Predicting Cumulative Production of Devonian Shale Gas Wells from Early Well Performance Data, Appalachian Basin of Eastern Kentucky

Brandon C. Nuttall
Kentucky Geological Survey
With contributions by Shannon Daugherty

Eastern Section AAPG, Lexington, Kentucky
17-Sep-2007

Funding: National Coal Resources Data System, U. S. Geological Survey
A “shale” well is…?

- Top Sunbury to top underlying carbonates

Sunbury
Berea

Cleveland
Three Lick Bed
Upper Huron

Middle Huron

Lower Huron

Olentangy

Rhinestreet
Early Performance Data

• Well log and completion report
 – Initial Open Flow
 – Rock Pressure

• Monthly production *(805 KAR 1:180, KRS 353.205)*
 – Maximum monthly production (Mcf)
 – First year cumulative production
 – 5 year cumulative production
Data Sets

- **KGS online well completion data**
 - Location, completions, IOF, RP
- **Division of Oil and Gas**
 - Public production data by month (1997)
- **Gas Technology Institute (GRI)**
 - Historic, long-term production data
 - *Proprietary*, available to members and contractors
Production Data Selection

- Completed since 1-Jan-97
- Devonian shale only (not commingled)
- 60 or more months of non-zero data
- 310 wells
Initial Open Flow Data

- Exhibits only weak trends
- No uniform method of acquiring
Reported “Rock Pressure”

- High and low open flows occur in areas of both high and low rock pressure.
Five-year Cumulative Production

• Again, weak trends
• Areas with higher and lower production are often adjacent
Initial Open Flow

Correlation is statistically significant, but weak

\[y = 0.0886x + 43.204 \]

\[R^2 = 0.25 \]
GTI Cumulative Production

Industry rule of thumb is 300 MMcf per well

Proprietary data
Cumulative Gas Production

Billion Cubic Feet vs. Years in Production

Class 1
Class 2
Class 3
Class 4

GTI data
Cumulative Production Over Time

\[y = 1.8887x + 7.0426 \]

\[R^2 = 0.9278 \]

GTI data
General Decline Model (Arps)

Hyperbolic:

\[q_t = \frac{q_i}{\left(1 + b D_i t\right)^b} \]

Best fit parameters:
- \(q_i \) – initial production
- \(D_i \) – nominal decline
- \(b \) – decline exponent

Special cases:

Exponential, \(b = 0 \):

\[q_t = \frac{q_i}{e^{D_i t}} \]

Harmonic, \(b = 1 \):

\[q_t = \frac{q_i}{\left(1 + D_i t\right)} \]
Solving

Exponential:

Least squares

\[\ln(q_t) = \ln(q_i) + D_i t \]

Hyperbolic:

Optimization

Linear Programming

Both can easily be done with the built-in functions supplied with spreadsheets, but…
Best Case: Textbook Data

Natural fracturing is key to production

Deplete free gas in fractures

Desorbs from fracture faces

Desorption and diffusion through shale matrix

$\text{Recno: 115246, } q_i=0.964, \ b=1.642, \ di=-0.3887 \ (HYP)$

$\begin{align*}
\text{At } t=1 \\
\text{HYP: } q(t) &= 1.00*(1.0 - 2.278*(-0.831)t)**(-1.0 / 2.278) \\
r^2 &= 0.9882
\end{align*}$
Challenges

- Noisy data (no trend)
- Shut-in
- Operational changes
- Apparent incline
Monthly Rate (Mcf/month)

r^2 = 0.9917, qi = 0.9561 × 10^4
No better fit found at alternate start times

Recno: 120560, qi = 1.000, b = 2.646, di = -1.5235 (HYP)
Normalized

\[q_t = \frac{q_{obs}}{q_{\text{max}}} \]

Reino: 120560, qi=1.000, b=2.646, di=-1.5235 (HYP)

r^2 = 0.9917, qi=8565.11 (Mcf)
No better fit found at alternate start times
Recno 120560: Rate-Cumulative Curve

Rate-Cumulative
All declines, r > 0.25 and di > 0.5%

Semi-log plot
Rule of thumb:

\[b \approx 3 \text{ to } 4 \]
Many data sets have a “decline” (i.e., slope) that is not statistically different from 0 (no correlation).
Max production is the initial period

For exponential decline, \(Q_i \) is often less than max production

For hyperbolic decline, \(Q_i \) is often greater than max production
Qi and maximum production are not correlated.
Basis of classification

- 25th percentile
- 50th percentile
- 75th percentile

Public data from the Kentucky Division of Oil and Gas
First Six Months of Production

\[6\text{moCum} = 101.7\times\text{MaxAvg} + 1938 \]

\[r^2 = 0.87 \]

Public data from the Kentucky Division of Oil and Gas
Type Declines

Five-year cumulative production in million cubic feet

- Type 1: 143 MMcf
- Type 2: 78 MMcf
- Type 3: 46 MMcf
- Type 4: 23 MMcf
Conclusions

- Shale production data is messy
- Decline curve analysis and reserves projection is an art
- Maximum average daily production during the first 6 months is an adequate indicator of future well performance
- Best wells can be expected to make:
 - 20 MMcf in first year
 - 100 MMcf after 5 years
Thanks

- www.uky.edu/kgs
- bnuttall@uky.edu
- Oil and gas well search with production data
 - kgsweb.uky.edu/DataSearching/OilGas/OGSearch.asp
- Oil and gas well interactive mapping
 - kgsmap.uky.edu/website/KGSGeology/viewer.asp
- Project web page
 - www.uky.edu/KGS/emsweb/devsh/production/index.htm