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• Jeptha Knob stands as a topographic high in Shelby 
County, Kentucky,  forming a semi-circular 
monadnock of ca. 2.65 mi diameter, which is a fault-
ringed central uplift surrounded by a series of annular 
extensional faults bisected and offset by multiple 
radial faults (Cressman, 1981).

• Having formed in the late Ordovician or early Silurian, 
Jeptha Knob sits on the western limb of the Cincinnati 
Arch and is composed of Ordovician carbonate 
megabreccias capped by flat-lying, lower Silurian 
dolomites (Seeger, 1969).

• Jeptha Knob was historically interpreted as a 
cryptovolcanic explosion, but magnetic and 
gravimetric data show lack of evidence of igneous 
activity (Seeger, 1969).

• Today, Jeptha Knob is most commonly interpreted as 
a Paleozoic complex impact crater (Andrews and 
Thompson, 2012), although definitive evidence 
remains elusive. Alternative origin hypotheses include 
an overpressured gas explosion (Pope and Read, 
unpublished manuscript) and a positive flower 
structure (Patchen et al., 2006).

Figure 1b. Generalized geological map of Jeptha Knob structure and locations 
of core drilling sites. Adapted from Pope and Read (unpublished manuscript).

Figure 1a. Map of Kentucky displaying select structural features, 
including ring-faulted features previously interpreted as 
“cryptoexplosion structures.” Jeptha Knob is found near the center 
of the figure. From Cressman, 1981.

• Thin sections prepared from three mineral exploration cores 
(JK-1, JK-2, JK-3) drilled by the Ozark Mahoning Company in 
1987 (Figures 1b and 2a).

• Petrographic analysis via plane-polarized light (PPL), cross-
polarized light (XPL) and ultraviolet (UV) excitation.

• Cathodoluminescence (CL) petrography of polished thin 
sections to examine carbonate zoning.

• Scanning electron microscopy (SEM) with energy dispersive 
X-ray spectrometry (EDS) to determine unidentified mineral 
phases.

• Analysis of stable carbon and oxygen isotopes.

• Additional stable carbon and oxygen isotope ratios, 
homogenization temperatures, and fluid inclusion salinity 
data incorporated from Patchen et al. (2006).

Objective
• With dolomitization of 

multiple carbonate units 
restricted to Jeptha Knob, 
this project aims to improve 
our knowledge of the 
dolomitization process, which 
in turn may provide new 
insights into the origin of the 
structure and how the 
dolomitizing fluid relates to 
regional basin brines. 

• This project hypothesizes 
that the dolomitization of the 
Jeptha Knob carbonates 
occurred during burial-
diagenesis via basinal fluid 
flow through fault zones. 
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Figure 2. Photomicrograph of dolomite sample in PPL (a), XPL (b), and UV (c) showing two dolomite populations (fine and medium crystalline), vuggy porosity, euhedral dolomite 
cement grown into pore spaces (filled with blue epoxy) and a cryptocrystalline apatite fragment (brown fragment on right in a).
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Figure 3. Photomicrograph of an argillaceous dolomite sample in PPL (a), XPL (b), and UV (c) showing two dolomite populations (fine and medium crystalline), vuggy and intercrystal 
porosity, and calcite cement (stained pink).

Figure 4. Photomicrograph of a dolomite sample in PPL (a), XPL (b), and UV (c) showing a fossil fragment replaced by cryptocrystalline apatite, locally dissolved and replaced with 
calcite and dolomite. The rock is made up of planar dolomite containing small vugs filled with dolomite and calcite cements, with calcite partially replacing dolomite in the pore. 

Figure 5. Photomicrograph of a dolomite sample in PPL (a), XPL (b), and UV (c) showing chalcedony that likely precipated into pore spaces. Dolomite matrix is partially replaced by 
pyrite.

Figure 6. Photomicrograph in CL showing sectoral zoning of 
calcite cement and concentric zoning of euhedral dolomite that 
lines pores.

Figure 7. High-magnification CL photomicrograph showing 
concentric zoning of euhedral dolomite crystals that line pores.

Figure 8. EDS maps revealing cryptocrystalline apatite fragments 
in  dolomite matrix with vuggy porosity.

Figure 9. EDS maps displaying two dolomite populations – top of 
image displays coarser, sub-to-euhedral population and bottom 
portion displays argillaceous population.

Figure 10. EDS maps highlighting dolomite matrix to the left and 
pyrite replacement of dolomite matrix to the right.

Figure 11. BSE image of three different apatite 
textures within porous dolomite matrix.

Figure 11. BSE image of pyrite pseudomorph after 
dolomite, prismatic quartz crystals, chert, and 
original dolomite matrix.

Figure 12. Plot of average salinity (wt. %) vs. average homogenization temperature 
(°C) of fluid inclusions. Data from Patchen et al. (2006).

Figure 13. Plot of oxygen isotope ratios vs. carbon isotope ratios. MVT-Dol and MVT-Cal outlines 
show trends of Mississippi Valley Type of replacement dolomites and late calcite cements, 
respectively (adapted from Keller et al., 2000).  M-LOD and M-LOC outline isotopic ranges of Late 
Ordovician marine dolomites and calcites, respectively (adapted from Savard et al., 1999). 

Figure 14. Plot of carbon stable isotope ratios vs. average salinity (wt. %). 
Salinity data from Patchen et al. (2006).

Figure 15. Plot of oxygen stable isotope ratios vs. strontium isotope ratios. Curve shows 
average 87Sr/86Sr variation of marine waters throughout the Phanerozoic (adapted from 
McArthur et al., 2012). Late replacement dolomite zone outlines trend of Mississippi Valley Type 
late replacive dolomite endmember (adapted from Shelton et al., 2009).
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• Planar euhedral to subhedral fabric destructive dolomite textures suggest dolomitization by warm fluids, which is supported by the δ18O values (this study) 
and fluid inclusion data (Patchen et al., 2006).

• Uniform δ18O – δ13C values of the two dolomite texture types points to a single dolomitization event.
• Zoned dolomite cement likely indicates continued dolomite precipitation by the same fluid following complete replacement of the precursor limestone.
• Calcite cementation succeeded dolomitization possibly following Mg-depletion of the dolomitizing fluid.
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