Web Appendix

Appendix A contains the proofs and derivations of the main theoretical results. Appendix B provides the full

details for the Monte Carlo simulations.

Appendix A: Proofs

Proof that weights may be implicitly defined as a function of the parameter vector. Let F'(w) be

the n dimensional vector of equations (6) that defines the n weights

1 1
AW =wimgy (1 T2 (9:6) - gnw)ywngn(e)) ' (A

Then,
2
OFi(w) ;16 1
dw; nl—3¢ (1 + 12 (g:(0) — gn(e))/ann(9)>
< (9i(0) Wagi(0) — 29:(0)' WnGn (0)) (A-2)
OFi(w) 1 0 | ’
Owj — n1=06 \ 1+ 125(9:(0) — Gu(6)) WnGn(6)
x (9i(0) Wag;(0) — 29;(0) WG (0)) (A-3)

As n — oo, the matrix dF(w)/dw —= I,,, which is invertible. By the inverse function theorem, w = w(f) is a

continuous differentiable function of 6.

Proof of Theorem 1. First, by the law of large numbers and central limit theorem V,,(6y) and M,,(0y) are
consistent estimates of ¥ and M respectively such that V,(6p) = £ 4+ O(n~2) and M, (0y) = M + O(n"z).
By equation (21)

n (wi(ﬂo) - nil) = —ﬁ (A-4)

where

By Taylor expansion around y =0

) Ly
—— -y — =Y. A-5
T+y 14 (A-5)

Suppose V,,(00) = X + O(n~2). Then, S,(fy) = £ + O(n~2). Because G,(0y) = O(n~2)

09i(00)Sn(00)Gr(00) = 6g9:(6o) (271 +0 (nié)) @) (rf%) =0 (nfé) (A-6)



Because the second term of y is quadratic in G, (6p), it can similarly be shown that
5(1 = 0)Gn(00)'Sn(00)W, 1S, (00)Gr(00) = O (nfl) . (A-T7)

Combining the two components of y, we have n (wi(ﬂo) — n’l) =0 (n*%) if our initial assumption that V,,(6y) =

¥ 4 O(n~2) is true. By definition,

Va(00) = > wi(00)gi(00)9:(00)’ — G (00)Gn (00)'
= Vo (6o) + Z (wi(B0) —n ™M) vi(00) — (1 — 6)2Gn(00) Sn(00)W,, 28, (00)Gr (o)
= (2 +0 (rf%)) +0 (n*%) +0(nY)

=40 (nié) (A-8)

Hence, the assumed order of V,,(0y) is verified to be correct. Thus, part (iii) of the Theorem is proved directly, and

the proof for part (i) is now complete. Further, we now have S, (6p) = X+ O (n*%). Part (ii) is proved as follows

\/ﬁgn(eo) = (1 - 5)Wn_18n(90)\/ﬁGn(00)
—(1-96) (z +0 (n*)) (2*1 +0 (n*)) VG (60)

— (1 - 6T aGn(6o) + O (n—%) . (A-9)

Simplifying the last equation in the series completes the proof. Finally, part (iv) of the Theorem is proved using

part (i)

My (6o) = Zwi(ﬁo)mi(%)
= M, (6o) + % Zn (wi(Bo) —n") mi(6o)

~M+0(n}) +%Zo(n*%)mi(9o). (A-10)

Simplifying the final equation in the series finishes the proof.



Proof of Theorem 2. The form of the proof follows Qin and Lawless (1994). Denote 6 = 6y + un~%, for

6 € {0]]|0 — 0o|| = n~¢}, where ||u|| = 1. The objective function may be rewritten

QI?I(MQ) =n(l —6)Gn (9)l5n (G)Wn_lsn(e)Gn(e)

2 (A-11)
+3 Zln (1+69:(0)' Sn(0)Gn(0) — (1 — )G (6)' Sn(0)W, 1S, (0)Gn(6))

Taylor approximating the log term by In(1 + z) = z — 322 + o(2?), the objective function is approximated by

Qn(0) =n(1 = 6)G(6)' S, (O)W,, 1S, (8)Gn(8) + 2nG 1 () S (8) G (9)

