ABSTRACT

Background: An observational tennis serve analysis (OTSA) tool was developed using previously established body positions from three-dimensional kinematic motion analysis studies. These positions, defined as nodes, have been associated with efficient force production and minimal joint loading. However, the tool has yet to be examined scientifically.

Purpose: The primary purpose of this investigation was to determine the inter-observer reliability for each node between two health care professionals (HCPs) that developed the OTSA, and secondarily to investigate the validity of the OTSA.

Methods: Two separate studies were performed to meet these objectives. An inter-observer reliability study preceded the validity study by examining 28 videos of players serving. Two HCPs graded each video and scored the presence or absence of obtaining each node.

Discriminant validity was determined in 33 tennis players using video taped records of three first serves. Serve mechanics were graded using the OSTA and categorized players into those with good (≥ 5) and poor (≤ 4) mechanics. Participants performed a series of field tests to evaluate trunk flexibility, lower extremity and trunk power, and dynamic balance.

Results: The group with good mechanics demonstrated greater backward trunk flexibility (p=0.02), greater rotational power (p=0.02), and higher single leg countermovement jump (p=0.05). Reliability of the OTSA ranged from K = 0.36-1.0, with the majority of all the nodes displaying substantial reliability (K>0.61).

Conclusion: This study provides HCPs with a valid and reliable field tool used to assess serve mechanics. Physical characteristics of trunk mobility and power appear to discriminate serve mechanics between players. Future intervention studies are needed to determine if improvement in physical function contribute to improved serve mechanics.

Level of Evidence: 3

Key words: Functional testing, kinematic analysis, tennis serve

The authors wish to thank Dennis Van der Meer, Bruce Elliott PhD, Mark Kovacs PhD, Kathleen Stroia MS, ATC, PT, Todd Ellenbecker DPT, Paul Lubbers PhD, Raphael Bahamonde PhD, Murphy Jensen, and the Women’s Tennis Association Sport Sciences & Medicine staff for their contributions to the development of the serve analysis tool.

CORRESPONDING AUTHOR

Natalie L. Myers
210c Charles T Wethington Building
900 South Limestone
Lexington, KY 40506-0200
E-mail: natalie.myers@uky.edu
INTRODUCTION

An effective serve is a key component and can be a major weapon for success in tennis. Many coaches and health care professionals (HCPs) would agree that primary outcomes when developing and teaching the serve are to improve performance (specifically serve velocity) and to prevent injury.1 Since the serve is the shot that initiates the start of each point, and it accounts for 60% of all strokes it is arguably the most important and predominant shot of the service game.2 The complex sequence of movements involved in the serve along with its repetitive nature makes it one of the most commonly researched strokes in the game of tennis. A player showing true mastery of the stroke is able to utilize the kinetic chain through a sequence of motions that originate at the lower limbs. These lower limb actions are followed by trunk rotation that ultimately leads to upper limb rotation.3 However, alterations in the kinetic chain during the serve may have implications on injury and performance.

Researchers investigating the biomechanical demands associated with the tennis serve have successfully targeted the threats to serve performance and upper limb loads that contribute to upper extremity injury.1,3-11 Each of these researchers utilized three-dimensional (3D) motion analysis to investigate the kinematics and kinetics that accompany the serve. 3D analysis has been widely accepted by researchers as the gold standard in movement analysis.12 However this technique cannot be easily utilized on court (outside environment) and is costly and time-consuming for HCPs and coaches who implement screening programs to plan protocols.13-15 Consequently, a field-based observational analysis may be more practical for HCPs and coaches to evaluate tennis serve mechanics.

A field-based observational analysis must be quick, easy to use, allow a HCP or coach to provide almost immediate feedback, and demonstrate reliability and validity. With an understanding of the biomechanical demands required during the tennis serve, researchers created a clinically applicable observational tennis serve analysis (OTSA) tool to evaluate the mechanics of the serve. The tool, initially described in 2008,16 and later updated in 201317 provided a detailed framework of specific positions representing normal mechanics, abnormal mechanics, and potential strategies to improve altered mechanics.17 The OTSA was refined in 2013 to be performed on the court and to include video, in order to help improve the effectiveness and applicability of the analysis. The analysis assesses key body positions and motions throughout the kinetic chain that have been found to be associated with optimal ball speed and efficient force production for creating maximal energy with minimal energy expenditure. Additionally, these body positions help to mitigate joint loading to protect against injury. These specific body positions and motions have been defined as “nodes” and have been compiled through 3D motion analysis studies.1,3-11,18 The framework can be used visually to evaluate the presence or absence of the nodes during the service motion.

