CO₂-Enhanced Oil Recovery, **Applying a Mature Technology** in Kentucky CO₂-EOR Sub-Project Meeting, January 11, 2008 Lexington, Ky.

> Sub-Project P.I. Marty Parris (mparris@uky.edu)

HB-1, Section 57 Highlights

- \$5,000,000 appropriated to KGS to conduct research addressing varied energy resource and sequestration issues.
- HB-1 thus has multiple goals addressed in sub-projects.
- CO₂-EOR sub-project: "quantify the potential for enhanced oil and gas recovery....using carbon dioxide."

Talk Outline

- Project goals
- National context of CO₂-EOR
- CO₂-EOR and its potential in Ky.
- CO₂-EOR mechanisms
- Going forward:

cs.org

- Short-term mileposts
- Advisory committee role
- Long-term mileposts

CO₂-Enhanced Oil Recovery Sub-Project Goals

- Facilitate and participate in pilot projects that test CO₂-EOR suitability of representative reservoirs and field conditions.
- Identify and trouble-shoot geologic, engineering, and economic challenges.
- Develop "best practices" criteria to be used in future CO₂-EOR projects.
- Evaluate carbon storage potential.

CCS.ORG

National Context of CO₂-EOR*

- First large-scale projects developed early 1970's in Permian basin, TX and NM.
- Permian basin dominantly miscible pattern flooding- recovered 7-25% additional of original-oil-in-place (OOIP).
- 2005- west Texas used ~1.4 BCFD of "new" CO₂ (\$10-20/ton) to produce 180,000 BOPD.
- Elsewhere, ~72 active projects in OK, WY, CO, MI, MS, NM, and Saskatchewan.

*National information from *Melzer (2007)*.

CO₂-EOR in Kentucky

- One active project: N₂/CO₂ huff-n-puff in Big Andy field (Lee and Wolfe Counties).*
- CO₂ trucked from ethanol plant in Loudon, TN.
- CO₂ costs ~\$87/ton to wellsite (no guaranteed availability).
- N₂ gathered using field deployed molecular membrane.
- Reservoir response and economics being evaluated.

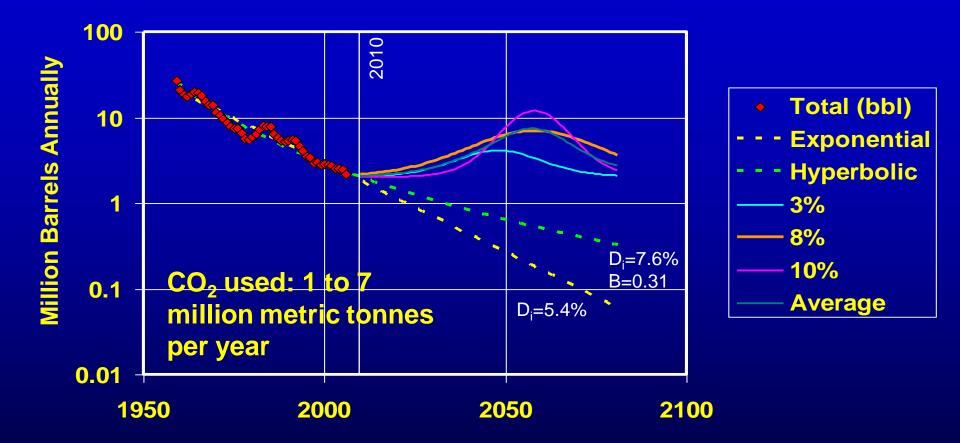
*Big Andy information courtesy of Bernie Miller.

Big Andy CO₂-EOR

Truck capacity= 20 tons CO2= 344,828 cu.ft. (STP)

KYCCS.ORG

*Photos courtesy of B. Nuttall.


And, Kentucky's potential?