— (1 — 6)G(0)' S0 (O)W LS ()G (8) — G (8) S, (0) Vi (0)S, (6) G () (A-12)

+ 0(nG,(0)' S, (O)W, 1S, (0)G..(0))

Using the definition of S,,(6), the following expression emerges

Qn(0) = NG () Sp(0)Gn(0) + 0(nGrn () Sn(O)W. 250 (0)Gn (6)). (A-13)

PMM

By Taylor expansion around 6, we have (uniformly for u),

Qu(0) = [G(00) + M, (00)un™?] $,(0) [Gu(00) + My (B0)un =]
, (A-14)
+o <n [Gn(eo) + Mn(eo)un-w} S (O)W1S,(0) [Gn(eo) + Mn(eo)un—@}) ,

By the law of iterated logarithms and ¢ < %,

Qu(6) =n [O(n—% (loglogn)*#) + E[Mn(GO)}un_“”)}/ x [6E[vi(00)] + (1 — &)W~

X [O(n_%(log logn)?) + E[MW(HO)]un_“")} + 0 (n'7?%) (A-15)

2 (C - 6)77“172907

where ¢ — ¢ > 0 and c is the smallest eigenvalue of

E (mi(60))' [6E[vi(60)] + (1 — §)W; Y] " E (my(60)) - (A-16)



Substituting 6y into equation (A-13)

Qn(00) = nGn(00)'Sn(00)Gn(bo) + o(nG(60) Sn(B0) Wy ' S (60) G (60))

= O(loglogn) + o(1)

= O(loglogn). (A-17)

Because the objective function is continuous around 6 as 6 belongs to the ball ||§ — 0y]| < n~% and on the surface
of the ball the objective function is order O(n'~=2¥) while the order of the objective function at the population

parameter value is O(loglogn), the objective function achieves its minimum value within the interior of the ball.

Proof of Theorem 3. We follow Newey and McFadden (1994)’s proof of asymptotic normality for GMM.
By assumptions (1) and (2), with probability approaching one the first-order conditions M., (8) W, G, (8) = 0 are

satisfied. Expand G,,(0) around 0y to obtain
Ga(B) = Gu(00) + M, (8) (0 — o), (A-18)
where 6 represents a mean value. Substitute in the relationship
Gn(0) = ﬁsn(é)*lwngn(é) (A-19)

and multiply by M,,(6)'S,,(9) to obtain

1 N o A o o N
0= mM”(e)/ann(Q) = Mn(a)lsn(e)Gn(HO) + Mn(ﬁ)lsn(ﬁ)Mn(Q)(Q - 90) (A'QO)
Rearrange to obtain
N ~ o _\ 1 A ~
V(0 = 60) = (Ma(@)Su(0)M(8)) M (8)'Su(0)Gr (80) (A-21)
By assumption (4) and 6 L 6, with probability approaching one
1M3,(0) — M| < [|M(6) — M(O)] + | M(0) — M|
< sup | My (0) — M(0)[| + | M (0) — M| - 0. (A-22)
0cO
Also by assumption (4), 6 -5 6y, and Theorem 1 (iv) with probability approaching one
M (8) = M| < M (6) = M(O)]| + [|M(8) — M| + M — M|
< sup 1M (8) = MO)] + [M(B) = M*|| + | M = M]| = 0. (A-23)
€



Applying assumptions (3), (6), and the Slutsky theorem yields the result.

Proof of Theorem 4. Hansen and Newey and McFadden show that when the asymptotic variance of \/ﬁ(é—Go)
takes the form ((M'SM)~'M'SSSM(M'SM)~'), the minimum variance is obtained when & = £~!. Because
W, - £~ by assumption and Vi (00) 2.5, we verify that Sn(00) -2, 51 the asymptotic variance reduces to

(M'SM)™!

