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Why organisms show late-life mortality plateaus:
a null model for comparing patterns of mortality
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ABSTRACT

We show that deceleration in hazard functions (mortality curves) and the resulting mortality
plateaus are an intrinsic property of time-to-event traits that are affected by many underlying
genetic and environmental factors. We argue that just demonstrating that a mortality curve
decelerates with age and reaches a plateau provides little information about the underlying
biology associated with lifespan and mortality. To test hypotheses about the rate of deceleration
of mortality curves and the level of mortality plateaus, observed curves must be compared with
mortality curves expected under a null model — that is, the deceleration of a mortality curve
and the mortality plateau generated from a normally distributed trait of the same mean and
variance. Comparisons between the observed data and the null models can be achieved with
simple statistical tests. The results of these comparisons can be very informative regarding
which questions about the shapes of mortality curves will be most meaningful.
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INTRODUCTION

Senescence is a gradual deterioration of physiological function with increasing age and is
generally associated with decreasing performance, decreasing fecundity or an increasing
probability of mortality with increasing age (Partridge and Mangel, 1999). In humans and
many other organisms, the mortality rate [u(¢)] increases approximately exponentially with
age (Finch, 1990; Rose, 1991; Bronikowski et al., 2002; Ricklefs and Scheuerlein, 2002) and
can be explained by a variety of mathematical functions, the most common of which is the
Gompertz equation in which u(7) = ae” (Pletcher, 1999a.b). This model has the nice property
that In[u(z)] =In(a) + bt describes a straight line. Differences in mortality rates among
organisms, whether different species or groups exposed to different experimental treatments
within a species, can be compared by simply comparing the parameters of the Gompertz
model, in which a higher b implies a more rapid increase in the mortality rate with age and a
higher a indicates a higher intercept (baseline mortality rate).
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However, recent studies on mortality rates of old-age individuals have shown that the rate
of increase in the mortality rate slows down at older ages, often leading to a mortality
plateau (Carey et al., 1992; Curtsinger et al., 1992; Fukui et al., 1993; Brooks et al., 1994;
Kannisto et al., 1994; Vaupel et al., 1994; Pletcher et al., 1998; see reviews by Pletcher and
Curtsinger, 1998; Partridge and Mangel, 1999; Carey, 2001). The deceleration of mortality
rates and the presence of mortality plateaus have been argued to be inconsistent with
evolutionary theories of ageing (e.g. Demetrius, 2001; but see Partridge and Mangel, 1999).
Substantial debate has since arisen over the explanation for mortality plateaus (Vaupel,
1990; Gavrilov and Gavrilova, 1991, 2001; Vaupel and Carey, 1993; Mueller and Rose, 1996;
Horiuchi and Wilmorth, 1998; Pletcher and Curtsinger, 1998; Partridge and Mangel, 1999;
Wachter, 1999; Bains, 2000; Drapeau et al., 2000; Rose and Mueller, 2000; Service, 2000)
and their evolutionary consequences (Demetrius, 2001). However, much of this debate is
based on the assumption that the accumulation of alleles with negative effects late in life
should generate mortality rates that increase monotonically with increasing age. We show
that deceleration in mortality rates and the resulting mortality plateaus are an intrinsic
property of time-to-event traits (such as lifespan and development time) that are affected by
many underlying genetic and environmental factors. Thus, Gompertz-type mortality
functions are the inappropriate null model against which to compare shapes of mortality
curves. The question researchers should be asking is not “Why do mortality rates decelerate
at older ages?’, but ‘Do mortality rates decelerate in a manner inconsistent with the degree
of deceleration expected for quantitative traits and, if so, why?’

MORTALITY PLATEAUS ARE AN INTRINSIC PROPERTY OF
NORMALLY DISTRIBUTED LIFESPANS

First, consider the properties of traits that are affected by multiple genes. Imagine a set of
genes that affect how long an organism lives. Each gene has multiple alleles, and thus the
effect of the gene on the organism’s lifespan may be large or small, positive or negative,
depending on which combination of alleles that organism carries. For our purposes here, all
that matters is that we can describe the distribution of effects of a gene (g,) as having some
probability distribution that has mean x4, and variance o, (the shape of the distribution is
unimportant). Of course, lifespan is affected by many genes, each of which has a different
distribution of effects on lifespan. The total lifespan of an organism is the sum of the effects
of all these separate genes; the expected lifespan of an individual (77 age at death) can thus
be described as

T=> g, ()

where g, is the effect of gene i on the lifespan of the individual and # is the number of genes
affecting lifespan. Important to our discussion here is that as n approaches infinity, the
distribution of T converges on a normal distribution (i.e. a bell curve) of form