The investigations reported in this paper were accordingly designed to determine the reliability and validity of the OTSA tool. The primary purpose was to determine the inter-observer reliability for each node between two health care professionals that developed the OTSA. It was hypothesized that the reliability would be greater than 0.419 for the majority of the nine nodes of the OTSA. The secondary purpose was to investigate the validity of the OTSA by determining if a series of field tests to evaluate trunk flexibility and power, lower extremity power, and dynamic balance would discriminate between players with good and poor serve mechanics as assessed by the OTSA. The authors’ hypothesized that players demonstrating good serve mechanics would perform better on a series of musculoskeletal field tests compared to those with poor serve mechanics.

METHODS

Two separate studies were undertaken to meet the objectives of performing a validation and reliability study. In order to be transparent in the methods and for clarity, the studies methods and results sections have been subdivided into two components.

Subjects

Two samples of participants were used to document the reliability and validity of the OTSA. To determine the inter-observer reliability of the OTSA video data from 28 professional women's tennis players were analyzed. All players were actively participating on the professional tour. Players were excluded...
if diagnosed with a neurological disorder, or had a history of fracture and/or surgeries within a year of the video collection. The research team received a waiver of consent from The Lexington Clinic Orthopedic Research Review Board.

To investigate the validity of the OTSA a cross-sectional study was implemented on 33 healthy non-professional tennis players. Player characteristics are detailed in Table 1. Players were considered eligible if they participated in tennis at least once a week (college, high school, or recreational), had a United States Tennis Association National Tennis Rating (USTA NTR), and were not under medical care for a musculoskeletal condition that affected tennis play. Players were excluded if any of the players had been diagnosed with a neurological disorder, or had a history of fractures and/or surgery within the past year. Prior to participation, all players gave informed consent approved by the University of Kentucky Institutional Review Board.

Procedures

Observational Tennis Serve Analysis (OTSA) Tool

The Women’s Tennis Association (WTA) in conjunction with the Shoulder Center of Kentucky (Lexington, KY) developed the OTSA as a field-based tool that can be used to assess tennis serve mechanics. The OTSA is divided into nine components, the first eight components are called nodes, and the last component is as assessment of motion. The first eight nodes are evaluated at maximal knee flexion while the last component is assessed during the entire serve motion, and represents the composite motion of the entire serve. Each of the eight nodes and the composite motion are graded separately as present or absent, using specific criteria that define efficient and inefficient mechanics (Table 2). If a node is graded as present a score of one is recorded for that particular node, whereas a node that is graded absent is recorded as zero. A composite score is totaled by taking the sum of the individual nodes, with a maximum score of nine representing excellent mechanics, and a zero representing poor mechanics.

INTER-OBSERVER RELIABILITY

A retrospective analysis was performed to determine the inter-observer reliability of the OTSA. Twenty-eight service videos were supplied independently to two observers, an orthopedic surgeon (WBK) and a licensed physiotherapist (BS). Each video contained one service trial from the deuce court during match play. The digital camera was placed at the back corner of the court at approximately 45° angle to the player's back. The observers were blinded to player name. Both observers were experienced in tennis sports medicine (combined experience of 40 years) and were instrumental in creating the OTSA tool. Each observer independently evaluated each serve, using a standardized scoring sheet. The observers reviewed the videos as much as needed using slow motion and freeze-frame during maximal knee bend. The two observers recorded categorical data for each of the nine components on each player.

VALIDITY

Prior to all data collection for the validity portion of this study each player underwent a standardized 10-minute warm-up period that included jogging, lower and upper extremity mobility drills, and no more than 10 practice serves from the deuce court. Following the warm-up, players were asked to perform three of their best first serves. Each service trial was captured using two digital cameras (Panasonic HDC-HS60, Hamburg, Germany). One camera was positioned anteriorly to the participant, 20 feet from the baseline “T” of the court at a 20° angle. The second was positioned posterolaterally to the participant, 14 feet from the baseline “T” of the court at a 45° angle (Figure 1). These two camera positions were chosen as they elicited the best angles for viewing all nine components associated with the OTSA.
Table 2. Observational Tennis Serve Analysis Tool Grading Scale