Proof of Theorem 5. Equation (6) may be rewritten
1 4 /
n" = wi iz (9i(0) = Gu(0)) Wi Gn (6). (A-24)

Multiply (A-24) by g¢;(#) and sum over 4 to obtain

( ) gn 1 1-5 <Z Wzgz gz gn( )gn(e)/> Wgn(a)

]

T3 ValO)W.G,(0). (A-25)

Rearrange to obtain

Gu(0) = (1= 0) (6Va(O)Wo + (1 = 6)I) ™" G (0) (A-26)
= (1= 0) (OW,Vn(0) + (1 = 6)Ln) " Gau(0)

— (1= W, (5Vu(0) + (1= )W, 1) Go(6)

= (1 - 5)W;1$n(9)Gn(9)7

where the second line is because W,, and V,,(0) are positive-definite.

Proof of Theorem 6. Equations (12), (19), and (21) provide the result. When ¢ approaches one, PMM’s
weights limit to those of EL and S,(0) — V, 1(6). When § approaches zero, PMM’s weights limit to the fixed
weights of GMM and S, (0) — W,,.

Proof of Theorem 7. The final form of the higher order asymptotic expansion is the result of a number of
linearizations. First, we give the linear approximations of S,,(6) and M.,,(8), the derivations of which are included

at the end of the proof.
S,0) = xl_x! (Vn (@) - 2) $- (A-27)

1 (#2520 (3) 6 (3) 0 (5) + 00 B 00 (T 7) s | 5



and

M, (0) = M + (Mn(é) — 5% > mi(0)g:(0) ' G (0) — M) +0(n7h), (A-28)

where f‘j = 8V,,L(@) /00;. In each equation, the first term is the limiting value of the respective equation as n — oo
evaluated at the true parameter value and is O(1), the final term is O (n™!), and the middle term(s) is the

estimation error and is O (n_l/ 2). The sample average Jacobian matrix is rewritten as
M, (0) = M + (Mn(é) - M) . (A-29)

Again the first term is the limiting value as n — oo of the estimated Jacobian evaluated at the true parameter
value, the second term is the estimation error, which is O (n’l/ 2), and in this case there is no approximation error.

The next step is to expand the sample average moment condition Gn(é) around the true value 6

Gn(B) = G (B0) + M, (9) (é - 90) +0.5H,(9) [(9 - 90) ® (é - 90)} +0 (n*) . (A-30)

Equation (7) provides the first-order condition that M,,(0)'S,(0)G, () = 0. Multiply (A-30) by M.,,(0)'S,(0) to

eliminate the left hand side.

0 =M, (0) S, (8)Gn(00) + M, (8) S, (B) M, (8) (9 - 90>
(A-31)
£ 0.5M,(0)' S, (0)H, (8) [(9 - 90) ® (9 - 90)} +0 (n-*)
Define
Q,(0) = M, (0)'S,,(6) M, (0) Q71 (O)M,, (0)'S,(0) (A-32)
and rearrange equation (A-31) to obtain
0 — 6y = —Yn(0)G (o) — 0.5T,,(8) H, (8) [(9 - 90) ® (9 - 90)} +O (n-*) . (A-33)



Next, approximate € 1(@) with a two-term Taylor Expansion

0 le) =0t -t (Qn(é) _ Q) Q40 ()
= -7 (@) - M) a0 (5,0)-57) e (h30

_o! (M’—1 (Mn(é) - M)) Q7 +0(n)

/—1
= l-q! (Mn(é) - 5% > mi(0)gi(0) G (6) — M) MQ!
4T (vn(é) - z) IR VioRe
k
-7 52% > gi(0) 7 Gr(B)vi(0) + Z "(T=T)e; | 2tMQ™?

~T (M) - M) QT+ O (7).

The final equation in the series is the result of substituting in the approximations provided by equations (A-27) to
(A-29). The first term is O(1) and the next three terms are O (n=1/2).

