A Key for the Forest Service Hardwood Tree Grades

Gary W. Miller, USDA Forest Service, Timber and Watershed Laboratory, P.O. Box 404, Parsons, WV 26287; Leland F. Hanks, USDA Forest Service, 310 W. Wisconsin Avenue, Milwaukee, WI 53203; and Harry V. Wiant, Jr., Division of Forestry, West Virginia University, Morgantown, WV 26506.

ABSTRACT. A dichotomous key organizes the USDA Forest Service hardwood tree grade specifications into a stepwise procedure for those learning to grade hardwood sawtimber. The key addresses the major grade factors, tree size, surface characteristics, and allowable cull deductions in a series of paired choices that lead the user to a decision regarding tree grade. Subtle grading rules, previously presented as footnotes to the major specifications, are included in the key. It simplifies the process so that the beginner can learn the system quickly, without detailed instruction from experienced tree traders.

USDA Forest Service hardwood tree grades are used to predict factory lumber grade yields for many commercial hardwood tree species (Hanks 1976, Hanks and Brubin 1978). The grading system makes it possible to calculate the dollar value of standing timber from the grades and prices of lumber that can be sawn from individual trees. Once familiar with the system, timber graders can provide consistent estimates of timber quality and stand value. The key presented in this paper serves as a teaching aid for those learning to grade hardwood trees. It provides a stepwise procedure for determining the grades of individual trees and organizes the grade specifications so that the beginner is not overwhelmed with choices (Table 1).

Many people find it difficult to learn the tree grading system using existing references, especially when experienced graders are not available to provide detailed instruction. The key overcomes three major problems beginners often encounter when trying to learn tree grading from earlier presentations. First, the key contains the subtle grade specifications previously presented as footnotes to the major grade factors. This improvement makes the beginner aware of the fine points without disrupting the step-by-step process of grading. Second, the key addresses the grade factors in a sequence that reduces confusion and improves comprehension. Third, the key can be used to learn how to grade hardwood trees without detailed instruction. Field trials have indicated that beginners can use the key to determine the correct tree grade, while those using other references require outside help. This feature of the key allows the beginner to become competent without the delays and costs associated with more formal training. As a result, tree grades can be used to assess tree quality and value in a shorter period of time.

BACKGROUND

The most difficult part of tree grading is recognizing defect indicators on the surface of the tree. Photographic guides are available for some commercial species (Rast 1982, Shigo 1983, Marden and Stayton 1970, Lockard et al. 1963). Estimating interior cull deductions is also difficult for the beginner. References are available for making adjustments for sweep, crook, and rot (Rast et al. 1973, Petro 1971, USDA Forest Service 1973). In addition to learning the grade specifications, the trainees should use and review these references to maintain competence in all aspects of grading and scaling.

TREE GRADE SPECIFICATIONS

Tree grade is generally determined by characteristics of the best 12-ft grading section in the butt 16-ft log. A 14- or 16-ft grading section may be used if it results in a better grade than the 12-ft section. Field experience with Forest Service tree grades has shown that tree grade is usually defined by characteristics of the bottom 12-ft section or the top 12-ft section in the butt log. Occasionally, however, using a 14- or 16-ft grading section results in a higher grade. A simple rule is to use the grading section that results in the highest tree grade.

Forest Service tree grade specifications involve three major characteristics of the grading section:

1. size—diameter breast height (dbh) and diameter inside bark (dib) at the top of the grading section,
2. clear cuttings—the total length of allowable clear cuttings on the second worst face of the grading section, and
3. cull deductions—the percentage of volume deducted for sweep and crook and the percentage of volume deducted for sweep, crook, and rot combined.

As a tree is graded, each of these characteristics is examined to determine whether the tree qualifies for a particular grade. The key addresses each characteristic in a logical, stepwise procedure. In effect, the key systematically tests each characteristic until the tree is graded.