- Ky. original-oil-in-place ~2.4 billion barrels (Nuttall, 2005, unpublished data)
- Remaining oil ~ 1.7 billion barrels; implies ~29% recovery efficiency
- Additional recovery @ 7%= 119 million barrels
- Bank et al. (2007) estimate 25 million barrels (SPE Paper 111282)

CS.ORG

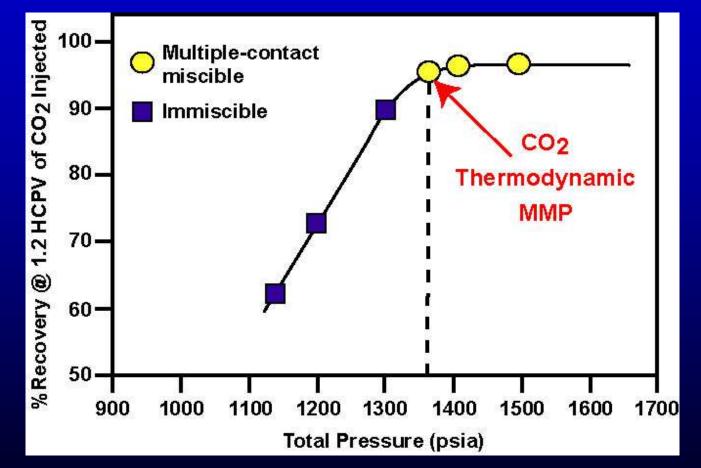
Kentucky's Potential Cont'd

Incremental production from CO₂ EOR: 60 to 200 million barrels

YGGS.

Modeling from Nuttall, unpublished.

CO₂-EOR Mechanisms

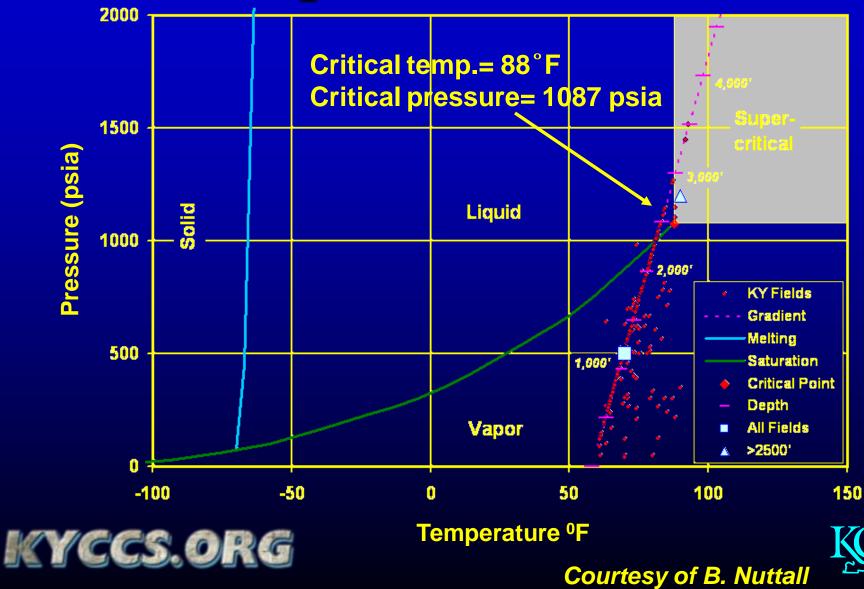

- Miscibility, or lack thereof, between injected CO₂ and oil is main factor influencing how oil is recovered.
- Miscibility is controlled by temperature, pressure, and oil composition.
- Miscible CO₂-EOR is most effective.
- Condensing/vaporizing mechanism between CO₂ and oil produces low viscosity single hydrocarbon phase in reservoir.

