TOBACCO

CURRENT BLUE MOLD STATUS REPORT
by William C. Nesmith

As of May 6, blue mold had not been reported from anywhere in the Ohio River Valley or Tennessee River Valley. The only blue mold activity reported to the warning system is that in the northeastern Piedmont region of North Carolina, southern Georgia, and northern Florida. Growers are urged to keep this activity in mind as they consider transplant sources. Transplanting to the field in our region has been slowed significantly due to frequent and heavy rains, increasing the potential staging areas for blue mold to develop.

Transplant producers should continue to take steps to reduce leaf moisture through careful management of ventilation and keep in place a regular fungicide spray program. See issue 943 of Kentucky Pest News (March 18, 2002) for more specifics on chemical options for disease control in tobacco transplant production. Weekly fungicide sprays in the field are not warranted at this time for blue mold control, based on the information available to us, unless a southern transplant connection exists with the crop. However, stay in frequent touch with the warning system because the blue mold potential for any county is subject to change daily. See issue 948 of Kentucky Pest News (April 22, 2002) for the foliar fungicide options labeled in Kentucky for use in the field.

TRANSPLANT DISEASE ACTIVITY IS INCREASING WHICH COULD LEAD TO FIELD PROBLEMS
by William Nesmith

Seedling and transplant disease activity is increasing rapidly with the wet weather being experienced. Consequently, we could expect to see field problems resulting from setting diseased plants. Rhizoctonia diseases (root rot, soreshin, and target spot), Pythium root rot, bacterial diseases (Blackleg, bacterial soft rots of leaf, stem, and roots), and angular leaf spot), Sclerotinia collar rot, Botrytis leaf and stem rot, anthracnose, black root rot, and black shank are active. Expect disease activity to increase rapidly if the wet weather persists, especially in plants being held. Furthermore, planting diseased transplants can greatly increase the disease potential in the field; such as, decreased transplant survival and problems later involving stunting, death or low yields due to root and stem disease complexes.

In addition, some areas recently experienced physical damage to transplants from hail, heavy rains, and wind. In some cases, the damage was total and growers are finding other plants. But even with less severe physical damage, the infectious disease potential can be greatly increased.
Many of the above diseases cannot be controlled with the fungicide options labeled, but it is still important to maintain regular fungicide programs to help with those that can be controlled - even while plants are being held. The labeled fungicide options were covered in the March 18, 2002 issue of Kentucky Pest News (issue 943). In addition, beaware of how the following cultural practices impact disease development, especially during this wet period and while plants are being held.

* Wet foliage increases the potential for all the above diseases. The longer and more frequent the wet event, the greater the potential, especially if combined with any of the other problems listed below.

* Plants under high fertility are much more likely to sustain serious problems with bacterial diseases and Botrytis, especially following clipping or other physical injuries.

* Under-fertilized plants are much more prone to Rhizoctonia diseases and anthracnose, especially early on in the low-fertility event.

* Leaving debris rotting within the plants greatly increases the chances of Botrytis, Sclerotinia, Soreshin, and bacterial soft rots, especially during wet weather.

* Low light activity increases the potential of Botrytis and blue mold, especially if it is prolonged.

* Clipping plants with wet foliage can rapidly increase diseases caused by bacteria, Sclerotinia, and Botrytis

CORN

A WET SPRING, DELAYED PLANTING AND SOUTHWESTERN CORN BORERS

by Ric Bessin

The wet spring of 2002 has delayed corn planting in many corn fields around Kentucky. While growers pray for more favorable planting weather, the clock is ticking. Research has shown that yield potential may begin to drop when corn is planted after May 15. Additionally, there is also an increased risk of insect attack due to southwestern corn borer. Recent research at the UK substation in Princeton has shown that when corn is planted early or on time, the risk of losses due to southwestern corn borer is very low. However, when corn is planted after May 10 in the western half of the state, there is a significant risk of losses due to this pest. The later the planting date, the larger the potential risk.

