What We Will Cover...

• Where do they grow?
• Varietal Options & Selection
• Fertility
• Cultural Practices & Height of Cut
• Diagnostics for Better Decision Making
Variatel Selection & Options

Three Main Cool Season Options

Turf Type Tall Fescue
Kentucky Bluegrass
Perennial Ryegrass
Turf Type Tall Fescue

- Bunch Grass - spreads in clumps
- Most drought tolerant of the three
- Good wear tolerance
- Recovery can be limited due to bunch growth habit
- Taller height of cut - generally 2” to 4” or higher
- Moderate establishment time (7-21 day germination generally)
Kentucky Bluegrass

• Good durability
• Moderate water requirements
• Best recovery of the three, good wear tolerance
• Rhizomal growth habit - sends out runners that spread and fill in
• Wide adaptability of cutting heights (varietal dependent) - 1/2” to 3+”
• Long establishment times (14 to 28 day germination)
• NTEP trials can be very useful in selecting varieties
• Can be more susceptible to root-born fungal pathogens (summer patch)
Perennial Ryegrass

- Bunch type grass
- High water requirement
- Poor wear recovery
- Good wear tolerance
- Wide adaptability of cutting heights - 1/4” or less to 4+”
- Quick establishment (7 +/- days germination)
- Can be more susceptible to foliar fungal pathogens (grey leaf spot)
What To Use?

- It depends
 - Blends are usually the most common approach
 - “Best of all worlds”
 - “Worst of some...?”
- Certain grass types are more prone to certain disease, fungus, etc.
- Pick what will work best for your climactic microconditions, irrigation abilities, anticipated use, time of year the facility will be utilized
- Be budget conscience - water, fertilizer, fungicides, seed are ALL EXPENSIVE and ADD UP!
Fertility
Fertility

• Develop a sound program tailored to your varieties, use schedule, recovery requirements and applicable state regulations

• For instance... in MD you can only apply 3.5 lbs. of Nitrogen PER YEAR to established turfgrass (tracks fall under this classification)

• Program should be based upon the needs of the plant and soil type you are growing in

• Soil & Tissue testing are KEY to developing and maintaining an effective nutrient program
Analysis Report

Account No.: 1793
Invoice No.: 1112020
Date Received: 04/26/2021
Date Analyzed: 04/27/2021
Lab Number: 19582

Results For:
- **Sample ID:** 1126280
- **Location:** BOEKHOLDER, MICHAEL
- **Address:** 810 S PENBROOK DRIVE MIDDLETOWN DE 19709

Extraction Method: Stomach 3

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Deficient</th>
<th>Low</th>
<th>Sufficient</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil pH</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrates, ppm N</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, ppm NH</td>
<td>4.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, ppm NH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>0 - 8 in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium, ppm N</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, ppm P</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, ppm P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium, ppm K</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium, ppm K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium, ppm Ca</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium, ppm Ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium, ppm Mg</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium, ppm Mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur, ppm S</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur, ppm S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron, ppm B</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron, ppm B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc, ppm Zn</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc, ppm Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese, ppm Mn</td>
<td>11.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese, ppm Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, ppm Cu</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, ppm Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium, ppm Na</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium, ppm Na</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEC Sum of Cations, meq/100g</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H % Saturation</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H % Saturation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A % Saturation</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A % Saturation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co % Saturation</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catted % Saturation</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg % Saturation</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg % Saturation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sufficiency Levels
- **Deficient:** 0
- **Low:** 25
- **Sufficient:** 50
- **High:** 75
- **U.M.D. P FIV:** 100

Results For:
- **Sample ID:** FH32021O1
- **Location:** FAIR HILL OVAL TRACK FAIR HILL MIDDLETOWN DE 19709

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Dry Basis</th>
<th>Deficient</th>
<th>Low</th>
<th>Sufficient</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen, % N</td>
<td>2.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus, % P</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium, % K</td>
<td>2.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium, % Ca</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium, % Mg</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur, % S</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc, ppm Zn</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese, ppm Mn</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, ppm Cu</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, ppm Ba</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum, ppm Mo</td>
<td>2.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium, % Na</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, ppm Al</td>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sulfur, % S