In equation (A-33), the first term includes G,,(6) which is O (n~'/2) and the second term includes (0 —00) @
(9 — 6y) which is O (n’l). Hence, because we are investigating the O (n’l) properties of the estimator é, for the
first term, we only require the O (n*1/2) components of Q;l(é), Mn(é), and Sn(@). For the second term, only

their limiting values as n — oo evaluated at the true parameter value 6y are needed. The rest of the terms are



O (n‘3/2). After substituting in the relevant terms

0 — 6o =—"TG,(0) (A-35)
ot (Mn(@)—éiz:mi(é) L(0) 1 G(D) — M) MO MG, (0,)
—T(Va(0) - 07=) 1(9)’1Gn(é)vi(@))—2> MO M'71G . (6o)

T (Mn(é) - M) G, (60)

- (Mn(é) B 61 Zmi(é)gi(é)/ilGn(é) - M) 271G71(00)

The first line of (A-35) is O (n_1/2) and lines two through nine are O (n_l). Lines two through five are from the
@] (n‘l/Q) component of the expansion of Q;l(é). The second line is due to ./\/ln(@)’. Lines three and four are
attributed to S, (0). The fifth line is from M, (0). In addition, © (n‘l/z) terms are embedded in the M,,(#)" and
S, (6), the other two components of T, (0). Line six is due to M, () and lines seven and eight are from S, (6).
Finally, the ninth line is the third term in the expansion of Gn(@) In order to calculate the O (n_l) bias, take

expectations of (A-35) and rearrange to obtain

E [é—eo} = TE[ A(O)TG,, (90)} — 0.5THE [(9 90) (9 90)} (A-36)

( S Zmz e (é)) PL 373G, (0)

—Q7'E

+TE

- 52 1 (é)'-lGn(é)vi(é)> E_éPDE_éGn(QO)]

[( i "(T=1)e ) PPLY 3G, (00)

§
TL27




where PJ-H =1, — E_%M(M’Z_IM)_lE_%M is a projection matrix orthogonal to the space spanned by the

asymptotic normalized Jacobian. Before proceeding, note

6:(0) = 9:(00) + 0 (n"?) (A-37)

mi(0) = mi(0o) + O (n-%) (A-38)

GalB) = Gullo) + M’ (B~ 69) + (M (0) - M)/ (0~ 60) +O () (A-39)

NG (00)Gn(00) ™1 = Iy, + (nGoy (00)Gon(00)' S~ — 1) . (A-40)
o(n112)

Using the result of the expansion of G,,(0): § — 0y = —(M'~'M)"*M'~'G,,(6) + O (n~'), the assumption that

the observations are independent, and equation (A-38), the first line of (A-36) may be rewritten

By =n"'Y (E[mi(00)Yg;(00)] — a), (A-41)
where a is an m x 1 matrix such that
_ 52!% '(90) .
a; = 0.5tr (Q 'E {W]) (j=1,...,m), (A-42)

and g;;(0o) represents the jth element of g;(6).
The next step is to rewrite the second line of (A-36). The three approximations given by equations (A-37)
through (A-39) are substituted into the second line of (A-36). Note that the second term of (A-38) is orthogonal

to Plﬁ and the third term is O (n‘l).

+ Q7 'E

%



1 _— ,
—Q7'E | =) mi(0) 2P G (0)
1 A, _ _ _3
OB [ > ma(B) P Gu(00)Gu(B0) i (60) —|—(9(n )

s L > mi(8) T P NTE (nG(00)Ga(00)) S gi(00)

+O(n*%)

- QB [732 > mi@) Pz (L — 637 (G (00)Gu(600)) B ) 273 gu(60) | +0 (n7F)

+0(n?)

= =L (1= 0) Q7B [mi(B) TFPL S Hg,(00)] + 0 (nF)

[SI[¥)

_ 1 A1 1
- anmee)’ PR (1, — 81, 5L g60)

- o l(1-8)QE [mi(ﬁo)’_%PﬁE_%gi(Go)} 4O (n—)

(175)31\/[

The exact same procedure for the third line of equation (A-36) provides the bias term associated with the

estimation of the second moment matrix
Bs=n"'(1-0°)YE [vi(ao)zfépﬁzfégi(ao)} . (A-43)

Finally, rewrite the fourth line of equation (A-36)

[ k
By = —TE ((1 —8) > T;Gn(0) (T - T)’ej) STEPLNTEG,(6)

k
= 'T(1-0E [Z D572 PLD"% (nGn(00)Gn(00)') (T — T)’ej] (A-44)

The second line moves the scalar value G, (6)’ (T — Y)’e;. The third line multiplies and divides by n and takes
(1 —9) outside the expectation. Then, by noting PJ-M is symmetric and by applying the note from the proof of

Theorem 4.1 in Newey and Smith (2004) for E’%P%E*% and using the approximation given in equation (A-40)

10



for nG,,(00)Gr(0o)" the result is obtained.