1 (T-w'’
2n exp[ 20° ]

AD) = 2)

ag

regardless of the distributions of the individual genetic effects underlying 7" as long as the
underlying effects have non-zero o; (the Central Limit Theorem; Yule, 1902). This model
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can be expanded to include environmental variables that affect age at death, with each
environmental effect e, having some distribution with non-zero g;,. This simply expands the
model to

T= ng + 26’_/ 3
i j

where ¢, is the effect of environmental factor j on lifespan. The distribution of T still
converges on a normal distribution regardless of the distributions of the genetic or
environmental effects underlying 7. Thus, even in a population of genetically identical
individuals, lifespan can be normally distributed due to environmental differences between
those individuals. It is this general statistical result that underlies the field of quantitative
genetics (e.g. Roff, 1997) and, more generally, the statistical fields of linear regression,
analysis of variance and analysis of covariance (Neter et al., 1985).

This observation can be carried one step further. The hazard function, or mortality rate
[u(T)], is the instantaneous risk of death which, for a normal distribution, is

Lo (T-w’
o\2n p[ 20" }
u(T) =

J -1 (t—p)’
T o\2n exp[ 25° ]
This function has a shape as shown in Fig. 1B. Deceleration in mortality rates and mortality
plateaus are thus properties of traits that have an underlying normal distribution. One need
not assume any evolutionary or physiological mechanism, or anything at all about why
individuals die, to explain the presence of mortality plateaus. One need only assume that
there are many genetic and environmental factors that affect an individual’s lifespan, and
that these factors are variable among individuals.

Note that this curve has a shape similar to the logistic function, which is often used to
describe deceleration in mortality curves:

“4)

bT
ac

e

where a is the intercept, b is the rate of exponential increase in mortality at young ages and s
describes the deceleration in mortality with increasing age (Pletcher, 1999a). However, this
logistic model and variations of this model, such as the Gompertz-Makeham and logistic-
Makeham (Pletcher, 1999b) models, describe the shape of the mortality curve but have no
underlying mechanistic interpretation. In contrast, the mortality curve predicted by this
normal distribution is a property of traits affected by a large number of genetic and
environmental factors. Note that the Weibull mortality function, which is often used to
describe mortality rates, is also derived from an assumed underlying distribution of life-
spans (a Weibull distribution) that is a special type of ‘extreme value distribution’ governing
the time to failure of the weakest link of many competing failure processes. However, the
parameters of the Weibull distribution and thus the underlying failure times that generate
the Weibull mortality curve have no direct biological interpretation (Fox, 1993).
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Fig. 1. Distribution of lifespans (A) and the expected mortality curve (B: In[u(T)] versus T) for a
randomly generated, normally distributed lifespan data set of 1 million random data points (=79
days, o” = 117 days; values from Hughes, 1995) sampled at 1 day intervals.

‘NORMAL’ MORTALITY CURVES AS A NULL MODEL

Normally distributed lifespan data, regardless of the mean or variance, necessarily produce
logistically shaped mortality curves — that is, the rate of increase in the mortality rate
necessarily decelerates and reaches a mortality plateau. Thus, the null hypotheses of ‘no
deceleration in mortality rate with age’ and ‘no mortality plateau’ are the wrong null
hypotheses against which to compare mortality curves; that is, Gompertz and other mono-
tonically increasing mortality functions are inappropriate null hypotheses against which to
compare shapes of mortality curves. Instead, lifespan distributions should first be examined
to determine whether they deviate from normality and, if they do, mortality curves should
then be examined to determine how they deviate from the expected shape of the mortality
curve generated by a normally distributed trait, the expected distribution for any trait
affected by multiple genetic or environmental factors. This requires calculation of
parameter values for the logistic mortality model under the null model. These parameters
for the null model can be calculated in two ways. First, since we have two different equations
for u(T) (equations 4 and 5), we can solve for the parameter values ¢, b and s in terms of the
mean and variance of the underlying distribution (with the mean and variance estimated
from the real data). However, the integral in the denominator of equation (4) has no
analytical solution and would thus need to be solved numerically. Alternatively, we can
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compare observed mortality patterns with mortality curves generated from random normal
data sets with mean (x) and variance (¢°) equal to the mean and variance of the real data
set. This latter technique may be preferable because parameter estimates are sensitive to the
interval at which death is scored and thus the number of intervals sampled (Pletcher,
1999a). The use of random data sets allows death of individuals to be scored at identical
intervals to the real data, and thus can be compared directly with the real data.