Phosphorus, % P

Potassium, % K

Calcium, % Ca

Magnesium, % Mg

Sulfur, % S

Zinc, ppm Zn

Manganese, ppm Mn

Copper, ppm Cu

Barium, ppm Ba

Molybdenum, ppm Mo

Sodium, % Na

Aluminum, ppm Al

B & A

Foliar nutrient applications should compliment adequate soil nutrients and soil pH. Consult an agronomist for nutrient sources and environmental conditions that may influence nutrient uptake.
Key Soil Test Items

• NOT a great indicator for Nitrogen (don’t use it for this!)
• Phosphorous (P) = 44 ppm (don’t overdo P!)
• Potassium (K) = 250 ppm to 280 ppm
• Calcium (Ca) = 3000 ppm (can be hard to achieve/cost prohibitive in some areas of the country)
• pH = 6 to 6.5 is IDEAL (best nutrient uptake for macro & micro nutrients)
• Ca/Mg ratio = 65/15
• K% = 3 to 6
• H% = 10 to 15 (may be off somewhat if other ratios are higher/lower)
Key Tissue Sample Items

- Very effective for determining what the plant is actually taking up from the soil
- Provides a “snapshot” to see how effective your nutrient application program is actually working
- Can help quickly identify nutrient deficiencies in the plant
- Helps “fine tune” your applications
General Recommendations

Turf Type: Tall Fescue

- Nitrogen
 - 87 to 130 lbs. N per acre per year (2 - 3 lbs./1000)
- P
 - Apply as needed
- Potassium
 - 72 to 109 lbs. K per acre per year (1.66 - 2.5 lbs./1000)
General Recommendations
Kentucky Bluegrass & Perennial Ryegrass

• Nitrogen
 • 175 to 260 lbs. N per acre per year (4 - 6 lbs./1000)

• P
 • Apply as needed per soil/tissue tests

• Potassium
 • 145 to 217 lbs. K per acre per year (3.3 - 4.15 lbs./1000)
Keep in mind...

• Some parts of the county, soils won’t allow you to achieve certain soil nutrient levels
 • Midwest has high Ca levels, but not a lot of soluble Ca (calcareous sands)
 • pH levels in calcareous soils can be 7+ and won’t most likely every drop lower
 • In locations where soils won’t allow “ideal” levels, supplemental applications of nutrients via a foliar application program are many times required
• Recommendations are for HIGH USE facilities that need rapid recovery from wear - reduce/adjust as your needs require
• General N to K ratio is 6 to 5 on all recommendations
When to Use

• Native Soils
 • TTTF = 1/3 in spring, 2/3 in fall
 • KB & Rye = 2 lbs. in fall, remainder spread from spring through late summer
 • Avoid high N apps mid-summer

• Sandy Soils
 • TTTF = 1/3 spring, 1/3 summer, 1/3 fall
 • KB & Rye = Higher in spring & fall, maintenance in summer
Aerate!

- Increases air/gas exchange in rootzone profile
- Controls thatch
- Softens the surface (allows better hoof penetration)
- Increases water infiltration rates
- Think of it as the turfgrass manager’s answer to plowing
Topdress!

- Controls thatch
- Creates a firmer, more stable surface
- Helps with surface moisture control
- Encourages increased sward density
- Can be VERY helpful when overseeding to create seedbed
- DO NOT mix sand and soil blends back and forth... pick on and stick!
Overseeding!

- Helps repair wear from use and environmental damage
- Introduces better varieties
- Increases overall sward density
- Turfgrasses are TEMPORARY... they need to be constantly rejuvenated
Height of Cut

• Provides cushion for hoof impact
• Extremely important in equine applications
• Can play a big role in track safety and wear resistance
• Generally accepted heights for cool season turf is 4” +/-
Diagnostic Tools
What should be in your “kit”

Must Have

• Soil Moisture Meter

• Should measure volumetric water content (vwc)
Nice to Have

- Longchamp Penetrometer
- CLEGG Hammer
- Shear Vane
• These tools HELP you to make better management decisions
• It is a TOOL... it’s not the end-all, be-all
• Every facility/track is different - tailor the data collection to your situation
• Remember... consistency is the end goal each and every day. Diagnostic tools should be used to help achieve that consistency!