[ &

= nT'T1-0)E | Y I8 2PLD™7 (nGy(00)Gn(00)') (T = 1)'e;
j=1
- o 3

= (18 YE | S THT - T)e | +0O (n—f) (A-45)
j=1

The final results
Bias (éPMM> = Br+ By + By + By (A—46)

B] = ’Ilil’r (E [mz(eO)ng(HO)] )
By=-n"'(1-6)Q'E [mz (00) "2 PE" 291(90)}

By =n"'(1-06%)TE [ i(00)E"F PL. E*ag,(ao)}
k

By = — 5 TE | ST, e,
j=1

The Three Linearizations: nw;(6), S,(0), and M,,(0)
The first step in the two linearizations is to linearize the probability weights wz(é) Recall the definition of the

optimal PMM weights conditional on 6 is

1 1

i(0) = — . A-47
A TS S 0)Gn0) e Gl S OW, 8,050 A
—_— ———
0(n=1/2) O(n1)
A geometric expansion provides the linearized weights
1 1 / -2
w;(0) = o Eégi(ﬂ) S, (0)G(0) + O (n ) . (A-48)

Equation (A-48) can be further refined because S, () is an estimate of the second moment matrix. Recall the

definition of S,,(6)

n

8.(0) = (5V.(0) + (1~ 0) W‘l)il. (A-49)

Because W, ! is a consistent estimate of ¥, S,, (é may be approximated by

Sp(@)=x! —x! (m(é) (- aWt - z) sl (A-50)

O(n*l/Q)

11



Before continuing with the approximation S, (6), we substitute equation (A-50) into (4) to obtain
wi(0) = = — =3g:(0) L G(B) + O (n72). (A-51)
Next, use equation (A-51) to approximate V,, (6)

Va(0) = Z wi(8)v; ()

= ‘/n(é) — (5% Zvl(é)gl(é)/ilGn(é) + O (nil) (A—52)

and rewrite W, 1 = Vn(é), where 6 is a first-round estimator of 6, as

Vn(é) = Vn(eo) + Z anG(QO) (97 — on) +0 (n_l)
k 1
=V, (6y) — Z GV(';;QO) e (M’SM) M'SG,,(60) + O (n71) (A-53)
k
Vn(é) = Vn(ao) + Z avgo(eo) (éj — on) +0 (n_l)
k —
=V, (00) — _ a‘fge(%)ej (M’SM) 1M’5Gn(90) +0(n)
. e Vallo) (4 .
Wnlzvn(é)— 6; T-7T Gn(00)+(9 n 1
3T, (1) ™)
k !
AAUEDS 8%0(50) G(0) (T =) e;+0 (n7"). (A-54)

The last line is because T = T + O (nil/Q). This is not the case for T, because S is a function of the the first
round weighting matrix W, which is not necessarily a consistent estimate of ¥~!. Substituting equations (A-52)

and (A-54) into (A-50) provides the result

12



Proof of Theorem 8. PMM’s objective function has two components, the quadratic penalty and the KLIC
penalty.

By Theorem 5, the quadratic component of the objective function is rewritten
(1= 8)Grn(0)'Su(O)W, S (0)G1n (9). (A-56)

Taylor approximating logarithms by In(1+ z) = z — 222 + O(2?) and substituting in the optimal PMM weights

conditioned on 6 given by equation (21) gives

In(nw;(0)) =6g:(0)'Sn ()G (0) — 6(1 — 8)G(0)S, (O)W, S, (0)G (6)

) T ) (A-57)
~ 58°Gu(0)8.(0)9u(0)gu(8) S, (0)G.(B) + O (nH).
Summing equation (A-57) over i provides
> In(nwi(0)) =0nG(0)' S, (0)Gn(0) — nd(1 — )G (0)Sn(0)W, S, (0)Gn(6)
i (A-58)

