Nutrient Management Plan

Macy Fawns
What is a Nutrient Management Plan?

1) Determine the total volume and amount of nutrients generated on the farm.

2) Determine soil fertility with bi-annual soil tests.

3) Determine nutrient application rates.
What is a Nutrient Management Plan?

4) Create a cropping plan for utilizing generated manure on a field-by-field basis for five years.

5) Implement the plan, keep records, and follow guidelines and regulations.
Who Needs a NMP and Why?

- Manure is valuable, if you use it correctly!
- Anyone who has animals confined and/or spreading manure.
- If inspected by DOW they will ask for a updated NMP.
- Protect stream, lakes, rivers, etc.
Types of Nutrient Management Plans

- Kentucky Nutrient Management Plan
- Comprehensive Nutrient Management Plan
Who can Write a Nutrient Management plan?

• Kentucky Nutrient Management plan
 - Producers
 - Conservation
 - Extension
• Comprehensive Nutrient Management Plan
 - Technical Service Providers
What is needed

- Soil test (at least two years or newer)
- Manure test
- Field map with acreages
Why is a Manure Test Important?

<table>
<thead>
<tr>
<th>Table 2.</th>
<th>N Value</th>
<th>P\textsubscript{2}O\textsubscript{5} Value</th>
<th>K\textsubscript{2}O Value</th>
<th>Total Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Estimate</td>
<td>$158.18</td>
<td>$265.85</td>
<td>$181.30</td>
<td>$605.33</td>
</tr>
<tr>
<td>Inside Actual</td>
<td>$318.06</td>
<td>$1007.50</td>
<td>$779.96</td>
<td>$2105.52</td>
</tr>
<tr>
<td>Outside Grazing</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Kentucky Nutrient Management Planning Guidelines (KyNMP)

Steve Rogers and Kyle Schenk, Entomology and Agricultural Engineering, and Jannada Caudert, Agriculture Extension Program
1. Nutrients Generated (As Excreted)

<table>
<thead>
<tr>
<th>Animal Type</th>
<th>Number of Animals</th>
<th>Percent Waste as Liquid</th>
<th>Average Weight (lbs)</th>
<th>Containment Period (days/year)</th>
<th>Animal Unit</th>
<th>Table 1 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>100%</td>
<td>1,400.0</td>
<td>1000</td>
<td>45</td>
<td>3.150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P₂O₅ 0.21 = 662</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K₂O 0.35 = 1,103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P₂O₅</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K₂O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P₂O₅</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K₂O</td>
</tr>
</tbody>
</table>

Step 1 Total = 1,418 662 1,103

2. Manure Generated (As Excreted)

Animal Unit Day x Manure/AU = Volume of Manure (gallons)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3,750</td>
<td>1.4</td>
<td>33,075</td>
<td>3,750</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 Total = 33,075 gallons

3. Water Added by Wastage or Cleaning

Gallons/Day x No. of Head x Confinement Period = Volume of Water (gallons)

- **Step 3 Total = 11,250 gallons**

4. Water Added by Feedlot Runoff

Width (feet) x Length (feet) x Days Before x Conversion = Feedlot Runoff (gallons)

- **Permeable Surfaces**
 - 0.75 x 100 x 180 x 18.75 = 63,349
- **Penimperable Surfaces**
 - 0 x 0 x 0 x 0 = 0

Step 4 Total = 63,349 gallons

5. Water Added from Rainfall minus Evaporation on Storage Pond

Width (feet) x Length (feet) x Days Before x Conversion = Net Rainfall on Storage Pond (gallons)

| Lagoon/Pond Surface Area | 120 | 120 | 180 | 11.25 | 73,890 |

Step 5 Total = 73,890 gallons

6. Total Volume of Manure Produced

Step 6 Total = 193,565 gallons

7. Weighted Nutrient Values Before Nutrient Losses

Step 7 Totals = 7.3 3.4 5.7 (lbs/1,000 gallons)
Phosphorus Threshold

- <400- Nutrient Applications can be based upon crop nitrogen requirements.
- 401-600 Phosphorus applications at rates not to exceed the estimate removal of the plant.
- 601-800 Phosphorus applications at rates not to exceed ½ of estimated removal of the plant.
- >800 applications are not longer allowed and need a drawdown strategy.
LIQUIDS WORKSHEET 2 - NUTRIENT BALANCE

<table>
<thead>
<tr>
<th>Tract</th>
<th>Field No.</th>
<th>Acres</th>
<th>Soil Test P Value (Mehlich 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>200</td>
</tr>
</tbody>
</table>

1. Crop or Crop Sequence/Rotation
2. Realistic Yield [Average from 5-10 Years on a per acre basis]
3. Plant Nutrients Needed or Allowed (Ibs/ac)
4. Adjusted P₂O₅ Application Rate According to Threshold
5. Fertilizer Credits (Ibs/ac)
6. Plant Nutrients Needed Minus Credits (Ibs/ac)
7. Nutrients in Manure (Ibs/1,000 gallons)
 Enter lab results in box on right to override Worksheet 1 values
8. Percent Nutrients Retained in System
 Table 1
 Enter Table 1 values or Enter zero if lab results are used in Step 7
9. Net Retained Nutrients in Manure (Ibs/1,000 gallons)
10. Percent of Available Nutrients
 Table 2
 Enter Table 2 value for N
11. Net Available Nutrients (Ibs/1,000 gallons)
12. Application Rate (1,000 gallons/ac)
 Application limitations may apply.
 Enter Chosen Application Rate in box on right
13. Net Application Amount for All Nutrients (1,000 gallons/ac)
14. Nutrient Needs (-) or Surpluses (+) (1,000 gallons/ac)

