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Introduction and Motivation

The Kentucky Seismic and Strong-Motion Network (KSSMN) is an essential
facility, operated by the Kentucky Geological Survey at the University of
Kentucky, to monitor earthquakes in and around the Commonwealth and
to provide information on earthquakes and seismic hazards.

The KSSMN consists of 21 seismic stations, 14 of which are networked and
provide recordings for near-real-time analysis (Fig. 1).
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Figure 1. Permanent and currently operating temporary stations in the Kentucky
Seismic and Strong-Motion Network.

The KSSMN also operates temporary stations for special projects. Current-
ly, eight seismic stations are monitoring seismicity in Rome Trough as part
of the DOE-sponsored Conasauga Shale Research Consortium (CSRC), a
continuation of the 14-station KGS-sponsored Eastern Kentucky Micro-
seismic Monitoring Project (EKMMP). The project area experiences infre-
guent earthquakes, but numerous mine blasts (Fig. 2; Carpenter et al,,
2020).

Improving Seismic Monitoring with Machine Learning: Event Detection

Event Detection: GPD Picker (Ross et al., 2018)
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Figure 3. Probabilistic seismic event detection using GPD Picker. (a) Extraction of features from three-component seismograms (Z, N, and E) via decimations and applications
of multiple filters. Features are input into a trained connected convolutional neural network and probabilities of P-wave, S-wave, or noise are output. (b) Example of phase ar-
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Figure 2. Earthquakes and blasts from June 2015 through April 2019, located as
part during the EKMMP. Seismic stations EK are temporary stations installed for
this study, KY are permanent KSSMN stations used in this study. Stations from

other networks that were used for event analysis are also shown.

Problem: Attempting to detect small earthquakes
results in numerous noise triggers:

Of the > 65,000 triggers recorded during the
EKMMP, 43%, or ~28,000 were noise.
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Detriments to performace:
- Requires P- and S-wave detections at a station
- Associator cannot manage numerous low-probability detections

Station lat.
Station lon.
Time (sec)

Phase type

2. In moving window, predict which

picks are from same event as root

3. Aggregate predictions for all windows

4. Pick sequence is fully associated

GPD Picker Phases - Station: EK33
1e—7 Start Time: 2018-05-27T08:40:27.653900Z

Improving Seismic Monitoring with Machine Learning: Detection Association

Probability 0.994

GPD Picker Phases - Station: EK33
Start Time: 2018-05-27T08:40:27.653900Z

GPD Picker Phases - Station: EK20
Start Time: 2018-05-27T08:40:27.965000Z

The GPD picker is skilled, but also detects noise that resembles seismic waves. This is problematic when detecting microseismicity with few seismic stations: low probabili-
ty detections may be required from few stations and thus transient noise may cause false triggers. Associating detections using predicted travel times helps to remove
noise detections. We are evaluating two recently developed (Python) associators: PhasePApy (traditional time-based) and PhaseLink (deep-learning-based)

Probability 0.95

EK20 Figure 5. Example GPD detections for

g s e S e two probability thresholds: 0.994 (left)
- and 0.95 (right) at two Rome Trough

stations EK33 and EK20. Three compo-
nent seismograms (Horizontals: E-W,

N-S; Verticals: U-D) and corresponding
power-frequency-time plots (spectro-

grams) are shown. Higher probability

detections are more reliable, but some

are missed. Lower-probability detec-

Figure 4. Seismograms from a
mag. 0.8 earthquake (Figure 2).

Detection Association: PhasePApy (Chen and Holland, 2016)
Operational principles:

- Requires both P- and S-wave detections for a given station
- Calculates distances and event times from t- t,

- Associates clusters of stations with common event times.

- Trigger declared for =3 stations in cluster

Detection Association: PhaseLink (Ross et al., 2019)
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Figure 7. (left) lllustration of PhaseLink Recurrent-Neu-
ral-network- (RNN) based detection association. From
Ross et al. (2019)

0.022 A
0.020 A
0.018 A
0.016 A
0.014 A
0.012 A
0.010 A
0.008 A

0.006 A

Figure 8. Reduction of loss while training PhaseLink on
synthetic data created for multiple earthquake scenari-
os and using an earth model appropriate for Kentucky
and station locations shown in Figure 2.

tions include seismic waves, but more
noise.

Figure 6. lllustration of PhasePApy detection clustering. (a) 12 de-
tections at 4 stations have similar predicted event times. Only the
best-fitting at a given station are retained. (b) The location whose
distance to each station best fits the t - t distance (black star) is
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Next steps with PhaselLink

- Determine optimal GPD detection probability
- Optimize PhaseLink association. E.g.:
- Synthetic earthquake scenarios
- Number of detections per window
- Number of stations needed to trigger
- Simultaneous-event merging
- Maximum detection error (time uncertainty)
- Maximum distance to closest station
- Assess entire CSRC dataset.
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