We have used this technique to examine whether mortality curves for a variety of organ-
isms differ from the expected curves for a normally distributed trait. We calculated the
expected parameters of the logistic mortality curve (4, b and s) under the null model by
generating random data sets with 1 million data points having identical mean and variance
to the real data and sampled at the same interval. This procedure assumes that the mean and
variance estimated from the data closely approximate the true mean and variance of the
population, which is a reasonable assumption given the large data sets used (see legend to
Fig. 2). Figure 2 shows the results of this analysis for two different populations of the seed
beetle, Callosobruchus maculatus. For the C. maculatus population presented in Fig. 2A, the
shape of the female mortality curve is almost exactly as predicted from the null model,
but the male mortality curve differs significantly from expected (higher » and higher s;
P <0.05 for both parameters). Interestingly, the results of Tatar and Carey (1994) for a
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Fig. 2. Actual and predicted mortality curves for two populations of Callosobruchus maculatus. (A)
Data from C.W. Fox (unpublished) (males: mean =15.48, variance =17.84, n=4395; females:
mean =22.80, variance =34.92, n=4299). (B) Data from Tatar and Carey (1994) (males:
mean = 24.40, variance = 24.66, n = 1840; females: mean = 14.77, variance = 14.48, n = 1789).
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different population of C. maculatus (Fig. 2B) show exactly the same result; parameter
values for females are not different from the null model, but males have higher » and s than
expected from the null model. This raises the really interesting question of why one sex
(females) fits the null hypothesis and the other does not. Thus, rather than asking ‘why
do males and females differ in the shapes of their mortality curves?” and even ‘why do
organisms show mortality plateaus?”, we can now refine our question to ‘why do some
curves differ from that expected for a quantitative trait, while others do not?” This question
could not previously be asked without a definition of a null model. For C. maculatus, we
can specifically ask ‘why do male mortality rates accelerate faster than expected for a
quantitative trait, whereas female mortality rates do not?’

Other organisms deviate even more substantially from the null model than do male
C. maculatus. For example, mortality rates of the seed beetle Stator limbatus show higher
acceleration (b) than expected for a normally distributed trait with the same mean and
variance (Fig. 3A), and medflies have both higher acceleration and a very long mortality
plateau relative to the expected curve (Fig. 3B). Many mammals, including humans,
show substantially less deceleration (lower s) than predicted from the null model (e.g.
re-analysis of data from Bronikowski et al., 2002). We argue that it is the reduced deceler-
ation in mortality observed in humans and some other mammals (see references in Bains,
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Fig. 3. Actual and predicted mortality curves for (A) four seed beetle, Stator limbatus (data from Fox
et al., in press) (males: mean = 9.26, variance = 4.05, n = 1401; females: mean = 10.48, variance = 3.99,
n=1411) and (B) the medfly, Ceratitis capitata (data from Carey et al, 1992) (mean =20.3,
variance = 85.6, n = 1,203,646).
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2000) that is in need of explanation, not the presence of mortality plateaus in other organ-
isms. The Gompertz and Weibull mortality models, which do not include a deceleration
term, do not describe the shape of mortality curves expected for a trait affected by many
underlying factors.

HOW DOES THIS MODEL DIFFER FROM PREVIOUSLY
PUBLISHED ‘HETEROGENEITY” MODELS?

The above discussion shows that logistic mortality curves are an intrinsic property of traits
affected by many genetic or environmental factors. However, this result relies on one
important assumption — individuals are variable at either multiple loci or in multiple
environmental experiences that affect longevity (i.e. the o; are non-zero). That mortality
plateaus may be a consequence of heterogeneity among individuals or cohorts of indi-
viduals has been suggested by many authors (e.g. Vaupel and Yashin, 1985; Vaupel, 1990;
Kowald and Kirkwood, 1993; Vaupel and Carey, 1993; Brooks et al., 1994; Horiuchi and
Wilmorth, 1998; Pletcher and Curtsinger, 1998, 2000; Partridge and Mangel, 1999; Drapeau
et al., 2000; Service, 2000). These authors have shown that heterogeneity can generate
plateaus even when age-specific mortality rates increase exponentially within cohorts
or genotypes (i.e. fit a Gompertz mortality model) — variation in the parameters of the
Gompertz curve among cohorts or genotypes within a population can generate mortality
deceleration at the population level (Pletcher and Curtsinger, 1998; but see Bains, 2000, who
shows that heterogeneity within populations is not a prerequisite for generating mortality
plateaus). Genotypes or cohorts with either steeper individual mortality curves or higher
initial mortality rates will die sooner, leaving less frail individuals in the population at
advanced ages (Vaupel and Yashin, 1985; Vaupel, 1990; Horiuchi and Wilmorth, 1998).

