�̂)
0Sn(�̂)

1

2

�
P �M(�̂) +P

?
�M(�̂)

�
Sn(�̂)

1

2Gn(�̂)

= nGn(�̂)
0Sn(�̂)

1

2P
?
�M(�̂)

Sn(�̂)
1

2Gn(�̂)

= rank(m� k) (A-60)

where P �M(�̂) � Sn(�̂)
1

2Mn(�̂)
�
Mn(�̂)

0Sn(�̂)Mn(�̂)
��1

Mn(�̂)
0Sn(�̂)

1

2 is the projection matrix that sets k dimen-

sions of Gn(�̂) to zero and Sn(�̂)
1

2 is the Cholesky decomposition of Sn(�̂). If Wn
p�! ��1 then Sn(�̂)

p�! ��1.

It is asymptotically equivalent to use the properly scaled components of PMM�s objective function as test

statistics: n(1� �)�2Gn(�̂)0W�1
n Gn(�̂) d�! �2m�k and �2��2

P
i ln(n!̂i)

d�! �2m�k.
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Appendix B: Monte Carlo Simulations

The PMM estimation problem can be rede�ned to achieve a mapping from Rn to Rm, reducing the computational

complexity to that of EL. To do so, rewrite equation (6) replacing Gn(�) with the m-dimensional vector �

!i(�; �) =
1

N

 
1

1 + �
1�� (gi(�)� �)0Wn�

!
: (A-61)

Find the � such that � = Gn(�). First, de�ne

f(�; �) = ��
X

i

!i(�; �)gi(�): (A-62)

Then � may be obtained via the Newton-Raphson iterative algorithm

�j+1 = �j �
"
Im + n

�

1� �
X

i

!2i (�j ; �)gi(�) (gi(�)� 2�j)0Wn

#�1 "
�j �

X

i

!i(�j ; �)gi(�)

#
: (A-63)

Theorem 1 suggests an appropriate starting value for the iteration: �0 = (1��)Gn(�). In practice, we have noticed

that setting �0 = 0:25(1� �)Gn(�) leads to fewer instances of divergence. The iterative procedure described above

constitutes an inner loop which must be solved for any given � yielding �(�). The outer loop selects � to minimize

the objective function de�ned by equation (1)

�̂ = argmin
�2�

1

1� � n�(�)
0W�(�) +

2

�

X

i

ln

�
1 +

�

1� � (gi(�)� �(�))
0W�(�)

�
: (A-64)

The simulations discussed in Section 3.1 are based on the equations outlined above, the Hall and Horowitz

(1996) model detailed in the main text, and sample sizes of n = 25, 50, and 100. For the n = 25 trials, we consider

a 2 moment and 5 moment model. For n = 50, we use 2, 5, and 10 moments. For n = 100, we use 2, 5, 10, 15,

and 20 moments. Each batch of simulations includes 2000 trials. The results are presented in both tabular and

graphical format. We calculate the realized estimator mean, volatility, and Root Mean Squared Error (RMSE) for

PMM and EL. The size of the rejection region for the relevant test of the overidentifying restrictions with � chosen

to be 0.10, 0.05, and 0.01 percent, and the probability of rejecting the population parameter value for � equal to

0.10, 0.05, and 0.01 percent are also calculated. Table 1 reports the results for the 25 and 50 sample estimations

and Table 2 reports the results for the 100 sample estimations. For each Monte Carlo experiment, we plot the

densities of the realized estimates obtained under EL and PMM estimation. Figures 1 and 2 provide the plots for

the 25 observation simulations. Figures 3 through 5 plot the densities for the 50 observation experiments. The

densities for estimates obtained under sample size of 100 are plotted in Figures 6 through 10.
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Table 1: Monte Carlo Simulations. This table presents the results of the Monte Carlo study for the Hall
and Horowitz (1996) model as modified by Schennach (2006) with sample sizes of 25 and 50 observations
and 2000 trials. The population parameter value θ0 is 3. E(θ̂) is the sample average of the estimates, σ(θ̂)

is the sample volatility of the estimates, and rmse(θ̂) is the Root Mean Squared Error of the estimates. χ2
α

and tα respectively represent the size of the rejection region for the test of overidentifying restrictions and
test that the estimate equals the population parameter value at the α level.