Corn planted before mid May is still attacked by southwestern corn borer, but will generally escape the worst of the damage. Late planted corn is still in the field when the southwestern corn borer begins to girdle corn plants in September. This is the most serious damage caused by southwestern corn borer. Larvae girdle the stalk by chewing a complete or partial internal groove around the stalk near the base. This leaves only a thin outer layer of the stalk for support. These stalks fall to the ground with only a mild wind.

There is some good news for 2002. As reported in a March issue of the Kentucky Pest News, the southwestern corn borer spring survey indicated that there was low survival of overwintering larvae. This means that the first generation moth populations should be reduced. However, growers planting corn after May 15 should have a plan to manage southwestern corn borer if it appears late in the season in their fields. Early harvest is one option. Early harvest reduces the exposure to stalk girdling in September. Shorter maturing hybrids and grain drying facilitate early harvest. Late planted fields should also be scouted for southwestern corn borer in late July and August. There are several insecticides that are effective against this pest.

Bt corn offers corn producers a practical control for southwestern corn borer with late planted corn. While Bt corn has been developed for European corn borer control, the full-season protection afforded by some Bt corn also provides excellent southwestern corn borer protection. Before using Bt corn, be sure that the market for your grain will readily accept this grain. In some parts of the state, this is not a serious issue but in others it is.

DELAYED PREEMERGENCE HERBICIDE APPLICATIONS FOR CORN

by J. D. Green

Sometimes application of a soil-active herbicide treatment may be delayed due to weather conditions and other factors. In these situations the crop may have emerged before a soil residual herbicide can be applied. The following table outlines the maximum corn and weed size for use of soil-applied herbicide products in corn. Keep in mind that not all soil-applied herbicides can be applied after corn emergence. In fact, some products may cause significant crop emergence if applied after corn emergence. Many of these soil-applied herbicides do not control emerged weeds; thus, to obtain effective weed control a postemergence herbicide may also be needed. Consult the product label for specific guidelines, labeled tank mixtures, precautions, or other limitations.
Table 1. MAXIMUM Corn and Weed Sizes for Soil-Applied Herbicides.

<table>
<thead>
<tr>
<th>HERBICIDE</th>
<th>CORN SIZE</th>
<th>WEED SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine</td>
<td>12 inches</td>
<td>1.5 inches</td>
</tr>
<tr>
<td>Axiom / Axiom AT</td>
<td>before corn emerges</td>
<td>before emergence</td>
</tr>
<tr>
<td>Balance PRO</td>
<td>before corn emerges</td>
<td>before emergence</td>
</tr>
<tr>
<td>Bicep II Magnum</td>
<td>5 inches</td>
<td>2-leaf stage</td>
</tr>
<tr>
<td>Callisto</td>
<td>30 inches (V8 stage)</td>
<td>5 inches</td>
</tr>
<tr>
<td>Define</td>
<td>before corn emerges</td>
<td>before emergence</td>
</tr>
<tr>
<td>Degree</td>
<td>11 inches</td>
<td>before emergence</td>
</tr>
<tr>
<td>Degree Xtra</td>
<td>11 inches</td>
<td>2-leaf stage</td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>5 inches</td>
<td>before emergence</td>
</tr>
<tr>
<td>Epic</td>
<td>before corn emerges</td>
<td>before emergence</td>
</tr>
<tr>
<td>FulTime</td>
<td>11 inches</td>
<td>before emergence</td>
</tr>
<tr>
<td>Guardsman Max or LeadOff</td>
<td>12 inches</td>
<td>1.5 inches</td>
</tr>
<tr>
<td>Hornet WDG</td>
<td>20 inches (V6 stage)</td>
<td>4 to 8 inches</td>
</tr>
<tr>
<td>Harness</td>
<td>11 inches</td>
<td>before 8 inches</td>
</tr>
<tr>
<td>Harness Xtra</td>
<td>11 inches</td>
<td>2-leaf stage</td>
</tr>
<tr>
<td>Outlook or Frontier</td>
<td>12 inches</td>
<td>before emergence</td>
</tr>
<tr>
<td>Princep</td>
<td>before corn emerges</td>
<td>before emergence</td>
</tr>
<tr>
<td>Prowl</td>
<td>Spike through layby growth stage of corn or limitation of post tank mix partner</td>
<td>before emergence</td>
</tr>
<tr>
<td>Python</td>
<td>2 inches</td>
<td>before emergence</td>
</tr>
<tr>
<td>TopNotch/ Surpass</td>
<td>11 inches</td>
<td>before emergence</td>
</tr>
</tbody>
</table>

