Role of Caveolin-1 in EGCG-Mediated Protection Against Linoleic Acid-Induced Endothelial Cell Activation

Bernhard Hennig1,2,3, Yuan Yuan Zheng2, Eric J. Smart4, Michal Toborek5

Molecular Cell Nutrition Laboratory, College of Agriculture1, Graduate Centers for Nutritional Sciences2 and Toxicology3, and Departments of Pediatrics4 and Neurosurgery5, University of Kentucky, Lexington, Kentucky, USA.

Abstract:
Flavonoids can protect against inflammatory diseases such as atherosclerosis by decreasing vascular endothelial cell activation. Plasma microdomains called caveolae are abundant in endothelial cells and play a major role in regulating signaling pathways associated with the pathology of vascular diseases. We hypothesize that flavonoids are antiinflammatory by modulating caveolae-regulated cell signaling. We focused on the role of caveolae and its major protein, caveolin-1, in mechanisms of linoleic acid-induced endothelial cell activation and protection by the green tea epigallocatechin gallate (EGCG). Pretreatment with EGCG blocked fatty acid-induced caveolin-1, MCP-1 and COX-2 expression. Similar results were observed with NF-κB DNA binding activity. Caveolin-1 silencing blocked linoleic acid-induced expression of MCP-1 and COX-2. Exposure to linoleic acid rapidly increased phosphorylation of several kinases, including p38 MAPK, ERK, and Akt. Inhibitors of ERK and Akt down-regulated the linoleic acid-induced increase in COX-2 protein. Our data provide evidence that caveolae may play a critical role in regulating vascular endothelial cell activation and protection by flavonoids such as EGCG.

Introduction:

Results:

○ Caveolin-1 silencing blocked linoleic acid induced MCP-1 RNA expression

<table>
<thead>
<tr>
<th></th>
<th>Ctr-siRNA</th>
<th>Cav-1 siRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>EGGC (μM)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Caveolin-1 silencing reduces linoleic acid-induced activation of MCP-1. Endothelial cells were transfected with siRNA for caveolin-1 (Cav-1 siRNA) or control siRNA (Ctr-siRNA) and treated with EGGC, followed by exposure to linoleic acid. Cav-1, MCP-1 and 18S RNA expression were determined by real-time PCR. *Significantly different compared to control cultures. #Significantly different compared to cultures treated only with LA.

○ The Akt and ERK1/2 pathways are involved in linoleic acid-meditated COX-2 expression

The Akt and ERK1/2 pathways are involved in linoleic acid-mediated COX-2 activation. Endothelial cells were pretreated with or without inhibitors to Akt (LY294002, p38 MAPK (SB 203580), or ERK (PD98059), followed by exposure to linoleic acid (LA). Activation of COX-2 was determined by western blot analysis. *Significantly different compared to control cultures. #Significantly different compared to cultures treated only with LA.

Acknowledgements:
This research was supported in part by grants from NIH/NEHS (P20ES07380) and the University of Kentucky Agricultural Experiment Station.

Conclusions:
• Caveolin-1 silencing blocked linoleic acid-induced endothelial activation and inflammation.
• EGGC decreased fatty acid-induced NF-κB DNA binding activity and MCP-1 and COX-2 expression.
• Pretreatment with EGCG blocked fatty acid-induced caveolin-1 protein expression, suggesting that protective properties of EGCG may be caveolae-dependent.

EGCG blocks linoleic acid-induced COX-2 and caveolin-1 expression

EGCG and caveolin-1 silencing can both reduce linoleic acid induced NF-κB DNA binding. Endothelial cells were transfected with siRNA for caveolin-1 or with control siRNA and treated with EGGC, followed by exposure to linoleic acid. Electrophoretic mobility shift assay for NF-κB was performed with nuclear proteins extracted from endothelial cells. *Significantly different compared to vehicle control. #Significantly different compared to cultures treated only with LA.

EGCG blocks linoleic acid-induced COX-2 and caveolin-1 expression in a concentration-dependent manner. Cells were pretreated with either vehicle or EGGC, followed by exposure to linoleic acid (LA). Caveolin-1 (Figure A) and COX-2 (Figure B) protein activation were determined by western blot analysis. *Significantly different compared to vehicle control. #Significantly different compared to cultures treated only with LA.

Caveolin-1 silencing reduces linoleic acid-induced expression of COX-2

Caveolin-1 silencing reduces linoleic acid-induced activation of COX-2. After transfection, endothelial cells were treated with EGGC, followed by exposure to linoleic acid. Cell lysates were probed with Cav-1, COX-2 and β-actin antibodies. Protein expression of caveolin-1 and COX-2 was determined by western blot analysis. *Significantly different compared to control cultures. #Significantly different compared to cultures treated only with LA.

Caveolin-1 silencing reduces linoleic acid-induced expression of COX-2

The Akt and ERK1/2 pathways are involved in linoleic acid-meditated COX-2 activation. Endothelial cells were pretreated with or without inhibitors to Akt (LY294002), p38 MAPK (SB 203580), or ERK (PD98059), followed by exposure to linoleic acid (LA). Activation of COX-2 was determined by western blot analysis. *Significantly different compared to control cultures. #Significantly different compared to cultures treated only with LA.

The Akt and ERK1/2 pathways are involved in linoleic acid-meditated COX-2 activation. Endothelial cells were pretreated with or without inhibitors to Akt (LY294002), p38 MAPK (SB 203580), or ERK (PD98059), followed by exposure to linoleic acid (LA). Activation of COX-2 was determined by western blot analysis. *Significantly different compared to control cultures. #Significantly different compared to cultures treated only with LA.

EGCG blocks linoleic acid-induced COX-2 and caveolin-1 expression

EGCG blocks linoleic acid-induced COX-2 and caveolin-1 expression in a concentration-dependent manner. Cells were pretreated with either vehicle or EGGC, followed by exposure to linoleic acid (LA). Caveolin-1 (Figure A) and COX-2 (Figure B) protein activation were determined by western blot analysis. *Significantly different compared to vehicle control. #Significantly different compared to cultures treated only with LA.

EGCG blocks linoleic acid-induced COX-2 and caveolin-1 expression in a concentration-dependent manner. Cells were pretreated with either vehicle or EGGC, followed by exposure to linoleic acid (LA). Caveolin-1 (Figure A) and COX-2 (Figure B) protein activation were determined by western blot analysis. *Significantly different compared to vehicle control. #Significantly different compared to cultures treated only with LA.