Western Kentucky CO₂ Storage Test Principal Investigators: Rick Bowersox - Lexington Dave Williams - Henderson

an we manater with the same that do

KGS First Friday Seminar Lexington, Kentucky March 4, 2011

- The project proceeded in two phases:
 - Phase 1 (2009) got the well drilled and the first round of testing completed. Total cost ~\$7.3 million.
 - Acquired 24.1 miles of 2-D reflection seismic data and VSP
 - Drilled to 8,126 ft, cemented casing at 441 ft and 3,060 ft, and cut 395 ft of cores
 - Injected 18,454 barrels of brine and 323 tons of CO_2 (1,765 barrels) in the open wellbore below 3,060 ft

 Phase 2 (2010) completed a second round of testing and abandoned the injection zone. Total cost ~\$1.0 million.

- 3D seismic survey and VSP
- Plugged the well at 5,268 5,545 ft, abandoning the lower 2858 ft of the well, and constructed a 230-ft test interval at 5,038 5,268 ft
- Injected 4,265 barrels of brine and 367 tons of CO₂ (2,000 barrels)
- Plugged and abandoned the test interval at 5,037 5,275 ft
- Plugged the well at 3,942 3,477 ft and abandoned the Knox Dolomite interval, and plugged the casing at 800 ft with a cast iron bridge plug

Western Kentucky Project Timeline

Steps to Complete Phase 1 Testing

23 Months

Prior to drilling, 24.1 mi of new, high-quality 2D seismic data (Lines A-D) were acquired to provide subsurface structural and stratigraphic control at the wellsite, and to supplement existing older, lower-quality data (Line 7).

Phase 1: Drilling and Testing

- Drilling commenced on April 24, 2009, and was finished on June 14 after 63 days of drilling.
 - Casing cemented at 441 ft and 3,660 ft
 - The hole was left open hole casing to the bottom of the well at 8,126 ft for injection testing
- Seven cores, totaling 395 ft, were cut to test the reservoir and seal properties
 - Reservoir seals
 - New Albany Shale (30 ft)
 - Maquoketa Shale (31 ft)
 - Black River Limestone (61 ft)
 - CO₂ storage reservoirs
 - Knox Group (three cores, 243 ft total)
 - Precambrian Middle Run Sandstone (30 ft)

Marvin Blan #1

Strata penetrated in the Marvin Blan #1

shale (2787-3124 ft) with minor limestone interbeds. The Maquoketa Shale is the primary regional sealing unit. 521 ft Argillaceous dolomitic limestone. Black River carbonates are a regional sealing unit.

395 ft Dark grey-black micaceous siltstone and organic

123 ft Dolomite with minor dolomitic quartz arenite and shale interbeds.

12 ft Fabric-preserving dolomite with minor quartz arenite interbeds. 0.5 ft of sandstone overlies the Knox epikarst.

Beekmantown Dolomite

1567 ft Argillaceous to microcrystalline, grey dolomite with intervals of well-developed intercrystalline and vuggy porosity. Gunter Sandstone (5040-5230 ft) is a fine-grain, dolomitic quartz arenite; porosity is well-developed. Used as a waste disposal injection zone in north-central and western Kentucky. Non-porous intervals are regional sealing units.

Copper Ridge Dolomite

2050 ft Very fine-medium grain, partially colitic brown dolomite, locally cherty. Thin argillaceous intervals are used as marker beds for correlation. Basal 300 ft highly fractured. Used for waste disposal injection in north-central and western Kentucky. Mon-porous intervals are regional sealing units.

Eau Claire Formation

187 ft Glauconitic, micaceous shales; arkosic, glauconitic fine-grain sandstones, microcrystalline dolomite.

Middle Run Sandstone

542 ft Penetrated in the well; ~4500 ft thick as interpreted from 2D seismic data. Fine-grain arkosic sand in a reddish-brown hematite matrix; dark minerals present. Finely-laminated to cross-bedded, hard, and tight.

Structural contours on top of the Knox Group.

Stratigraphic correlation of the Knox Group and deeper strata.

Maquoketa Shale Core

- Maquoketa Shale was cored 2800-2831 ft to test its reservoir seal properties
- Analyses of seal properties
 - Threshold entry pressure
 - XRD mineralogy
 - Thin section petrography
 - Mechanical properties

Knox Group Cores

- Knox Group was cored in three intervals (total 243 ft) to test reservoir properties
 - "St Peter"-Beekmantown (123 ft)
 - Beekmantown-Gunter (101 ft)
 - Copper Ridge (19 ft)
 - Found porosity system to be a complex of preserved fabric, primary dolomite porosity, vugs, and fractures
- Extensive analysis program
 - Routine core analysis
 - Mechanical properties
 - XRD mineralogy
 - CO₂ core flood
 - Thin section petrography
 - Threshold entry pressure

"St. Peter Sandstone" (6 inches)

Epikarst infilled with sandstone (3 inches)

Unconformity

Knox Dolomite

Middle Run Sandstone Core

- Precambrian Middle Run
 Sandstone was cored 8000-8030 ft to evaluate its potential as a carbon storage reservoir
 - DOE-NETL grant for coring and analysis
- Analysis Program
 - Routine core analysis
 - Fracture orientation
 - XRD mineralogy
 - Thin section petrography
 - Mechanical properties
- Conclusion: Tight

5098

CMI log section and corresponding core showing vuggy porosity in the Beekmantown Dolomite. Bedding planes annotated on CMI log with green lines.