HEAVY RAINFALL MAY ENHANCE DISEASE ACTIVITY by Paul Vincelli

As of 3 May, when this article was written, rainfall during the past 14 days has been above normal throughout the state, and it has been particularly high in the Bluegrass region and the Green River area. Several diseases could be of concern because of the heavy rainfall at this time of year.

Seed rots and seedling damping off. Saturated soils favor Pythium diseases, which attack corn seeds and seedlings. Soil temperatures recently have been warm enough to allow slow, if sustained growth of the young corn, so this favors the plant in this equation. However, if other stresses are present on top of the heavy rains, stand establishment could suffer. Producers should check to be sure stands are adequate. The Kentucky Integrated Crop Management Manual for Corn, IPM-2, provides instructions on determining whether stands are adequate. This publication is available through county Extension offices or at www.uky.edu/Agriculture/IPM/manuals.htm.

Anthracnose. Producers should watch for leaf lesions typical of this disease. These are tan, oval leaf spots with a brown border and a yellow halo. These will be especially likely in conservation tillage fields, especially where corn follows corn. This stage of the disease does not affect yields, and field corn becomes resistant to the disease after knee-high. However, anthracnose activity now can alert a producer to watch for top-dieback symptoms or stalk rot symptoms late in the season.
Crazy top. Corn plants where the whorl is flooded anywhere between emergence and the 4-5 leaf stage have the potential to develop crazy top disease. The fungus that causes this disease is found in some soils, and flooding gives the fungus the opportunity to infect the growing point. If infection occurs, plants develop numerous tillers, a leafy tassel (“crazy top”), and no ears. Usually damage is limited when the disease occurs, but it can get a producer’s attention.

SOYBEANS

Soybean Diseases Control:
Are We Missing Opportunities; PART VI
VIRUS DISEASES OF SOYBEAN
by Don Hershman

Soybean virus diseases are the focus of the last installment of this series of Kentucky Pest News articles. Again, the focus of this series has been to consider the soybean disease situation in Kentucky and see if there are areas where general improvements can be made in disease management.

There are, in fact, numerous viruses that infect soybean in Kentucky. Since I am trying to stay focused on important diseases, I will restrict my comments to the two most common soybean virus diseases in Kentucky; these are, soybean mosaic virus (SMV) and bean pod mottle virus (BPMV). The former virus is transmitted very efficiently in seed and by a number of aphids which feed on soybean. Bean pod mottle virus is transmitted primarily by the bean leaf beetle. The symptoms of both viruses overlap significantly, and it is virtually impossible to tell the difference between the two virus diseases, visually, with any level of certainty.

Two surveys done over the last 10+ years have indicated that SMV is much less common in Kentucky than BPMV. In fact, the latter virus disease appears to be about six times more common than SMV. The main reason, I suspect, that SMV is not more common is that the seed industry is keeping it in check. Field scouting for diseases and rejecting seed fields when disease conditions (in this case virus) are above established, acceptable standards, have probably been instrumental in keeping SMV levels low. SMV-resistant varieties are available, but as long as present production practices are used, there is little apparent need for farmers to seek out and plant resistant varieties.

There are two wild cards which may change this situation. The first is the introduction and spread of the soybean aphid. Levels of the soybean aphid have not been very high, thus far, in Kentucky. However, should populations explode here like they have in the upper Midwest, so too will the potential for spread of SMV to soybean state-wide. Note that the soybean aphid is the only aphid in the U.S. capable of colonizing soybean. This, plus the fact that the soybean aphid is among the most mobile of aphid species and is capable of producing astronomical populations over a relatively short time-frame, warrants us keeping a very close eye on the pest in Kentucky. Thus far, increased problems with soybean viruses have not surfaced where soybean aphid has been highly active. Nonetheless, we must remain vigilant.

