Enhanced Gas Recovery: Devonian Shale

KYCCS Focused Research

HB-1, Section 57

- Specifies: "At least one of the wells will test the Devonian shale for enhanced gas recovery and sequestration potential."
- Encourages: the Survey to "...use these funds to match available federal and private funds to the extent possible."

Geology of Devonian Shale

Key

Devonian Shale Reservoir

- Low permeability (microdarcies)
- Micro-porosity
- Organic-rich (up to 25% TOC)
- Thickness
 - -> 1,600 feet (eastern Kentucky)
 - -> 400 feet (western Kentucky)
- Kentucky's most active and prolific gas producer

Sunbury

Berea

Ohio

Cleveland

Three Lick Bed

Upper Huron

Middle Huron

Lower Huron

Olentangy

Rhinestreet

A "shale" well is...?

 Top Sunbury to top underlying carbonates

Cross Section

Cross Section Notes

- Perry to Pike Counties, eastern Kentucky
- Thickens across the Big Sandy Gas Field
- More organic-rich zones (blue & green)
- Grayer, less organic shales (yellow & red)
- Some organic-rich zones pinch out

GTI Cumulative Production

Industry rule of thumb is 300 MMcf per well

Cumulative Production Notes

- 50% of shale wells produce at least 692 million cubic feet (MMcf) in 50 years
- Long production history indicates large adsorbed gas content

Why Jest the

Devonian Shale?

CO₂ Enhanced Gas Recovery

- Demonstrated in coal
 - Low-permeability
 - Organic-rich
 - Fractured
 - Continuous
- Potentially huge storage volume
 > 25 billion tonnes

Production Data

Long-term, nearly flat decline

KYCCS.ORG

Production for some wells inclines

GTI Proprietary Data

Production Data Notes

- Long-term, nearly flat production suggests diffusion of adsorbed gas over time
- Some wells exhibit production incline, again suggesting adsorbed gas
- Indicates large volume of gas available to trap CO₂ as an adsorbed gas

Isotherms Indicate Preferential Adsorption

 $CO_2 = 5.3 \times CH_4$

Average CO₂: 42.9 scf/ton Average CH₄: 8.1 scf/ton

Standard cubic feet per ton

KYCCS.ORG

Isotherm Notes

- At a given temperature, as pressure is increased, the amount of gas adsorbed increases
- 5.3 volumes of CO₂ could displace a single volume of natural gas (CH₄)

CO₂/Sand Frac Study

- Yost, Mazza, & Gehr, 1993, SPE 26925
- Fast flowback (2 to 3 days)
- Preliminary production

 56% > N₂ frac wells
 4.8 x shot wells
- Consistent with CO₂ adsorption

Testing CO, Injection for Enhanced Gas Recovery in the Shale

Well Selection Criteria

- Standard of open-hole nuclear logs
- Uncased for logging and sampling

 Rotary sidewall cores, ECS, and others
- Detailed production data (line pressures?)
- Preferred: Nitrogen/foam or slickwater frac, sand propped (or not yet stimulated)

Site Selection Criteria

- Sufficient size pad for equipment
- Access for CO₂ delivery
- Operated by company willing to risk future production (assume liability)
 - Surface, royalty, and working interest owners agree
- Control of all wells within "area of review" for EPA Class V permit

Pre-injection: Data Acquisition

- Well sampling
 - Digital Logs, *Φ*, *k*, mineralogy, TOC, cores
 - Gas composition
 - Microseismic (VSP) or logging for fracture identification
- Stimulation
 - Injection rate, volume, pressure, breakdown pressure, flowback period
- Background MMV

KYCCS.ORG

Pre-injection: Modeling

Simulation

- Multi- *Φ*, multi-*k* model
- Production history match
- Cyclic Huff-'n'-puff (single well)
- CO₂ flood (multi-well)
- Determine optimum shut-in (soak) times and injection rates
- EPA permitting (must submit required data)
- Background MMV

Injection

- Injection volume, rate, pressure, and shut-in times
- Production data
 - Continuous, for injection and monitor wells
 - Rate & composition (variations in CO₂ content)
 - Pressure
 - Mass balance calculations

Post-injection

- History match & model verification
- Assessment & analysis
- MMV continues
- Reporting

Indicators of Success

Increase in gas production rate
Mass balance indicates CO₂ adsorption
After flowback and cleanup, pipeline quality gas

0);{C

Contact Info

- www.kyccs.org
- bnuttall@uky.edu
- 859-257-5500 x 174