Dividing equation (A-56) by 1 — § and equation (A-58) by —g, adding the two components, and simplifying the

expression

Q) = nGn(0) S, (0)Gn(0) + O (n—%) . (A-59)

PMM

The quadratic statistic is singular

NGy (0)' S, (0)Gn(0) = nGp(0)Sn(0)21,,S,(0) G, (6)
= nGa(0)S1(0)} (P g4 + Py ) Sa(0)Gal0)
= G (0)'Sn(0)FP 3y Sn(0)2 G (9)

= rank(m — k) (A-60)

A X ~ N A\ 1 N X
where P oy 5 = S, (0)2 M, (6) (Mn(ﬂ)’Sn(H)Mn(Q)) M, (A)'S,(9)7 is the projection matrix that sets k dimen-
sions of G, () to zero and S,,(0)2 is the Cholesky decomposition of S,,(6). If W,, - £~! then S, (8) -2 %1
It is asymptotically equivalent to use the properly scaled components of PMM’s objective function as test

statistics: n(1 — 6)2G, ()W, G, (0) <, X2, and =262 3" In(na;) 4, X2 i
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Appendix B: Monte Carlo Simulations

The PMM estimation problem can be redefined to achieve a mapping from R™ to R, reducing the computational

complexity to that of EL. To do so, rewrite equation (6) replacing G, (6) with the m-dimensional vector A

1 1
iA,0) == . A-61
wilh.0) = 7 <1+1i6(gi(0))\)’WnA> (A-61)
Find the A such that A = G,,(6). First, define
FON0) = A= wi(A,0)gi(6). (A-62)
Then A may be obtained via the Newton-Raphson iterative algorithm

/\j+1 = /\j — ]Im + nl i 5 Zw?()\j, 9)91(9) (gl(H) — 2/\]')/ Wn] [AJ — Zwi(/\j,é)gi(ﬁ) . (A—63)

Theorem 1 suggests an appropriate starting value for the iteration: A\g = (1 —9)G,,(0). In practice, we have noticed
that setting A\g = 0.25(1 — §)G,,(0) leads to fewer instances of divergence. The iterative procedure described above
constitutes an inner loop which must be solved for any given 8 yielding A(6). The outer loop selects 6 to minimize

the objective function defined by equation (1)

0= wgmin L IAB)YWA) + ?zi:ln (1 + %(gi(ﬁ) _ A(e))’wx(e)). (A-64)

The simulations discussed in Section 3.1 are based on the equations outlined above, the Hall and Horowitz
(1996) model detailed in the main text, and sample sizes of n = 25, 50, and 100. For the n = 25 trials, we consider
a 2 moment and 5 moment model. For n = 50, we use 2, 5, and 10 moments. For n = 100, we use 2, 5, 10, 15,
and 20 moments. Each batch of simulations includes 2000 trials. The results are presented in both tabular and
graphical format. We calculate the realized estimator mean, volatility, and Root Mean Squared Error (RMSE) for
PMM and EL. The size of the rejection region for the relevant test of the overidentifying restrictions with a chosen
to be 0.10, 0.05, and 0.01 percent, and the probability of rejecting the population parameter value for « equal to
0.10, 0.05, and 0.01 percent are also calculated. Table 1 reports the results for the 25 and 50 sample estimations
and Table 2 reports the results for the 100 sample estimations. For each Monte Carlo experiment, we plot the
densities of the realized estimates obtained under EL. and PMM estimation. Figures 1 and 2 provide the plots for
the 25 observation simulations. Figures 3 through 5 plot the densities for the 50 observation experiments. The

densities for estimates obtained under sample size of 100 are plotted in Figures 6 through 10.
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Table 1: Monte Carlo Simulations. This table presents the results of the Monte Carlo study for the Hall
and Horowitz (1996) model as modified by Schennach (2006) with sample sizes of 25 and 50 observations
and 2000 trials. The population parameter value 6y is 3. E(f) is the sample average of the estimates, o(f)
is the sample volatility of the estimates, and rmse(d) is the Root Mean Squared Error of the estimates. x2
and to respectively represent the size of the rejection region for the test of overidentifying restrictions and
test that the estimate equals the population parameter value at the o level.