A recent soybean production trend that has me concerned, for a variety of reasons, is the increased use of saved seed for planting, instead of planting bought, certified seed. Of course, the primary reason for this trend is economics. Saved seed is significantly less expensive to plant than certified seed. But there can be a very large price to pay on the yield end of the production equation. In regards to SMV, my greatest concern is that farmers will harvest and plant seed that may have high levels of seed-borne SMV. For example one SMV-infected plant will produce 100% SMV infected seed. This seed will be viable and germinate well, but the resulting plants will be infected and yields will be significantly reduced. Over time, it is very possible for SMV to infect a very high percentage of seed which is saved and ultimately planted. I have not seen this scenario played out yet in Kentucky, but if the use of farm-saved seed increases, increased problems with SMV are sure to result. One reason is that few farmers scout fields for virus diseases and, thus, farmers may increase SMV-infected seed without knowing they have a problem—that is, of course, until the situation becomes critical and yields are noticeably reduced. If you are planning on saving seed from this year’s crop for planting next season, I highly recommend that you scout your fields for SMV, as well as other seed-borne diseases. It would also be prudent to have the seed cleaned and tested for germination and vigor.

As I indicated earlier, BPMV is by far the most common soybean virus disease in Kentucky. Unfortunately, we have seen a dramatic increase in the incidence of a severe strain of BPMV over the last decade. This strain produces much more severe symptoms than mild strains and may increase the risk that yields will be reduced above that associated with mild stains of the virus. At the present time, there are no effective ways to control BPMV in soybean. There is little evidence that spraying to control the beetle vector is of much help, and there are no BPMV-resistant varieties available. Yield risks may be reduced in full season soybean compared with late-planted (mid-, late-June) soybean. This is because late-planted crops tend to be at earlier
stage of development when bean leaf beetles (with transmissible BPMV) population are high. In the future, BPMV will likely be effectively managed using resistant varieties. These are currently being developed by scientists at the University of Kentucky and elsewhere and should be readily available within the next decade.

WHEAT

WHEAT DISEASE UPDATE
by Don Hershman

Here is a brief update on the current wheat disease situation in Kentucky

Rusts: Leaf rust is fairly widespread, but at generally low levels. I have not seen, or heard any reports about stripe rust appearing in the state.

Powdery Mildew: As usual, there is quite a bit of mildew in susceptible varieties throughout the state. The weather conditions have encouraged movement of the disease onto the upper canopy in some fields.

Speckled leaf blotch: This disease is very widespread; it got a good head start earlier this spring as it “jumped” into winter-killed lower leaf tissue. I have seen quite a few fields where speckled leaf blotch has moved into the flag leaf, but the severity is low. This disease should shut down soon assuming we get the standard warming of temperatures during May.

Nodorum leaf blotch: This disease is at high incidence in many fields, but the severity is low. If wet and warm weather occurs during May, look for this disease to be a significant player in reducing yields.

Tan Spot: Levels of tan spot are rather low at this time.

Barley Yellow Dwarf (BYD): BYD has appeared rather late in many fields. Most infections appear to have occurred in the spring, based on the appearance of symptoms during heading. It appears as though fields that were sprayed earlier this spring have significantly less BYD than fields that did not receive an insecticide treatment (for control of aphid that spread the BYD virus). Because of the lateness of symptom expression in most fields, I do not anticipate that serious yield losses will occur, even where no insecticide sprays were applied.

Head Scab: It is too early to know how severe this disease will be this spring. Some varieties were flowering during a rainy period, but the temperatures were cool. These weather conditions are borderline in regards to encouraging infection by the head scab fungi.

Downy Mildew: We are seeing more than usual downy mildew so far this spring. But the disease is almost always confined to small, extremely wet spots of fields. Edges of fields, in particular, appear to be the most affected, probably due to soil compaction issues.

