Chapter 8
DSS DEVELOPMENT TOOLS

1. Distinguish between DSSs and the tools used to build DSSs.
 Knowledge management techniques can be implemented in many tools and a tool can
 furnish multiple knowledge management techniques.
 (i.e., spreadsheet tools emphasize a spreadsheet technique, but can also use graphical techniques)
 GURU is a tool that uses a synergistic approach. It uses database techniques, spreadsheet
 techniques, word processing techniques, etc.

2. Identify important factors that deserve to be considered when selecting tools for constructing
 your DSSs.
 Technique-oriented tool categories
 - Which technique is emphasized?
 - May fit multiple categories
 Roles of tools in development
 - Assist at analysis/design stages versus implementation stage
 - Roles in implementation
 - **intrinsic tool**
 - functions as PPS
 - developer initializes KS
 - LS, PS customization possible
 - widely used
 (i.e. Excel, Lotus 1-2-3, etc.)
 - **partially intrinsic tool**
 - functions as part of PPS
 - developer designs/implements rest of PPS
 (i.e. Dbase, Access, etc.)
 - **extrinsic tool**
 - does not function as any part of PPS
 - used to produce parts of the PPS
 - may be used to produce some KS contents

3. Describe major interface styles that can be built into DSSs.
 Interface styles
 - Users have different preferences (friendliness is in the eye of the beholder)
 Three things that effect user friendliness:
 a. nature of the problem
 b. type of task
 c. nature of the user
 - Preference can change
 - depending on task
 - depending on experience
 - Interface refers to
 - LS
-PS
-linguistic and presentation knowledge
-portion of PPS that accepts LS requests and presents PS responses

-To a user, the interface is the system
-Should be adaptable
 -easy to learn
 -graceful shifting among tasks
 -high level of guidance/feedback based on prior interactions
 -gives user a sense of being in control
 -provides multiple interface styles

-Interface can influence the impact a DSS has on decision making

-Interfaces can be provided by or built with tools

-Language system possibilities
 -command-oriented
 -range from procedural to nonprocedural
 -user must learn LS vocabulary and grammar
 -Natural Language
 -system adjusts its LS to user’s presentations
 -problem of misinterpretation
 -Menus
 -gives guidance to users about possible requests
 -user reacts to presented options
 -LS consists of keystroke sequences (mouse manipulations, etc.) that allow users to make various requests
 -Forms
 -provides guidance to user about filling in slots in forms
 -can edit any items entered prior to completion
 -LS comprised of possible entries for forms
 -Question/Answer
 -simple case of a form
 -LS comprised of sequences of keystrokes that could make up answers to questions
 -Direct manipulation
 -requests made by manipulating system presentations of objects
 -LS comprised of user actions for manipulating PS elements
 -examples include forms interfaces, graphical user interfaces
 -Speech
 -Hybrids

-Presentation system possibilities
 -assistance messages
 -to guide user’s requests
 -help text
 -diagnostics
 -results messages
4. Explain the relationship between DSS development tools and knowledge management techniques, including ways of integrating multiple techniques in the construction of a single DSS.

Five types of software integration involving:
- Knowledge represented in a certain format. (K)
- Knowledge manipulation-depends on a certain format (P)
- Program devised to manipulate knowledge organized in a certain way (part or whole of a PPS).
- Knowledge transfer- from one repository to another (possibly reorganizing it)

1) **Integration via knowledge format conversion.**
 - conversion utility or import/export facility
 - as number of programs increase, number of utilities becomes large
 - knowledge transfer takes time and effort
 - knowledge manipulation requires program switching
 - PPS may be developed to handle transfers and switching
 - redundancy can lead to consistency problems

2.) **Integration via a clipboard**
 - common intermediate format (“clipboard”)
 - requires fewer conversion utilities
 - knowledge transfer involves “cut/copy” and “paste”
 - programs may be able to directly manipulate clipboard contents
 - knowledge manipulation queries program switching
 - redundancy can lead to consistency problems
3.) **Integration via a common format**

- all programs designed to manipulate common format
- no knowledge transfer required
- program switching still needed
- reduces redundancy/consistency problems
- difficult/inefficient to devise a single format for diverse software functionality
 (difficult to implement-single format required for universal processing)

4.) **Integration via nesting**

- prior approaches use knowledge as “glue” that binds diverse software functionality’s
- alternative is to incorporate functionality’s of diverse techniques into a single tool
- one way to do this is to nest capabilities within a single program
- one dominant component, plus secondary components
- do switching among programs
- no need for knowledge transfer
- must know the dominant technique
- dominant component constrains use of others
5.) **Synergistic integration**

alternative to nesting
single program without a dominant functionality
any can be used independent of others, but without switching
can use multiple techniques in a single operation
thus, traditional dividing lines among techniques blur
one program that manipulates knowledge represented in multiple formats (even for a
single request)
avoid limitations of being restricted to a single format

6.) Combination

select tools and integrate across them using foregoing approaches
select tool in which needed techniques are integrated