CO2-EOR Mechanisms Cont'd

Thermodynamic Minimum Miscibility Pressure (MMP) minimum pressure at which miscibility occurs

CO₂-EOR Mechanisms Cont'd

- In contrast, where reservoir pressure is low or the oil is heavy, injected CO₂ will be immiscible with oil.
- CO₂ unable to vaporize components heavier than C₆ and solubility is too low to lighten the oil.
- Recovery occurs primarily by:
 - Oil swelling
 - Reduce viscosity
 - Extraction of lighter hydrocarbons
 - Reservoir pressurization


Analyzing Ky. Reservoirs

- Tertiary Oil Recovery Information System (TORIS)- database developed by DOE to characterize national oil and gas resources
- In Ky. analyzed 46 largest reservoirs among 33 fields
- TORIS provides fundamental reservoir parameters (e.g. temperature, pressure, porosity, permeability) needed for characterization and modeling

Ky. Reservoirs and CO₂ Phase Behavior

Implications for Ky. Reservoirs

- Analysis of temperature and pressure gradients shows that for most Ky. reservoirs, conditions necessary for supercritical behavior will occur at depths >2500 ft.
- And, and analysis of 1660 fields shows that ~14% have sufficiently high temperature and pressure to expect supercritical CO₂.
- So, most Ky. CO₂-EOR projects will be immiscible.

CO₂-EOR Life Cycle and Carbon Storage

- Early Stage:
 - Capital expenditures of injection and production equipment
 - Purchase "new" CO₂
- Mature Stage:
 - Recycling of CO₂
 - Economic oil:CO₂ ratio
 - Maximum return on investment
- Twilight Stage:
 - Decreasing oil:CO₂ ratio, eventually subeconomic
 - Cont'd injection of CO₂ for storage driven by credits or tradable offsets

Weyburn Field- Example of EOR and Carbon Storage*

- Williston basin oil field (Saskatchewan) discovered in 1954
- CO₂ flood begun in 1996 w/ CO₂ from synfuels plant in North Dakota
- To date, >110 BCF CO₂ injected and 6 MMBO produced
- Looking forward, 22 million tons CO₂ to be stored and 130 MMBO produced over 20 year life of project

*Information from: <u>http://www.fossil.energy.gov/</u> news/techlines/2004/tl_weyburn_phase2.html

Going Forward- KGS Expertise and Capabilities

- TORIS database
- CO2-PROPHET: software developed by Texaco, as part of DOE cost share program, to calculate incremental oil produced from CO2-EOR.
 - Generates streamlines for fluid flow between injection and production wells
 - Calculates oil displacement and recovery along streamlines
- Schlumberger modeling software: Petrel and Eclipse

Going Forward- KGS Expertise and Capabilities

- Petra and ARC-GIS mapping software
- In-House Analytical Capabilities:
 - Petrographic and CL microscopy
 - Core housing and analysis facility
 - X-ray diffraction and fluorescence
 - Analyze oil field water chemistry
- Reservoir characterization expertise
- Need to contract engineering expertise

Near-Term Project Mileposts

- Lock-in industry participation
- Formulate business participation plan
- Address liability issues
- Form advisory committee:
 - -KGS head
 - -Subject matter experts
 - Industry representatives

Near-Term Cont'd

- Advisory committee duties:
 - Develop objective set of criteria for screening projects
 - -Screen and select projects
- Solicit pilot projects for review
- Develop time-line for project
 implementation

Long-Term Project Mileposts

- Implement projects w/ some likely to be concurrent
- Evaluate reservoir and economic performance
- Publish results

Project Success Partner Companies Safely & Successfully Produce Incremental Oil

KGS Develops Best Practice Expertise To Apply CO₂-EOR Over Range Of Reservation Types and Conditions

Screening and Scoping Process

- Assume CO2 is available
- Scoping processes addresses:
 - Can CO2 recover incremental oil?
 - If so, what rates and volumes?
 - What are investment and operating costs?

Reservoir Scoping

- Average reservoir pressure
- Thermodynamic MMP
- Viscosity
- Well patterns and stage of depletion
- Residual oil saturation to waterflooding
- Wettability
- Heterogeneity
- Injection well conformance
- Inject and produce fluids at economic rates