However, our quantitative genetic explanation for deceleration of mortality rates and
the presence of mortality plateaus differs from prior heterogeneity explanations in two
important respects. First, we make no assumptions about how mortality curves vary among
individuals. In fact, no assumption about the underlying shapes of mortality curves of
individuals or cohorts of individuals is required to generate logistic mortality curves. We
assume only that the lifespan of individuals is a complex trait affected by many underlying
factors, and deceleration of mortality rates is a necessary consequence. Second, our explan-
ation provides a defined null model against which to compare shapes of mortality curves —
the expected mortality curve for any organism is as defined by equation (4) and is dependent
only on the mean and variance of the distribution of lifespans in the population, and the
interval at which death is scored.

DEVIATIONS FROM NORMALITY

Although the shapes of lifespan distributions will converge on normality when the number
of genetic and environmental factors affecting lifespan is large, most real distributions
deviate from normality, probably because the number of independently segregating factors
affecting traits is finite and some genes or environmental effects may have disproportion-
ately large effects (Lynch and Walsh, 1998). In general, factors that increase the right skew
or kurtosis of the distribution will increase the slope of the increase in mortality rate (b),
whereas left skew will decrease the deceleration parameter (s) so that the mortality curve
flattens and looks more like a Gompertz when skew is high. The question thus becomes,
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‘how do specific biological factors change the shape of lifespan distributions and thus the
shape of mortality curves?” For example, a few genes with large effects on lifespan have been
identified in organisms as diverse as mice (Holzenberger et al., 2003) and Drosophila (Tatar
et al., 2001); such genes lead to lifespan distributions that deviate from normality (generally
by increasing the skew of the distribution; Lynch and Walsh, 1998). In Fig. 4 we show the
effect of a single gene of large effect on the shape of u(7). Changing the frequency of an
allele with large effect substantially changes the shape of the mortality curve. For example,
imagine a population initially fixed for allele A, into which allele A,, which increases life-
span by 20%, invades (each copy of A, increases lifespan by 20%; mean lifespan: A;A, = 100
days, A|A, =120 days, A,A, = 140 days). As A, increases above 0, the lifespan distribution
becomes right-skewed and produces a mortality curve with a steeper increase in mortality
with age (higher b), faster deceleration (higher s; Fig. 4B) and longer plateau than expected
by the null model (Fig. 4), whereas at high frequencies the lifespan distribution becomes
left-skewed and the mortality curve is much flatter than expected from the null model.
Increasing the effect size of the allele to 40% results in a bimodal distribution of lifespans
and a humped-shaped mortality curve (kurtosis <—1.2; Wyszomirski, 1992). Modelling
how other patterns of inheritance affect the shape of u(7) is beyond the scope of this paper,
but should be easily accomplished now that a suitable null model has been established with
which to compare alternative distributions.

In (Mortality rate)
=N

40 70 100 130 160 190
Age (days)

Fig. 4. The predicted change in shape of u(7) when a single allele of large effect invades a population.
q is the frequency of A,, the invading allele. When ¢ =0, the lifespan distribution is normally dis-
tributed with 4 =100 days and ¢° = 120 days. As A, invades, the mortality curve shifts to the right
because the mean lifespan in the population shifts (because A, has a positive effect on lifespan). Note,
however, the substantial shift in the shape of u(7T) as the frequency of A, increases. Note also that all
mortality curves deviate from the expected curve for a normally distributed set of lifespans, except
when ¢ = 0 and ¢ = 1. Each curve was generated using 1 million data points. [See chapter 13 and Figure
13.1 in Lynch and Walsh (1998) for examples of how genes of major effect affect the shape of lifespan
distributions.]
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CONCLUSION

The lifespan of an individual is a quantitative trait, simultaneously affected by many
genes and environmental factors. The simultaneous effects of many genetic and environ-
mental factors generate normally distributed times-to-death in the population, which,
when translated into mortality curves, show the mortality deceleration and mortality
plateaus similar to the deceleration and plateaus observed in numerous organisms.
Therefore, questions about the shape of mortality curves must be reframed in terms
of deviations from null models (i.e. the mortality curves expected for quantitative traits).
We show how comparisons between the observed data and the null models can be achieved
with simple statistical tests, and that the results of these comparisons can be very inform-
ative regarding which questions about the shapes of mortality curves will be most
meaningful.
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