Model E(@) o(0)  rmse(d) x3i10 Xbos Xoor toio  toos  to.or

25 Observations and 2 Moment Conditions

EL 3.092  0.778 0783  0.199 0121 0.036 0444 0.396 0.317
(0.017) (0.020)  (0.020) (0.009) (0.007) (0.004) (0.011) (0.011) (0.010)

PMM 3110 0.791 0798 0223 0154 0054 0443 0.392 0.313
(0.018) (0.021)  (0.021) (0.009) (0.008) (0.005) (0.011) (0.011) (0.010)

25 Observations and 5 Moment Conditions

EL 3.484  0.939 1056 0.611  0.531 0390 0477 0438  0.378
(0.021) (0.026)  (0.028) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

PMM 2922  0.850 0854 0479 0352 0.153 0410 0.360  0.280
(0.019) (0.020)  (0.021) (0.011) (0.011) (0.008) (0.011) (0.011) (0.010)

50 Observations and 2 Moment Conditions

EL 3.008  0.417 0428 0202 0.136 0064 0339 0276  0.205
(0.009) (0.007)  (0.008) (0.009) (0.008) (0.005) (0.011) (0.010) (0.009)

PMM  3.049  0.493 0495 0186 0.119 0.037 0364 0.307 0.232
(0.011) (0.012)  (0.012) (0.009) (0.007) (0.004) (0.011) (0.010) (0.009)

50 Observations and 5 Moment Conditions

EL 3.082  0.461 0468  0.469 0359 0.177 0335 0.280  0.201
(0.010) (0.010)  (0.011) (0.011) (0.011) (0.009) (0.011) (0.010) (0.009)

PMM  3.154  0.467 0491 0472 0373 0195 0352  0.294  0.226
(0.010) (0.011)  (0.011) (0.011) (0.011) (0.009) (0.011) (0.010) (0.009)

50 Observations and 10 Moment Conditions

EL 3.504  0.724 0881 0793 0733 0576 0468 0434  0.373
(0.016) (0.018)  (0.021) (0.009) (0.010) (0.011) (0.011) (0.011) (0.011)

PMM 2882  0.595 0.607  0.727 0.628 0.400 0310 0.255  0.186
(0.013) (0.016)  (0.016) (0.010) (0.011) (0.011) (0.010) (0.010) (0.009)


slugauer
New Stamp


Table 2: Monte Carlo Simulations. This table presents the results of the Monte Carlo study for the
Hall and Horowitz (1996) model as modified by Schennach (2006) with sample size of 100 observations and
2000 trials. The population parameter value 6 is 3. E(f) is the sample average of the estimates, o(6) is the
sample volatility of the estimates, and rmse(d) is the Root Mean Squared Error of the estimates. x2 and tq
respectively represent the size of the rejection region for the test of overidentifying restrictions and test that
the estimate equals the population parameter value at the o level.

Model E(@) o(0)  rmse(d) x3i10 Xbos Xoor toio  toos  to.or

100 Observations and 2 Moment Conditions

EL 3.058  0.299 0304 0.186 0119 0.039 0271 0222 0.153
(0.007) (0.005)  (0.006) (0.009) (0.007) (0.004) (0.010) (0.009) (0.008)

PMM  3.050  0.319 0323 0.182 0.114 0.038 0284 0.232 0.161
(0.007) (0.007)  (0.007) (0.009) (0.007) (0.004) (0.010) (0.009) (0.008)

100 Observations and 5 Moment Conditions

EL 3.148  0.322 0354 0404 0311 0169 0297 0.246  0.165
(0.007) (0.007)  (0.008) (0.011) (0.010) (0.008) (0.010) (0.010) (0.008)

PMM  3.093 0.318 0331 0433 0325 0.170 0265 0210 0.139
(0.007) (0.007)  (0.007) (0.011) (0.010) (0.008) (0.010) (0.009) (0.008)