Model E(θ̂) σ(θ̂) rmse(θ̂) χ2

0.10 χ2

0.05 χ2

0.01 t0.10 t0.05 t0.01

25 Observations and 2 Moment Conditions

EL 3.092 0.778 0.783 0.199 0.121 0.036 0.444 0.396 0.317

(0.017) (0.020) (0.020) (0.009) (0.007) (0.004) (0.011) (0.011) (0.010)

PMM 3.110 0.791 0.798 0.223 0.154 0.054 0.443 0.392 0.313

(0.018) (0.021) (0.021) (0.009) (0.008) (0.005) (0.011) (0.011) (0.010)

25 Observations and 5 Moment Conditions

EL 3.484 0.939 1.056 0.611 0.531 0.390 0.477 0.438 0.378

(0.021) (0.026) (0.028) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

PMM 2.922 0.850 0.854 0.479 0.352 0.153 0.410 0.360 0.280

(0.019) (0.020) (0.021) (0.011) (0.011) (0.008) (0.011) (0.011) (0.010)

50 Observations and 2 Moment Conditions

EL 3.098 0.417 0.428 0.202 0.136 0.064 0.339 0.276 0.205

(0.009) (0.007) (0.008) (0.009) (0.008) (0.005) (0.011) (0.010) (0.009)

PMM 3.049 0.493 0.495 0.186 0.119 0.037 0.364 0.307 0.232

(0.011) (0.012) (0.012) (0.009) (0.007) (0.004) (0.011) (0.010) (0.009)

50 Observations and 5 Moment Conditions

EL 3.082 0.461 0.468 0.469 0.359 0.177 0.335 0.280 0.201

(0.010) (0.010) (0.011) (0.011) (0.011) (0.009) (0.011) (0.010) (0.009)

PMM 3.154 0.467 0.491 0.472 0.373 0.195 0.352 0.294 0.226

(0.010) (0.011) (0.011) (0.011) (0.011) (0.009) (0.011) (0.010) (0.009)

50 Observations and 10 Moment Conditions

EL 3.504 0.724 0.881 0.793 0.733 0.576 0.468 0.434 0.373

(0.016) (0.018) (0.021) (0.009) (0.010) (0.011) (0.011) (0.011) (0.011)

PMM 2.882 0.595 0.607 0.727 0.628 0.400 0.310 0.255 0.186

(0.013) (0.016) (0.016) (0.010) (0.011) (0.011) (0.010) (0.010) (0.009)
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Table 2: Monte Carlo Simulations. This table presents the results of the Monte Carlo study for the
Hall and Horowitz (1996) model as modified by Schennach (2006) with sample size of 100 observations and
2000 trials. The population parameter value θ0 is 3. E(θ̂) is the sample average of the estimates, σ(θ̂) is the
sample volatility of the estimates, and rmse(θ̂) is the Root Mean Squared Error of the estimates. χ2

α and tα

respectively represent the size of the rejection region for the test of overidentifying restrictions and test that
the estimate equals the population parameter value at the α level.

Model E(θ̂) σ(θ̂) rmse(θ̂) χ2

0.10 χ2

0.05 χ2

0.01 t0.10 t0.05 t0.01

100 Observations and 2 Moment Conditions

EL 3.058 0.299 0.304 0.186 0.119 0.039 0.271 0.222 0.153

(0.007) (0.005) (0.006) (0.009) (0.007) (0.004) (0.010) (0.009) (0.008)

PMM 3.050 0.319 0.323 0.182 0.114 0.038 0.284 0.232 0.161

(0.007) (0.007) (0.007) (0.009) (0.007) (0.004) (0.010) (0.009) (0.008)

100 Observations and 5 Moment Conditions

EL 3.148 0.322 0.354 0.404 0.311 0.169 0.297 0.246 0.165

(0.007) (0.007) (0.008) (0.011) (0.010) (0.008) (0.010) (0.010) (0.008)

PMM 3.093 0.318 0.331 0.433 0.325 0.170 0.265 0.210 0.139

(0.007) (0.007) (0.007) (0.011) (0.010) (0.008) (0.010) (0.009) (0.008)