Size

Both dbh and dib at the top of the grading section must satisfy the minimum requirements of the assigned tree grade (Hanks 1976). The first step in determining tree grade is to measure dbh to the nearest inch. For grades 1, 2, and 3 the minimum dbh requirements are 16, 13, and 10 in., respectively. Dib at the top of the grading section, however, is the more important specification for determining grade. This is because dbh and another major tree grade characteristic, clear cuttings, are interrelated. Dib at the top of the grading section defines the minimum length or the maximum number of clear cuttings allowed in grades 1 and 2.

Since dib at the top of the grading section cannot be measured directly, it must be estimated from dbh and an assigned form class. Recall that the top of the grading section can be 12, 14, or 16 ft above stump height. For a given dbh, dib will differ at 12, 14, and 16 ft above stump height because of taper. Tables 2 and 3 show the minimum dib required to meet the dib limitations for Girard form classes 79 and 82, respectively.

To use the tables, locate the appropriate dib limitation in the column of numbers at the left. Then find the position of the grading section across the top of the table. The number shown in the table is the minimum dib required to meet the dib limitation at that position. For example, the key indicates a minimum dib of 12.6 in. for a tree that measures 15.8 in. dibh. The top of the grading section is at 16 ft above stump height and form class is 79. Is the tree at least 12.6 in. in dib at 16 ft above stump height? From Table 2, a tree of form class 79 must be at least 16.0 in. dbh to have an inside bark diameter of 12.6 in. at 16 ft above stump height.
Table 1. Key for hardwood tree grades based on the second worst face of the best 12-foot section of the butt 16-ft log.

1. Minimum dbh of 15.6 inches (14.6 inches for basswood and ash) ... 2
2. Clear cuttings total at least 10 feet in 1 or 2 cuttings—each cutting at least 7 feet long .. 5
3. Clear cuttings total less than 10 feet in 1 or 2 cuttings—each cutting at least 7 feet long 3
4. Clear cuttings total less than 10 feet in 1 or 2 cuttings—each cutting at least 5 feet long (due to rot only) 15
5. Dib at top of grading section at least 12.6 inches (11.6 inches for basswood and ash) 8
6. Dib at top of grading section less than 12.6 inches (11.6 inches for basswood and ash) 17
7. Dib at top of grading section less than 19.6 inches .. 8
8. Dib at top of grading section at least 19.6 inches .. 8
9. Dib at top of grading section less than 11.6 inches .. 17
10. Clear cuttings total at least 8 feet in 1 or 2 cuttings—each cutting at least 7 feet long 17
11. Clear cuttings total less than 8 feet in 1 or 2 cuttings—each cutting at least 3 feet long 11
12. Clear cuttings total less than 10 feet in 1 or 2 cuttings—each cutting at least 3 feet long (due to rot only) 15
13. Dib at top of grading section at least 10.6 inches .. 17
14. Dib at top of grading section less than 10.6 inches .. 20
15. Clear cuttings total at least 8 feet in 1, 2, or 3 cuttings—each cutting at least 3 feet long 14
16. Cull deduction for rot does not exceed 40% ... GRADE 2
17. Total cull deduction exceeds 9% ... GRADE 2
18. Total cull deduction exceeds 50% .. GRADE 3
19. Dib at top of grading section at least 7.6 inches .. 20
20. Total cull deduction exceeds 50% .. BELOW GRADE

Dib at the top of the grading section is less than 12.6 in because the dbh of this particular tree is only 15.8 in.

Clear Cuttings
To determine the total length of clear cuttings on the grading section, the first step is to identify the grading face of the tree. Visually square the butt log into four faces, using imaginary vertical lines. Arrange the faces so that most defect indicators, such as bumps and knots, are concentrated on one face. The worst face is ignored, and the next-to-worst face becomes the grading face of the tree.

