The Effect of Load Carriage and Lower Extremity Strength on Plantar Pressures Obtained in the Barefoot Condition

Erin R. Pletcher, MS ATC, CSCS*, Heather M. Bansbach*, Takashi Nagai, PhD, CSCS*, John P. Abt, PhD, ATC FASCM†
*Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
†Sports Medicine Research Institute, College of Health Sciences, University of Kentucky, Lexington, KY

BACKGROUND
- Overuse lower extremity injuries, such as stress fracture, IT band syndrome and plantar fasciitis, are common in many active populations
- Improper load transfer during the stance phase of gait can cause injury to the forefoot and continue up the kinetic chain
- Plantar pressure measurements provide information on foot and ankle function during gait and weight bearing activity
- Abnormalities in these areas due to additional weight (military gear, sports equipment) or lack of muscular support may predispose an individual for injury

PURPOSE
- To establish if the addition of external load affects plantar pressure distribution in the barefoot condition
- To determine if isometric hip and ankle strength affects changes in plantar pressure distribution

SUBJECTS
Twenty-five physically active men (n=10) and women (n=15). Demographics shown in Table 1
- Physically active 3 days a week for a minimum of 30 minutes per day
- No current unresolved lower extremity injury
- No previous hip or ankle surgery
- Right leg dominant

EXPERIMENTAL DESIGN AND METHODS

INSTRUMENTATION
- Biodex System III Multi-joint System Pro
- Lafayette Instrument handheld dynamometer
- Novel emed®-x platform
- Dynamic plantar pressure

PROCEDURE
- Sidelying isometric ankle evertor strength and isometric hip abductor strength data was measured and recorded as percent of body weight (%BW)
- Plantar pressures in the barefoot condition were assessed using an emed®-x platform. Figure 1
 - Order of unloaded or loaded (10kg weighted vest) condition was determined by random assignment
 - Three-step approach at a self-selected pace for all trials
 - 5 trials with the right and left foot individually, until a total of 10 successful steps were recorded for both loaded and unloaded conditions

MAIN OUTCOME MEASURES
- Isometric ankle and hip strength (%BW)
- Averaged from 3 trials each
- Geometric plantar pressure variables (foot progression angle, subarch angle and arch index) were calculated within Novel Database Medical software package
- Average maximum force as a percent of body weight (MF%BW) and peak pressure (PP) for select regions of each foot as shown in Figure 2

STATISTICAL ANALYSIS
- All data were assessed for normality
- Changes in plantar pressure variables between an unloaded and loaded condition were assessed using a paired t-test or Wilcoxon signed-rank test
- To determine if there was a correlation between foot or hip strength and changes in plantar pressure, a Pearson Correlation Coefficient or Spearman's Rank Correlation Coefficients were used
- An alpha level of 0.05 was set a priori for all statistical analyses

RESULTS
- Average ankle evertor and hip abductor strength presented as percent body weight (%BW) is shown in Table 2
- Addition of external load significantly increased the following peak plantar pressure values: big toe, midfoot, lateral and medial hindfoot; the maximum force %BW of: metatarsal 1 – 4, total object, big toe, midfoot, 2nd toe, lateral and medial hindfoot; subarch angle; total contact area
- Significant negative correlations were found between changes with the addition of external load and right ankle strength as shown in Table 3
- No significant correlations were found with right hip strength or any left side strength variables

SUMMARY AND CONCLUSIONS
- Significant correlations suggest that increasing ankle evertor strength may offset increases in plantar pressure due to external load
- Early intervention utilizing an ankle strengthening program may help diminish the negative effects of carrying additional load and prevent future injury

Table 1. Demographics: Mean ± Standard Deviation

<table>
<thead>
<tr>
<th></th>
<th>Age (yrs)</th>
<th>Height (cm)</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>24.6 ± 4.8</td>
<td>171.0 ± 9.8</td>
<td>69.9 ± 11.9</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Average Strength Values (%BW)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Ankle Evertor Strength (%BW)</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Ankle Evertor</td>
<td>20.1 ± 4.6</td>
<td></td>
</tr>
<tr>
<td>Left Ankle Evertor</td>
<td>18.4 ± 3.6</td>
<td></td>
</tr>
<tr>
<td>Right Hip Abductor</td>
<td>139.5 ± 41.0</td>
<td></td>
</tr>
<tr>
<td>Left Hip Abductor</td>
<td>138.1 ± 35.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Significant Right Foot Correlations

<table>
<thead>
<tr>
<th>emed Variable</th>
<th>Ankle Evertor Strength (%BW)</th>
<th>correlation coefficient</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd Toe Maximum Force (%BW)</td>
<td>-.475</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>Total Object Contact Time (ms)</td>
<td>-.490</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>Total Object Maximum Force (N)</td>
<td>-.499</td>
<td>0.011</td>
<td></td>
</tr>
</tbody>
</table>