100 Observations and 10 Moment Conditions

EL 3.054 0.320 0.324 0.700 0.605 0.413 0.214 0.162 0.107

(0.007) (0.010) (0.010) (0.010) (0.011) (0.011) (0.009) (0.008) (0.007)

PMM 3.144 0.327 0.357 0.679 0.592 0.402 0.267 0.210 0.144

(0.007) (0.006) (0.007) (0.010) (0.011) (0.011) (0.010) (0.009) (0.008)

100 Observations and 15 Moment Conditions

EL 3.376 0.412 0.558 0.846 0.783 0.642 0.440 0.381 0.296

(0.009) (0.009) (0.010) (0.008) (0.009) (0.011) (0.011) (0.011) (0.010)

PMM 3.001 0.340 0.340 0.848 0.776 0.581 0.189 0.143 0.084

(0.008) (0.008) (0.008) (0.008) (0.009) (0.011) (0.009) (0.008) (0.006)

100 Observations and 20 Moment Conditions

EL 3.442 0.454 0.634 0.935 0.895 0.805 0.469 0.403 0.313

(0.010) (0.011) (0.012) (0.006) (0.007) (0.009) (0.011) (0.011) (0.010)

PMM 2.885 0.370 0.387 0.919 0.871 0.712 0.177 0.125 0.076

(0.008) (0.008) (0.009) (0.006) (0.007) (0.010) (0.009) (0.007) (0.006)

 



Figure 1: Kernel Density Plot for 25 Observations and 2 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 25 observations, 2 moment conditions,
and 2000 trials. The population parameter value is θ0 = 3. PMM is represented by the bold line.
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Figure 2: Kernel Density Plot for 25 Observations and 5 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 25 observations, 5 moment conditions,
and 2000 trials. The population parameter value is θ0 = 3. PMM is represented by the bold line.
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Figure 3: Kernel Density Plot for 50 Observations and 2 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 25 observations, 2 moment conditions,
and 2000 trials. The population parameter value is θ0 = 3. PMM is represented by the bold line.
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Figure 4: Kernel Density Plot for 50 Observations and 5 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 50 observations, 5 moment conditions,
and 2000 trials. The population parameter value is θ0 = 3. PMM is represented by the bold line.
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Figure 5: Kernel Density Plot for 50 Observations and 10 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 50 observations, 10 moment conditions,
and 2000 trials. The population parameter value is θ0 = 3. PMM is represented by the bold line.
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Figure 6: Kernel Density Plot for 100 Observations and 2 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 100 observations, 2 moment conditions,
and 2000 trials. The population parameter value is θ0 = 3. PMM is represented by the bold line.
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Figure 7: Kernel Density Plot for 100 Observations and 5 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 100 observations, 5 moment conditions,
and 2000 trials. The population parameter value is θ0 = 3. PMM is represented by the bold line.
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Figure 8: Kernel Density Plot for 100 Observations and 10 Moment Conditions. This figure
plots the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and
Horowitz (1996) model as modified by Schennach (2006) with sample size of 100 observations, 10 moment
conditions, and 2000 trials. The population parameter value is θ0 = 3. PMM is represented by the bold line.

1.5 2  2.5 3  3.5 4  4.5 5  

0.2

0.4

0.6

0.8

1

1.2

1.4

Kernel Density of Parameter Estimates
100 Observations

10 Moment Conditions

Parameter Estimate

P
ro

ba
bi

lit
y

PMM
EL

 



Figure 9: Kernel Density Plot for 100 Observations and 15 Moment Conditions. This figure
plots the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and
Horowitz (1996) model as modified by Schennach (2006) with sample size of 100 observations, 15 moment
conditions, and 2000 trials. The population parameter value is θ0 = 3. PMM is represented by the bold line.
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Figure 10: Kernel Density Plot for 100 Observations and 20 Moment Conditions. This figure
plots the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and
Horowitz (1996) model as modified by Schennach (2006) with sample size of 100 observations, 20 moment
conditions, and 2000 trials. The population parameter value is θ0 = 3. PMM is represented by the bold line.
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