A clear cutting is a portion of the grading face that is free of defects and extends the width of the face. The grade specifications define the minimum length of clear cuttings, the
Table 2. Minimum dbh (in inches) required to meet dib limitations—trees with form class 79.

<table>
<thead>
<tr>
<th>Position of grading section, feet above stump height</th>
<th>Dib</th>
<th>0–12</th>
<th>2–14</th>
<th>4–16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19.6</td>
<td>23.0</td>
<td>23.9</td>
<td>24.9</td>
</tr>
<tr>
<td></td>
<td>15.6</td>
<td>18.3</td>
<td>19.0</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td>12.6</td>
<td>14.8</td>
<td>15.4</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>11.6</td>
<td>13.6</td>
<td>14.2</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>10.6</td>
<td>12.4</td>
<td>12.9</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td>9.6</td>
<td>11.3</td>
<td>11.7</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>8.9</td>
<td>9.3</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Table 3. Minimum dbh (in inches) required to meet dib limitations—trees with form class 82.

<table>
<thead>
<tr>
<th>Position of grading section, feet above stump height</th>
<th>Dib</th>
<th>0–12</th>
<th>2–14</th>
<th>4–16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19.6</td>
<td>22.4</td>
<td>23.2</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>15.6</td>
<td>17.9</td>
<td>18.4</td>
<td>19.1</td>
</tr>
<tr>
<td></td>
<td>12.6</td>
<td>14.4</td>
<td>14.9</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>11.6</td>
<td>13.3</td>
<td>13.7</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td>10.6</td>
<td>12.1</td>
<td>12.5</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>9.6</td>
<td>11.0</td>
<td>11.4</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>8.7</td>
<td>9.0</td>
<td>9.3</td>
</tr>
</tbody>
</table>

Table 4. Minimum total length (in feet and inches) of clear cuttings required for each grade and length of grading section.

<table>
<thead>
<tr>
<th>Length of grading section</th>
<th>Minimum total length of clear cuttings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>Grade 2</td>
</tr>
<tr>
<td>12'</td>
<td>10' 8'</td>
</tr>
<tr>
<td>14'</td>
<td>11'8' 9'4'</td>
</tr>
<tr>
<td>16'</td>
<td>13'4' 10'8'</td>
</tr>
</tbody>
</table>

* Clear cuttings must total 5/6, 4/6, and 3/6 of the length of the grading section for grades 1, 2, and 3, respectively.

Cull Deductions

The key also defines maximum allowable deductions for sweep, crook, and rot. Figure 1 shows how most scaling deductions are determined. In calculating percent sweep deduction, the number subtracted from actual sweep varies with log length. When calculating percent deduction for sweep, the numerator is the sweep (in inches) minus 1½ in for a 12-ft grading section and 2 in for a 14- or 16-ft grading section (Rast et al. 1973). Estimating internal rot requires good judgment and a lot of practice. The National Forest Log Scaling Handbook (USDA For. Serv. 1973) provides detailed instructions for estimating most scaling deductions.

USING THE KEY

Specific instructions on tree grading are presented in “Hardwood tree grades for factory lumber” (Hanks 1976). The key simply organizes all the grade specifications and provides a stepwise procedure for the beginner. For each tree, start at the top of the key and proceed to the step indicated in the right-hand column of numbers. Continue following the key until the tree is graded. At first the beginner should rely on the key and consult Figure 1 to estimate scaling deductions. With more experience, grading can be done from memory.

LITERATURE CITED

Adjusting Timberland Lease Payments for Stumpage Price-Changes

W. David Klemperer, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.

ABSTRACT. Many past industrial leases of private timberlands have proven unsatisfactory for landowners, because lease payments were constant during periods of rapidly increasing timber prices. Although many contracts now index lease payments to the inflation rate, few incorporate real increases in stumpage prices above the inflation rate. This paper examines variations of two basic methods for incorporating real stumpage price-increases into formulas for determining acceptable lease payments from views of both landowner and firm. These approaches offer more satisfactory means for nonindustrial private forest landowners to receive annual income before harvest and for firms to obtain wood supplies without the high cost of land purchase.

