## Kentucky Geological Survey CO<sub>2</sub> Storage Research Program

Principal Investigators: J. Richard Bowersox David A. Williams Brandon C. Nuttall Stephen F. Greb Warren H. Anderson Cortland F. Eble David C. Harris Discharge of  $CO_2$  to the atmosphere is under regulatory review, and subsurface storage may be required for existing facilities and the financing and construction of new facilities.



## CO<sub>2</sub> Sources, Capture, and Storage



Modified from www.ipcc.ch



## House Bill 1, August 2007

- Kentucky House Bill 1, passed in a special legislature session and signed into law in August 2007, appropriated \$5 million funding for KGS to research the storage and use of CO<sub>2</sub> throughout the Commonwealth.
- House Bill 1 mandates the drilling deep saline reservoir CO<sub>2</sub> storage demonstration wells in the East and West Kentucky Coal Fields, a CO<sub>2</sub> enhanced oil recovery (EOR) demonstration, and a CO<sub>2</sub> enhanced gas recovery (EGR) demonstration in the Devonian black shale.
- Additional funding was provided to the Center for Advanced Energy Research (CAER) at UK for research and development of carbon capture technology.





## **CO<sub>2</sub> Storage Principles**

- CO<sub>2</sub> is produced by burning carbonbased fuels (coal, oil, natural gas)
- CO<sub>2</sub> is captured at its source, compressed, and injected into deep saline reservoirs in a supercritical state
  - Free CO<sub>2</sub> in reservoir rock pores, displacing storage reservoir brine
  - Dissolved in storage reservoir brine
  - Reacts with minerals in the storage reservoir rock
- Overlying impermeable strata contain the CO<sub>2</sub> in the storage reservoir
- Surrounding shallow aquifers and surface area is monitored for leaks



#### Minimum CO<sub>2</sub> storage depth in Kentucky



Large-scale CO<sub>2</sub> storage will require supercritical conditions: reservoir pressure >1071 psi and temperature  $>88^{\circ}$  F. Supercritical  $CO_2$  is a dense fluid with the viscosity properties of a gas. The volume reduction is 250 times (0.4%) that of gaseous  $CO_2$ . However, it is less than water, and thus buoyant.



## **Assuring Security: Monitoring Options**



# 1. Surface and shallow groundwater

- Very late leak detection
- May be large annual variations in groundwater chemistry
- 2. Above-injection zone monitoring
  - First indicator
  - Monitors small signals
  - Annually more stable water chemistry, thus more sensitive
- 3. In injection zone plume
  - Oil-field type technologies
  - Will not find small leaks
- 4. In injection zone outside plume
  - Assure lateral migration of CO<sub>2</sub> and brine is acceptable



## CO<sub>2</sub> Leakage Mechanisms

- Reservoir Seal Leakage
  - Requires stored gas in the reservoir to overcome capillary entry pressure of the reservoir sealing interval
  - Seal will not leak unless this occurs
- Seal integrity
  - Faults
  - Fractures
- Human intervention
  - Old oil and gas wells greatest problem
  - Failures in CO<sub>2</sub> injection wells
  - Wells drilled after injection begins
- CO<sub>2</sub> diffusion to the surface through rock strata is infinitesimally slow



**Figure 5.26** Possible leakage pathways in an abandoned well: (a) and (b) between casing and cement wall and plug, respectively; (c) through cement plugs; (d) through casing; (e) through cement wall; and (f) between the cement wall and rock (after Gasda *et al.*, 2004).



## Monitoring CO<sub>2</sub> Plume Migration in the Sleipner Field, North Sea



**Figure 2** | Diagram of carbon dioxide storage at the Sleipner Field based on seismic images. Rising  $CO_2$  plumes impinge and spread out beneath thin mudstones within the reservoir before ponding beneath the top seal. This geometry causes a large increase in the  $CO_2$ -brine contact area, which will increase solubility trapping. Diagram redrawn from ref. 22, © 2007 Elsevier.



## World CO<sub>2</sub> Injection Projects



Figure 5.22 Comparison of the magnitude of  $CO_2$  injection activities illustrating that the storage operations from a typical 500-MW coal plant will be the same order of magnitude as existing  $CO_2$  injection operations (after Heinrich *et al.*, 2003).



## **Project Goals**

- Demonstrate CO<sub>2</sub> storage and EOR/EGR
- Demonstrate the integrity of reservoir sealing strata for long-term CO<sub>2</sub> storage
- Develop best practices for the evaluation of CO<sub>2</sub> storage in Kentucky deep saline reservoirs
- Publish the project results for use by government, industry, and the public
- Accomplish this project with consideration of the interests and concerns of industry and the citizens of the Commonwealth



## Western Kentucky Stratigraphy



#### **Regional saline reservoirs:**

- Mount Simon Sandstone
- St. Peter Sandstone

## Western Kentucky Stratigraphy



Just as important in an injection project are the sealing units:

- Eau Claire Formation
- Maquoketa Shale
- Ordovician carbonates
- Devonian Shales



Metamorphic and igneous rocks (*mostly seal*)

## Minimum CO<sub>2</sub> storage depth in Kentucky



# Research by the MRCSP and MGSC indicate that the critical point for $CO_2$ in the Midwest and Kentucky should occur at a depth of ~2350 ft.