FRUIT CROPS

NEW FUNGICIDES FOR SMALL FRUITS
by John Hartman

Strawberry

Switch 62.5%WG fungicide from the Syngenta Company is registered for control of Botrytis fruit rot (gray mold) and has provided excellent disease control in University fungicide trials. In addition, it appears to provide some efficacy against anthracnose fruit rot. For Botrytis, Switch should be applied at the rate of 11 to 14 oz per acre on a 7 to 10-day interval maintaining good coverage throughout bloom. Do not apply more than 56 ounces of product per acre per year (4 applications at the maximum rate) and do not plant rotational crops other than onion or strawberry for 12 months following the last application of Switch. Switch has two active fungicide ingredients, cyprodinil and fludioxonil. With Kentucky’s currently rainy spring weather, this combination might be needed to stave off gray mold.

Quadris 2.08F fungicide is registered for control of anthracnose and powdery mildew on strawberry. Although Quadris is only registered for control of Anthracnose and powdery mildew, it may provide some level of control against Botrytis fruit rot (gray mold) and leather rot as well. Manufactured by the Syngenta Corporation, the active ingredient in Quadris is azoxystrobin, the same active ingredient as Abound fungicide, which has been registered for use on grapes for several years. It is important to note that the active ingredient in Quadris and Abound, azoxystrobin, is very phytotoxic to McIntosh apples and other varieties related to McIntosh. When spraying strawberries, be sure not to allow spray drift to nearby apples. Quadris should not even be used in the same sprayer or equipment that will be used on apples. Some apple varieties related to McIntosh are: Bancroft, Bromley, Cortland, Cox, Discover, Empire, Gala, Janamac, Kent, McIntosh, Spartan and Summared. Quadris is used at the rate of 6.2 to 15.4 fl. oz. per acre and may be applied up to the day of harvest (0-day PHI). For fungicide resistance management, do not apply more than two sequential sprays of Quadris before alternating with a fungicide that has a different mode of action. Do not
apply more than 1.92 quarts per acre per season or make more than four (4) applications to any planting per crop year.

Blueberry

Abound 2.08F fungicide is labeled for use on blueberry, currant, elderberry, gooseberry, huckleberry, lingonberry and juneberry for control of mummy berry, Alternaria fruit rot, Phomopsis stem canker, and anthracnose fruit rot. Abound has the same active ingredient as Quadris (azoxystrobin) and is applied at the rate of 6.2 to 15.4 fl oz per acre. To manage fungicide resistance, do not apply more than two sequential sprays of Abound before alternating with a fungicide that has a different mode of action. Make only a maximum of three applications of Abound and no more that 1.44 quarts per acre on any planting per crop year. Abound may be applied up to the day of harvest (0 day PHI).

Grapes, Brambles, Strawberries

Benlate 50 WP fungicide is registered for several small fruit crops. The Dupont Company, manufacturer of Benlate, has requested a voluntary cancellation of registration for their fungicide. The sale and distribution of Benlate will not be legal after December 31, 2002. Growers may use labeled product after this date; however, they will not be able to purchase additional material. Topsin-M WSB fungicide is very similar in activity to Benlate and, where it is labeled, is an excellent alternative to Benlate. Topsin-M (thiophanate-methyl) is labeled on apples, pears, stone fruit, strawberries, and grapes. Therefore, the loss of Benlate on these crops is not as serious as for brambles (raspberry and blackberry) and blueberries because Topsin-M is not yet labeled for use on these two crops. Thus, until substitutes are found, loss of Benlate is important. At present, Rovral is the only remaining fungicide listed for brambles that provides good control of Botrytis fruit rot (gray mold) and there are no substitutes for Benlate for control of blackberry rosette disease.

HOUSEHOLD

ELIMINATING CARPENTER ANTS

by Mike Potter

“I’m seeing big, black ants in my house, especially in the kitchen and bathroom. I spray the ones I see, but they keep coming back. What kind of ants are these and how do I get rid of them?” These are the questions typically asked by clients who have carpenter ants. This time of year, callers may also complain about a swarm of winged carpenter ants emerging inside their homes — a sure sign that the ants are nesting within the structure. This column will help you deal with this challenging pest problem.