Fracturing in the Knox: fracture trends from CMI log interpretation

NNW Fracture Trend

Phase 1 Injection Project

In general, more porous rocks have higher permeability.

Potential Reservoir Volume in the Knox

Injection Testing

Testing began on July 25, 2009, and was completed on August 22

Two formation water samples were collected

- Initial injection of brine was into 285 ft intervals isolated by inflatable straddle packers on tubing. This test design had limited success.
 - Seven tests attempted
 - Results were mixed due to leaks and communication around the packers through the formation porosity system
- Program revised to full-wellbore injection of brine and CO₂ below a single packer in casing

Phase 1 CO₂ Injection

- Injected a total of 323 tons of CO₂ (1,765 barrels) below a packer set in casing at 3,603 ft
- After injection of CO₂ the well bore was flushed with 4,568 barrels of brine
- Long-term downhole pressure gauge was left in place to monitor pressure fall-off pending re-entry for Phase 2 testing

Wellsite at the completion of Phase 1

Long-term Borehole Pressure August 21, 2009-September 1, 2010

Phase 2: Injection Testing

- Phase 2 testing took place on August 30 September 30, 2010.
 - Cut 20 rotary sidewall cores through the injection interval to determine reservoir rock properties
 - Plugged the well at 5,268 5,545 ft, abandoning the lower 2,858 ft of the well
 - Constructed a 230-ft test interval at 5,038 5,268 ft by cementing a 5½-inch liner at 4,820-5033 ft
- Injected 4,265 barrels of brine and 367 tons of CO₂ (2,000 barrels)
 - Recorded pressure during injection and falloff to calculate reservoir permeability and volume
 - Recorded temperature logs before and after injection to determine which intervals were receiving the injected CO₂
- Recorded a 4-D vertical seismic program at more than 850 points around the well. Data was recorded both before and after CO₂ injection in an attempt to image the CO₂ plume.
- Abandoned the Knox Dolomite injection zone with cement plugs at 5,037 – 5,275 ft and 3,942 – 3,477 ft, exceeding EPA abandonment requirements (a single plug at 3,760 – 3,560 ft).

Phase 2 Injection Project

What we learned:

- The Knox Dolomite could serve as an effective CO₂ storage reservoir.
- There are excellent reservoir sealing strata in the Black River Limestone and overlying Maquoketa Shale, above the Knox Dolomite, that would prevent any CO₂ migration from the Knox Dolomite to the surface.
- Most of the West Kentucky Coal Field has Knox Dolomite, comparable to that in the KGS test well, that may be suitable for CO₂ storage.
- Additional evaluation of the Knox Dolomite will be necessary to fully determine its potential for CO₂ storage.

The potential area for CO₂ storage in the Knox Dolomite in western Kentucky is about 6,400 mi². More research is needed to determine the actual extent.

Where did the CO₂ go?

- The Knox Dolomite, under just the 1 acre well drill site, holds about 1.7 million barrels (71.4 million gallons) of brine that is about 200 times saltier than what is allowed in drinking water by Federal regulations.
- We injected a total of 3,765 barrels of CO₂ (690 tons). This is about 0.25% of the volume of water in the Knox Dolomite under the drill site.
 - Most of the CO_2 dissolved in the formation water and dissipated.
 - A small amount of CO_2 reacted with the formation water and rock to make new minerals.
- Pepsi uses 0.35% CO₂ to carbonate their sodas, and a can of beer has about 0.5% CO₂ carbonation in it.

About 1.7 million barrels of brine are in the Knox Dolomite under the 1-acre drill site:

3,785 barrels of CO₂ were injected in 2009 – 2010 *

*About 0.25% CO_2 dissolved in the brine. A can of beer has ~0.5% CO_2 carbonation in it.

There are about 328 million barrels of brine in the Knox Dolomite under the Blan Farm:

In the end, what did we get for \$8 million?

- 2D and 3D seismic surveys, and two VSPs.
- Well data from one of the deepest wells in western Kentucky:
 - Electric logs, including a formation imaging log
 - Cores from the New Albany, Maquoketa, Black River, and Knox (Beekmantown, Gunter, and Copper Ridge), with routine analysis, special core analysis, and petrography
 - The only Middle Run core in western Kentucky, with a similar core analysis program
 - Extensive sidewall cores, with routine analysis, from the Gunter
 - Water samples and analysis from the Gunter and Beekmantown
 - Injection test pressure data for the Knox, both brine and CO₂
 - Long-term pressure and temperature data from the Knox
- <u>Two</u> successful demonstrations of CO₂ injection in Knox Group reservoirs.
- An estimate of the carbon storage potential of the Knox, and sealing capacity of overlying strata in western Kentucky.
- Experience in operating this kind of project.

Acknowledgements

This research is being supported by a grant from the Commonwealth of Kentucky with additional contributions by the Energy and Environment Cabinet, the University of Kentucky, and a consortium of more than twenty industry partners. Principal contributors include:

> Western Kentucky Carbon Storage Foundation ConocoPhillips Company Peabody Energy E.ON U.S.

T.V.A. Illinois Office of Coal Development Illinois Geological Survey US Department of Energy – National Energy Technology Laboratory GEO Consultants, LLC Schlumberger Carbon Services Smith Management Company Wyatt, Tarrant & Combs, LLP

Access to the drillsite was graciously granted by Marvin and Brenda Blan, and without their cooperation this project would not have been possible.

KYCCS.ORG