Agricultural Biotechnology

Agricultural biotechnology encompasses cellular and molecular approaches to the manipulation and improvement of agricultural plants, animals and microorganisms, and the control of agricultural pests and diseases. The primary purpose of the baccalaureate degree program in Agricultural Biotechnology is to train students in modern cellular and molecular biology and genetic engineering. Students will be provided with a firm foundation in the principles of genetics and molecular biology of both prokaryotic and eukaryotic organisms. Each student will then specialize in an area appropriate to his or her interest and career objectives, including: microbial, fungal, plant, insect and mammalian biotechnology.

Graduates will be prepared to assume government, university, and industry positions with research and technology applications to agriculture and food production. Employment opportunities include research scientists, laboratory technicians or managers in university, government, industrial, or clinical laboratories using biotechnological tools for research and production. Examples of research areas include: gene cloning, construction of novel pest and disease resistance genes, development of new immunological and nucleic acid types of diagnostic probes for plant and animal disease, genetic engineering of microorganisms for the production of important pharmaceutical agents, and development of new biengineered strains of microorganisms for fermentation and food production services. Students will also be prepared to enter graduate programs in agriculture, molecular biology, and the biological sciences.

Graduation Requirements

To earn a Bachelor of Science in Agricultural Biotechnology the student must complete 128 semester hours with at least a 2.0 grade-point standing. A minimum of 45 credit hours must be from upper division courses (300 and above). Remedial courses may not be counted toward the total hours required for the degree. In addition to the UK Core requirements, students must complete college, premajor, major, and specialty support requirements, including an independent research project relevant to the student’s interest in biotechnology.

Plan of Study

As an agricultural biotechnology major you are required to develop an acceptable Plan of Study during your sophomore year for your junior and senior years. The plan must be signed by your advisor and returned to the Office of Academic Programs.

If you are an upper division transfer student (from another university or from another UK college or department) then you will submit your plan during the senior years. The plan must be signed by your advisor and returned to the Office of Academic Programs. Consult your academic advisor in developing your Plan of Study.

College Required Hours

*GEN 100 Issues in Agriculture ... 3

Subtotal: College Required Hours .. 3

*Except for students who enter the College after having already completed the U.S. Citizenship requirement of the UK Core.

UK Core Requirements

See the UK Core section of the 2012-2013 Undergraduate Bulletin at: www.uky.edu/Registrar/bulletinCurrent/ukc.pdf for the complete UK Core requirements. The courses listed below are (a) recommended by the college, or (b) required courses that also fulfill UK Core areas. Students should work closely with their advisor to complete the UK Core requirements.

I. Intellectual Inquiry in Arts and Creativity

Choose one course from approved list ... 3

II. Intellectual Inquiry in the Humanities

Choose one course from approved list ... 3

III. Intellectual Inquiry in the Social Sciences

Choose one course from approved list ... 3

IV. Intellectual Inquiry in the Natural, Physical, and Mathematical Sciences

CHE 105 General College Chemistry ... 4

CHE 111 Laboratory to Accompany General Chemistry I 1

V. Composition and Communication I

CIS/WRD 110 Composition and Communication I 3

VI. Composition and Communication II

CIS/WRD 111 Composition and Communication II 3

VII. Quantitative Foundations

MA 123 Elementary Calculus and Its Applications or

MA 113 Calculus I .. 4

MA 137 Calculus I With Life Science Applications 4

VIII. Statistical Inferential Reasoning

STA 210 Making Sense of Uncertainty: An Introduction to Statistical Reasoning ... 3

IX. Community, Culture and Citizenship in the USA

GEN 100 Issues in Agriculture ... 3

X. Global Dynamics

Choose one course from approved list ... 3

UK Core Hours .. 33

Premajor Requirements

BIO 150 Principles of Biology I ... 3

BIO 151 Principles of Biology Laboratory I ... 2

BIO 152 Principles of Biology II ... 3

BIO 153 Principles of Biology Laboratory II ... 2

CHE 105 General College Chemistry ... 4

CHE 107 General College Chemistry II ... 3

CHE 111 Laboratory to Accompany General Chemistry I 1

CHE 113 Laboratory to Accompany General Chemistry II 2

CONTINUED
Agricultural Biotechnology • 2

CHE 230 Organic Chemistry I ... 3
CHE 231 Organic Chemistry Laboratory I .. 1
CHE 232 Organic Chemistry II .. 3
CHE 233 Organic Chemistry Laboratory II .. 1
MA 123 Elementary Calculus and Its Applications and
MA 132 Calculus for the Life Sciences ... 7
or
MA 113 Calculus I ... 4
or
MA 137 Calculus I With Life Science Applications 4
PHY 211 General Physics .. 5
PHY 213 General Physics .. 5
(or equivalent with laboratory)
Subtotal: Premajor Hours .. 42-45

Major Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotechnology</td>
<td></td>
</tr>
<tr>
<td>ABT 101 Introduction to Biotechnology</td>
<td>1</td>
</tr>
<tr>
<td>*ABT 201 Scientific Method in Biotechnology</td>
<td>1</td>
</tr>
<tr>
<td>*ABT 301 Writing and Presentations in the Life Sciences</td>
<td>2</td>
</tr>
<tr>
<td>Microbiology</td>
<td></td>
</tr>
<tr>
<td>BIO 208 Principles of Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIO 209 Principles of Microbiology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BCH 401G Fundamentals of Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>Genetics</td>
<td></td>
</tr>
<tr>
<td>ABT/ENT 360 Genetics</td>
<td></td>
</tr>
<tr>
<td>or BIO 304 Principles of Genetics</td>
<td>3-4</td>
</tr>
<tr>
<td>ABT 460 Introduction to Molecular Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ABT 461 Introduction to Population Genetics</td>
<td>3</td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>STA 291 Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>or STA 570 Basic Statistical Analysis</td>
<td></td>
</tr>
<tr>
<td>or STA 580 Biostatistics I</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Advanced Practical Skills
ABT 495 Experimental Methods in Biotechnology
or BIO 510 Recombinant DNA Techniques Laboratory 4

Independent Study
ABT 395 Independent Study in Biotechnology
or ABT 399 Experiential Learning in Biotechnology 3

All students are expected to undertake an independent study project in an area of their interest for a minimum of 3 credit hours. This requirement can be met by a research project or an internship that is agreed upon by a student's advisor and approved by the Biotechnology Coordinating Committee prior to initiation of the project. Both written and oral reports are required when the project is completed.

Subtotal: Major Hours .. 31-33

*The combination of ABT 201 and ABT 301 may be used to satisfy the University Writing Requirement.

Specialty Support

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students must take a minimum of 21 credit hours of specialty support courses including at least one of the courses listed below. A number of the courses listed here may have additional prerequisites. Additional specialty support courses will be selected according to the student's area of interest with approval of the academic advisor.</td>
<td></td>
</tr>
<tr>
<td>ASC 364 Reproductive Physiology of Farm Animals</td>
<td>4</td>
</tr>
<tr>
<td>BIO 315 Introduction to Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIO 350 Animal Physiology</td>
<td>4</td>
</tr>
<tr>
<td>BIO/PGY 502 Principles of Systems, Cellular and Molecular Physiology</td>
<td>5</td>
</tr>
</tbody>
</table>

Subtotal: Specialty Support Hours ... 21

Electives

Electives should be selected to complete the 128 hours required for graduation.

Subtotal: Electives ... minimum of 4

TOTAL HOURS: ... 128

2012-2013 Series