The Problem

Carpenter ants vary in size and color, but are usually rather large (1/4-1/2") and blackish. Not every large black ant encountered around homes is a carpenter ant, however (see footnote* below). In addition to being a nuisance, carpenter ants may damage wood while hollowing it out for nesting. The galleries have a smooth, sandpapered appearance and contain no mud, which distinguishes them from wood damaged by termites. Shredded fragments of wood similar to coarse sawdust are ejected from the galleries, along with dead ants and bits of insects which the carpenter ants have eaten. When such accumulations are found, it’s a good indication that a nest is nearby. Often, however, the excavated sawdust remains hidden behind a wall or in some other concealed area.

Carpenter ants nest in moist or dry locations, but prefer sites that are moist. Consequently, nests often occur in wood dampened by water leaks, such as around sinks, bathtubs, shower stalls, poorly sealed window and door frames, leaking roofs, and within damp crawlspaces. When considering likely nesting sites, it’s also important to remember that carpenter ants nest in areas other than wood. Nests commonly occur in moist, hollow spaces, like the wall behind a dishwasher, beneath insulation in the crawl space, garage, attic, or basement, or in a hollow porch column. False ceilings, hollow-core doors, curtain rods, or even an old suitcase up in the attic may serve as nesting sites for carpenter ants.

Nests may be located indoors and/or outdoors. Ants spotted inside the home may actually be nesting outdoors in a tree stump, landscape timber or woodpile, and foraging indoors in search of food. Noticing five or more carpenter ants per day in an area of the home where there is no food, such as a bathroom or bedroom, usually indicates an indoor nest. Swarms of winged carpenter ants emerging indoors is another sign of an indoor nest, as is the sighting of ants indoors on cool or rainy days.

The potential for damage exists only when ants are nesting inside the structure. In Kentucky, damage produced by carpenter ants is often insignificant and seldom as extensive as that associated with termites. Nonetheless, over extended periods, large colonies can weaken studs, joists and other structural timbers.
The Solution

There are no insecticide baits available to homeowners that are consistently effective against carpenter ants. Therefore, the best - and only way - to control them is to find and treat the nest(s) directly. This is easier said than done. Carpenter ants seldom travel in clearly defined ant “trails” as do many other ants. When attempting to locate a nest, focus your efforts on where most of the ants have been seen. Areas dampened by moisture, e.g., around sinks, dishwashers, chimneys, fascia boards, roof edge, and window or door frames are especially attractive to carpenter ants, although dry walls may also serve as nesting sites. The chances of finding ants will be much greater at night since carpenter ants do most of their foraging after dark.

The vicinity of a carpenter nest can often be located by placing small dabs of honey or maple syrup in the area(s) where ants have been seen. Cleanup is aided by placing the “bait” onto small squares of wax paper, or the back (non-sticky side) of pieces of masking tape. The best time to check the bait spots is at night when the ants are most active. After the ants have fed on the bait, follow them on their journey back to their nest. Be patient — eventually the ants will disappear behind a baseboard, cabinet, or into some other concealed location such as behind a wall, window, door frame or porch column.

Treat behind walls and other hidden locations where ants are entering by puffing boric acid dust into existing cracks, or drilling small (1/8”) holes into suspected nest areas. With a little luck, the insecticide dust will disperse in the hidden void and contact and kill the ants. If you suspect the nest is in a wall, drill and treat at least 3-6 feet on either side of where ants are entering so as to maximize the chances of contacting the nest. As is true for most ants, carpenter ants prefer to travel along wires, pipes and edges. It often pays to inject dust into any openings around plumbing pipes and behind (not inside) the junction boxes of electrical light switches and receptacles. Never apply insecticides directly into junction boxes or spray liquids around electrical outlets. Turn off the main circuit breaker as an additional safety precaution.