Forest products firms have often leased timberlands to assure future wood supplies without the high cost of land purchases. Although most leasing has occurred in the South, the practice holds promise in other regions (Zinn and Miller 1984). Despite a 30% decline in leased area since 1970, southern forest management contracts are still significant—4.7 million acres in 1984 (Siegel 1973, Meyer 1984).

The decline in leased acres is due in part to landowner dissatisfaction with earlier contracts under which lease payments did not keep pace with rising timber values. To resolve this problem, many new contracts in the United States now index lease payments to the inflation rate (Hotvedt and Tedder 1977, Meyer 1984). However, little information is available on methods discussed here for incorporating real stumpage price-increases (above inflation) into payments for leasing timberlands. Such real price-increases have been significant for certain types of stumpage in the United States in the past and are projected to continue, although at a somewhat slower pace (USDA For. Serv. 1982).

LEASE ASSUMPTIONS

This paper discusses leases of stocked or bare land that is reforested by the firm after harvesting any existing timber, clearcut one rotation later, and returned to the owner as bare land. Any initially existing timber is assumed to be purchased under a separate contract. (A recent survey in the South indicated that firms usually liquidate existing merchantable timber on leased lands within the first few years and then reforest [Meyer 1984].) Initially, thinnings are omitted, and even-aged management is assumed. Lease payments are annual, and no additional payment is due at harvest date unless the contract specifies added payment for real increases in stumpage prices. It is shown how the equations derived here could be adapted to other types of leases. Although beyond this paper's scope, other kinds of contracts are discussed in Bradley (1967), Siegel and Gutenberg (1968), Somberg (1971), Gutenberg (1972), Ruff (1973), Siegel (1973), Meyer (1984), Zinn and Miller (1982).

The firm will pay costs of annual taxes, reforestation, and management, which are assumed to rise at the inflation rate but remain fixed in real terms. The U.S. income tax structure is applied, so that income from assets held longer than 6 months (e.g., timber income to the firm) is taxed at a lower rate than "ordinary" income (e.g., lease income to the landowner).

NOTATION

The following notation is used. All values are on a per acre basis, where relevant, and percentage rates are in decimal form. Variables are:

- \(n \) = contract length in years (also the number of annual lease payments, \(n = m \) if the lease is adapted to other types of leases)
- \(d \) = regeneration delay, or years between contract-start and first reforestation
- \(g \) = average annual real rate of stumpage price increase above inflation
- \(f \) = anticipated average annual inflation rate
- \(H \) = gross harvest revenue per acre in year \(n \) expressed in today's dollars (actual harvest revenue in year \(n \) is \(H(1 + g)^n(1 + f)^n \))
- \(r \) = real interest rate (desired after-tax earning rate), equal to \([(1 + i)(1 + r)] - 1 \)
- \(i \) = nominal interest rate \(i = r + f + rt \)
- \(R \) = reforestation cost per acre in year zero dollars
- \(M \) = annual costs per acre in constant dollars occurring from years 1 through \(n \)
- \(c \) = capital gains tax rate (applied to current dollar timber harvest revenue including inflation and real price growth minus original reforestation cost)
- \(t \) = tax rate on ordinary income against which nonreforestation costs can be deducted
- \(P \) = initial annual lease payment per acre before taxes (maximum the firm is willing to pay and minimum amount landowner requires); first payment due immediately, last payment due one year from contract end, for a total of \(n \) payments
- \(m \) = a factor by which to multiply the initial lease payment to compute the firm's after-tax present value of annual lease payments, where:

\[
m = \frac{(1 - t)(1 + r)}{r(1 + r)^n} \]

1 Financial support of this research by the USDA Forest Service Southern Forest Experiment Station is gratefully acknowledged.