100 Observations and 10 Moment Conditions

EL 3.054  0.320 0.324 0700 0.605 0413 0214 0162  0.107
(0.007) (0.010)  (0.010) (0.010) (0.011) (0.011) (0.009) (0.008) (0.007)

PMM 3144  0.327 0.357  0.679  0.592  0.402 0.267 0.210  0.144
(0.007) (0.006)  (0.007) (0.010) (0.011) (0.011) (0.010) (0.009) (0.008)

100 Observations and 15 Moment Conditions

EL 3.376  0.412 0.558  0.846 0.783  0.642 0440 0.381  0.296
(0.009) (0.009)  (0.010) (0.008) (0.009) (0.011) (0.011) (0.011) (0.010)

PMM  3.001  0.340 0.340 0.848 0776 0581 0.189 0.143  0.084
(0.008) (0.008)  (0.008) (0.008) (0.009) (0.011) (0.009) (0.008) (0.006)

100 Observations and 20 Moment Conditions

EL 3.442  0.454 0.634 0935 0895 0.805 0469 0403 0.313
(0.010) (0.011)  (0.012) (0.006) (0.007) (0.009) (0.011) (0.011) (0.010)

PMM  2.885  0.370 0387 0919 0871 0712 0177 0.125  0.076
(0.008) (0.008)  (0.009) (0.006) (0.007) (0.010) (0.009) (0.007) (0.006)



Figure 1: Kernel Density Plot for 25 Observations and 2 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 25 observations, 2 moment conditions,
and 2000 trials. The population parameter value is 6y = 3. PMM is represented by the bold line.
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Figure 2: Kernel Density Plot for 25 Observations and 5 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 25 observations, 5 moment conditions,
and 2000 trials. The population parameter value is 6y = 3. PMM is represented by the bold line.
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Figure 3: Kernel Density Plot for 50 Observations and 2 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 25 observations, 2 moment conditions,
and 2000 trials. The population parameter value is 6y = 3. PMM is represented by the bold line.
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Figure 4: Kernel Density Plot for 50 Observations and 5 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 50 observations, 5 moment conditions,
and 2000 trials. The population parameter value is 6y = 3. PMM is represented by the bold line.
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Figure 5: Kernel Density Plot for 50 Observations and 10 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 50 observations, 10 moment conditions,
and 2000 trials. The population parameter value is 8y = 3. PMM is represented by the bold line.
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Figure 6: Kernel Density Plot for 100 Observations and 2 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 100 observations, 2 moment conditions,
and 2000 trials. The population parameter value is 8y = 3. PMM is represented by the bold line.
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Figure 7: Kernel Density Plot for 100 Observations and 5 Moment Conditions. This figure plots
the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and Horowitz
(1996) model as modified by Schennach (2006) with sample size of 100 observations, 5 moment conditions,
and 2000 trials. The population parameter value is 8y = 3. PMM is represented by the bold line.

Kernel Density of Parameter Estimates
100 Observations
5 Moment Conditions

PMM
EL

1.2

o
(o]
T

Probability
o
o

o
N
T

0.2

2.5 3 35 4 45 5
Parameter Estimate




Figure 8: Kernel Density Plot for 100 Observations and 10 Moment Conditions. This figure
plots the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and
Horowitz (1996) model as modified by Schennach (2006) with sample size of 100 observations, 10 moment
conditions, and 2000 trials. The population parameter value is 6y = 3. PMM is represented by the bold line.
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Figure 9: Kernel Density Plot for 100 Observations and 15 Moment Conditions. This figure
plots the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and
Horowitz (1996) model as modified by Schennach (2006) with sample size of 100 observations, 15 moment
conditions, and 2000 trials. The population parameter value is 6y = 3. PMM is represented by the bold line.
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Figure 10: Kernel Density Plot for 100 Observations and 20 Moment Conditions. This figure
plots the kernel density of the EL and PMM estimates obtained for a Monte Carlo study for the Hall and
Horowitz (1996) model as modified by Schennach (2006) with sample size of 100 observations, 20 moment
conditions, and 2000 trials. The population parameter value is 6y = 3. PMM is represented by the bold line.
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