#### **DOE Phase I CO<sub>2</sub> Storage Estimates for Kentucky**



While CO<sub>2</sub> EOR potential is significant, Devonian shales or deep saline reservoir storage will be needed to handle expected CO<sub>2</sub> volumes, currently 98.3 MT/yr.



#### The challenge for Kentucky is to demonstrate $CO_2 EOR/EGR$ and storage in diverse reservoirs with a limited number of tests.



### Marvin Blan #1, Hancock County

- Drilling commenced on April 24, 2009
- Seven cores cut to test reservoir and seal properties
  - Reservoir seals
    - New Albany Shale (30 ft)
    - Maquoketa Shale (31 ft)
    - Black River Limestone (61 ft)
  - CO<sub>2</sub> storage reservoirs
    - Knox Group (three cores, 243 ft total)
    - Precambrian Middle Run Sandstone (30 ft)
- Reached TD at 8126 ft on June 14 after 63 days of drilling





## Maquoketa Shale Reservoir Sealing Formation

- Maquoketa Shale was cored 2800-2831 ft to test reservoir seal properties
- Analyses of seal properties
  - Core analysis: impermeable
    - Porosity 0.4%
    - Permeability 1.63x10<sup>-5</sup> md
  - Compressive strength 17,264 psi
  - XRD mineralogy
    - 39% clays, 15% carbonates, 36% silicates, balance other minerals



## **Knox Dolomite Cores**

- **5098 ft** Knox Dolomite was cored in three intervals (total 243 ft) to test reservoir properties
  - "St Peter"-Beekmantown (123 ft)
  - Beekmantown-Gunter (101 ft)
  - Copper Ridge (19 ft)
  - Found porosity system to be a complex of preserved fabric, primary dolomite porosity, vugs, and fractures
    - Average porosity 6.7%
    - Fracture system trends NNW and dips to the SW
  - Knox sealing intervals variable
    - Porosity 0.4 to 10.4%
    - Permeability <0.0001 to 15 md

5099 ft

## Marvin Blan #1 Potential Reservoir Volume in the Knox

- Base
  - All data
  - Volume 240 Ac-ft
  - Storage 3200 T/Ac
  - Requires 208 Ac/MT
- Case 3
  - Porosity >5%
  - Volume 180 Ac-ft
  - Storage 2743 T/Ac
  - Requires 365 Ac/MT
- Case 8
  - Porosity >10%
  - Volume 41 Ac-ft
  - Storage 1022 T/Ac
  - Requires 978 Ac/MT



# CO<sub>2</sub> EOR in Kentucky

- CO<sub>2</sub> has been used for EOR for over 30 years
- Limited use of CO<sub>2</sub> in Kentucky to date despite very good results
- Advantages
  - Proposed coal gasification plants could provide a CO<sub>2</sub> source closer to our producing areas
  - Waste CO<sub>2</sub> may have value and could improve production in Kentucky oil and gas fields

#### • Problems

- CO<sub>2</sub> sources, cost, and pipeline infrastructure
- Nature of our oil reservoirs
  - Small size and shallow depths
  - Low reservoir temperatures
  - Extensive reservoir fracturing



#### Kentucky Oil and Gas FieldsCO<sub>2</sub> EOR/EGR Pilot Tests Devonian Shale



• Cumulative Production 780 MMBO and 5.6 Tcfg



## **CO<sub>2</sub> Enhanced Oil Recovery**

- Pilot site is Sugar Creek oilfield near Madisonville. It is an immiscible CO<sub>2</sub> flood (CO<sub>2</sub> gas in the reservoir).
- Eight oil producing wells and three monitoring wells surrounding the centrally located injection well.
- 8800 tons of CO<sub>2</sub> are budgeted for this pilot.
- CO<sub>2</sub> injection is planned for about 6-10 months into one injector, followed by water injection.
- KGS is providing funding and field and lab support to the MVA shallow groundwater program of this pilot.







## Devonian Shale EGR Test Success Measures

- Increased gas production
- Mass balance indicates CO<sub>2</sub> adsorption vs methane
- Minimal CO<sub>2</sub> content of produced gas after flowback and cleanup
- Marvin Blan #1 Results
  - est. 10% storage efficiency
  - est. 181 tons CO<sub>2</sub>/Ac possible storage



## **Additional Work**

- Testing planned for 2010, funded by DOE research award of \$1.6 million
  - Additional brine, possibly additional CO<sub>2</sub> injection
  - 3D VSP to image injection plume
  - Knox reservoir evaluation
- Plug and abandon the Marvin Blan #1 in compliance with State and EPA regulations
- Remediate drillsite
- Groundwater and soil gas monitoring through 2012



## **Regional Sequestration Partnerships**





#### Acknowledgements

This research is being supported by a grant from the Commonwealth of Kentucky with additional contributions by the Energy and Environment Cabinet, the University of Kentucky, and a consortium of more than twenty industry partners. Principal contributors include:

> Western Kentucky Carbon Storage Foundation ConocoPhillips Company Peabody Energy E.ON U.S. T.V.A. Illinois Office of Coal Development US DOE-NETL GEO Consultants, LLC Schlumberger Carbon Services Smith Management Company Wyatt, Tarrant & Combs, LLP





## **KYCCS.ORG**