Uniform Application Rate: 12.904 gallons/ac
<table>
<thead>
<tr>
<th>Field No.</th>
<th>Acres</th>
<th>Soil Test Phosphorus (STP)</th>
<th>Crop Rotation / Sequence</th>
<th>Planned Application Date or Timing</th>
<th>Planned Application Rate (^2) (1,000 gal/ac)</th>
<th>Liquid or Commercial Fertilizer (L or C)</th>
<th>Actual Application Date</th>
<th>Actual Application Rate (^2) (1,000 gal/ac)</th>
<th>Weather at Time of Application (^3) (Cloudy, Raining, Sunny)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>200</td>
<td>Corn Silage (Ton)</td>
<td>Spring 2016</td>
<td>12</td>
<td></td>
<td>0</td>
<td>0</td>
<td>24 Hours Before</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>24 Hours After</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

1. Where land application is occurring under long term lease or agreement with adjacent landowner, fields must be included in the above table.

2. Fields that have a “High” soil test phosphorus (>400) should implement Best Management Practices (BMPs) to reduce the risk of nutrient movement to sensitive waterbodies. BMPs may include, but not be limited to: installing conservation buffers, reducing P2OS application rate, incorporating manure, adding chemical treatments to litter that tie up soluble P and keep it from moving over the landscape, and/or adjusting application timing.

3. It illegal to make land applications when the ground is frozen. It is recommended that land applications are not made within 48 hours of forecasted precipitation.
Setback Distance

Table A. Manure Application Setback Distances

<table>
<thead>
<tr>
<th>Setback Feature</th>
<th>Liquid Manure Operations</th>
<th>Dry Manure Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barn or Lagoon</td>
<td>Barn and/or Manure Storage Structure (Facilities)</td>
</tr>
<tr>
<td>Lake, river, stream (a defined channel with flow three months or more of the year), spring, or karst feature (e.g. sinkhole, depression, etc.)</td>
<td>150 feet</td>
<td>35<sup>c</sup> or 75 feet</td>
</tr>
<tr>
<td>Water well<sup>b</sup></td>
<td>300 feet</td>
<td>75<sup>c</sup> or 150 feet</td>
</tr>
</tbody>
</table>
Setback Distance

Table B. Setbacks and Siting Criteria

<table>
<thead>
<tr>
<th>Setback Feature</th>
<th>Barn or Lagoon</th>
<th>Land Application Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Injection</td>
<td>Other Method</td>
</tr>
<tr>
<td>Dwelling not owned by applicant, church, school, schoolyard, business, park or other structure to which the general public has access</td>
<td>1,500 feet</td>
<td>500 feet</td>
</tr>
<tr>
<td>Incorporated city limit</td>
<td>3,000 feet</td>
<td>1,000 feet</td>
</tr>
<tr>
<td>Lake, river, blue-line stream or karst feature</td>
<td>150 feet</td>
<td>75 feet</td>
</tr>
<tr>
<td>Water well not owned by applicant</td>
<td>300 feet</td>
<td>150 feet</td>
</tr>
<tr>
<td>Downstream water listed as Outstanding State Resource Water, Outstanding National Resource Water or Exceptional Water</td>
<td>1 mile</td>
<td>750 feet</td>
</tr>
<tr>
<td>Downstream public water supply surface water intake</td>
<td>5 miles</td>
<td>1 mile</td>
</tr>
<tr>
<td>Roadways, primary (state and federal)</td>
<td>150 feet</td>
<td>75 feet</td>
</tr>
<tr>
<td>Roadways, secondary (county)</td>
<td>150 feet</td>
<td>75 feet</td>
</tr>
</tbody>
</table>
Guidelines & Regulations

• Do not exceed ½ inches or 13,500 gallons per acre for one time application.
• Do not exceed 10 tons per ace for one time application of solids.
• Avoid applying to field without growing crop.
• Do not apply manure when the ground is frozen.
Keep Yourself Out of the Mud

• Nutrient management plans can be written for up to five years.

• Soil test should be taken every two years.

• You will still need a Nutrient management plan if you sell or buy manure.
Permit

• Kentucky No Discharge Operational Permit (Short Form B, Section 5)
 - General Permit
 - Expires, must re-apply
• Keep solid manure covered
III. SOURCE AND DESTINATION OF WASTES

Indicate the number of animals the facility is currently supporting or plans to support in the Delta water.

<table>
<thead>
<tr>
<th>Type of Animals (include approximate size per animal)</th>
<th>Number of Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total:

Current or planned method of waste storage: (Holding Pond, Holding Tank, Stock Pit, etc.)

Comments:

IV. FACILITY DESCRIPTION (Location)

Facility Name:

Waste Treatment Certification (WTC): Code and Description (if used, check appropriate box)

Location Address:

Comments:

V. Certification

Papers prepared by [Name] and [Name] under my direction and supervision in accordance with a system designed to assure that each step of the process is recorded accurately and with the information submitted to the department is complete and accurate. I am responsible for the preparation and submission of the report, and I certify that this report is true and correct.

Printed or Typed Name of Person Preparing Report:

Title:

Date準備ed:

Signature:

Date of Application:

Reference:

[Handwritten reference]
Record Keeping

- Use the included forms to make daily and weekly inspections.
- Note any deficiencies and the corresponding corrective actions taken.
- Maintain records of mortalities and how they were managed.
Review

• Nutrient management plan & implement (Good for 5 years, unless farm changes).
• Ag Water Quality Plan
• KY No Discharge Operational Permit
• Keep good records