Professional pest control firms have “dusters” specifically designed for this type of treatment. Homeowners wishing to perform treatment themselves can purchase boric acid in a ready-to-use “puffer” (squeeze bottle), or attempt to make one using an empty, dry, narrow-tipped plastic container. Don’t expect to see results overnight; a week or more may be needed to eliminate the entire nest which may contain thousands of ants.

As noted earlier, carpenter ants seen in the home may actually be nesting outdoors and foraging indoors for food and water. Consequently, you may end up following the ants out into the yard, possibly to a nest located in a stump, fence, dead tree limb, or landscaping timber. Once an outdoor nest is discovered, treatment can be performed by spraying or drenching with Sevin or other liquid insecticide. If outdoor nests are suspected, inspect for ants around the foundation and siding at night with a flashlight. Like most ants, carpenter ants prefer to trail along edges and wires. Pay particular attention to the bottom edges of siding, areas around doors, windows, and where utility pipes and wires enter the structure. The sweet bait technique can again be used to trace these ants back to their nest.

Calling a Professional

Eliminating carpenter ants can be difficult and time consuming. Therefore many clients will want to call a professional. Pest control companies tackle carpenter ants in different ways. Some try to locate the nest(s) and treat only in suspected areas. Other firms take a less directed approach, opting instead to drill and treat as many conceivable nesting sites as possible. Most companies also spray around the exterior foundation of the home, hoping to limit reinfestation. The approach which should not be taken is simply to spray each month where carpenter ants are seen. Knowledgeable companies will spend less time “spraying” and more time inspecting and asking the homeowner where they have seen ants, whether there have been moisture leaks, etc. If no effort is made to locate the nest(s) or probable nest areas, the infestation will continue. The homeowner can often assist the professional in locating nests by using the sweet bait technique discussed earlier.

Preventing Future Problems

1. Correct roof leaks, plumbing leaks, and other moisture problems which attract carpenter ants.
2. Clip back tree limbs and branches touching the roof or siding of the house. These serve as “bridges” between ants nesting in dead portions of trees and the structure.
3. Seal cracks and openings in the foundation, especially where utility pipes and wires enter from outside.
4. Never store firewood in the garage since firewood is a prime nesting location for carpenter ants. Stack wood away from the foundation and elevate it off the ground.

*IMPORTANT NOTE – Another large black ant often mistaken for carpenter ants in Kentucky is the black field ant. Many costly “carpenter ant” jobs are inadvertently sold to homeowners by companies that confuse these two ‘look-alike’ pests. A good hand lens is needed to tell the difference: viewed from the side, carpenter ants have an evenly rounded thorax (the body segment just after the head); black field ants have a thorax which in profile appears ridged or uneven. Black field ants commonly form large, low-profile, earthen mounds in the yard. Unlike carpenter ants, they do not nest within buildings, although they may wander indoors in search of food. The solution to black field ants is simply a mound drench with Sevin, etc.

DIAGNOSTIC LAB HIGHLIGHTS
by Julie Beale and Paul Bachi

Samples diagnosed in the Diagnostic Laboratory last week included Sclerotinia collar rot, Pythium root rot, target spot, Rhizoctonia root rot, high soluble salts, and transplant shock (plug and transfer system) on tobacco; orange rust on blackberry; freeze injury on apple, cherry and peach; Rhizoctonia stem rot on pea; Fusarium dry rot on potato; Colletotrichum stem rot on petunia; Pythium root rot on snapdragon; yellow patch on bentgrass and annual bluegrass; tip blight disease and needle rust on pine; and spot anthracnose on dogwood.

INSECT TRAP COUNTS

UKREC, Princeton, KY - April 26-May 3

<table>
<thead>
<tr>
<th>Insect Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Cutworm</td>
<td>7</td>
</tr>
<tr>
<td>True armyworm</td>
<td>34</td>
</tr>
<tr>
<td>Corn earworm</td>
<td>23</td>
</tr>
<tr>
<td>European corn borer</td>
<td>1</td>
</tr>
<tr>
<td>Southwestern corn borer</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: Trade names are used to simplify the information presented in this newsletter. No endorsement by the Cooperative Extension Service is intended, nor is criticism implied of similar products that are not named.