<table>
<thead>
<tr>
<th>Node</th>
<th>Efficient Mechanics</th>
<th>Picture of Good Mechanics</th>
<th>Inefficient Mechanics</th>
<th>Picture of Bad Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1: Foot</td>
<td>Good: Back foot stays behind front foot</td>
<td></td>
<td>Bad: Back foot stays in front of front foot</td>
<td></td>
</tr>
<tr>
<td>Node 2: Knee</td>
<td>Good: Both knees to bend greater than 15°</td>
<td></td>
<td>Bad: Both knees bend less than or equal to 15°</td>
<td></td>
</tr>
<tr>
<td>Node 3: Counterhip Rotation</td>
<td>Good: The hip on back side is rotating away from the net</td>
<td></td>
<td>Bad: The hip on back side is not rotating away from the net</td>
<td></td>
</tr>
<tr>
<td>Node 4: Posterior hip tilt</td>
<td>Good: The hip on back side is dropping towards the ground</td>
<td></td>
<td>Bad: The hip on back side is not dropping towards the ground</td>
<td></td>
</tr>
<tr>
<td>Node 5: Hip Lean</td>
<td>Good: The hip on front side is not leaning forward towards the net</td>
<td></td>
<td>Bad: The hip on front side is leaning forward towards the net</td>
<td></td>
</tr>
<tr>
<td>Node 6: X-Angle</td>
<td>Good: x-angle describes the relationship between the shoulders and the hips and should be ≈ equal to 30°</td>
<td></td>
<td>Shoulders don’t rotate behind the hips</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bad: the x-angle is less than 30°</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shoulders rotate too far behind the hips</td>
<td></td>
</tr>
<tr>
<td>Node 7: Trunk</td>
<td>Good: Trunk rotation around a vertical axis</td>
<td></td>
<td>Bad: No trunk rotation, lateral trunk bending only, lumbar hyperextension, hyper-rotation, or hypo-rotation</td>
<td></td>
</tr>
</tbody>
</table>
chloride (PVC) pipes were used to create an angle to record trunk flexibility. One PVC pipe (1 meter long) was placed on the ground in between the foot and the knee in the coronal plane. Another PVC pipe was placed behind the players back and between the arms while the hands were placed on the hips. Trunk flexibility was expressed by the direction in which the serving shoulder was moving (backward or forward). For example, backward rotation for a right-handed server was performed by kneeling on the left knee while positioning the right foot in front of the kneeling leg and instructed to rotate the serving arm backwards. Forward flexibility was performed in an exact manner except players were kneeling on the right leg and instructed to rotate the serving arm forwards. Participants were asked to rotate as far as possible without losing balance and maintaining correct posture. The examiner stood behind and above the players and took a snapshot using a digital camera at the end range of motion.

ImageJ, an open source imaging processing system (https://imagej.net) was used to calculate the

Table 2. Observational Tennis Serve Analysis Tool Grading Scale (continued)

<table>
<thead>
<tr>
<th>Efficient Mechanics</th>
<th>Picture of Good Mechanics</th>
<th>Inefficient Mechanics</th>
<th>Picture of Bad Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 8: Arm Good: Shoulder in line with the plane of scapula</td>
<td></td>
<td>Bad: Hypercocking – shoulder behind plane of scapula</td>
<td></td>
</tr>
<tr>
<td>Assessment of Motion 9: Composite Motion of Kinetic Chain Good: Use knee flexion and back leg drive to maximize ground reaction forces that push the body upward from the cocking position into ball impact</td>
<td></td>
<td>Bad: Use trunk muscles to pull the trunk and arm from cocking into ball impact</td>
<td></td>
</tr>
</tbody>
</table>

Note: Evaluate nodes 1-8 at maximum knee bend. Composite motion of kinetic chain should be evaluated throughout entire motion.

One member of the research team assessed serve mechanics of all participants' using the OTSA. This member of the research team was familiar with the OTSA and had previously developed substantial intra-observer reliability (Table 3). Players were categorized into two groups based on their OTSA score; those with a composite score of ≥ 5/9 on the OTSA were considered to have good serve mechanics (n = 16), whereas those with a score of ≤ 4/9 were considered to have poor serve mechanics (n = 17). Serve videos were reviewed one week apart, and the intra-observer reliability for the composite score was excellent (ICC = 0.95, 95% Confidence Interval: 0.84, 0.98). Following the recording of the serves each player underwent a series of field tests that measure aspects of kinetic chain functional capability: trunk flexibility, single and double leg countermovement vertical jump (CMJ), trunk rotational power, and dynamic balance.

TRUNK FLEXIBILITY

A variation of Aragon et al trunk rotation flexibility measure was adopted for this study. Two polyvinyl chloride (PVC) pipes were used to create an angle to record trunk flexibility. One PVC pipe (1 meter long) was placed on the ground in between the foot and the knee in the coronal plane. Another PVC pipe was placed behind the players back and between the arms while the hands were placed on the hips. Trunk flexibility was expressed by the direction in which the serving shoulder was moving (backward or forward). For example, backward rotation for a right-handed server was performed by kneeling on the left knee while positioning the right foot in front of the kneeling leg and instructed to rotate the serving arm backwards. Forward flexibility was performed in an exact manner except players were kneeling on the right leg and instructed to rotate the serving arm forwards. Participants were asked to rotate as far as possible without losing balance and maintaining correct posture. The examiner stood behind and above the players and took a snapshot using a digital camera at the end range of motion.
angle of rotation using the PVC pipes as landmarks (Figure 2). The averages of three trials for both backward and forward flexibility were used for data analysis. Total arc of motion was calculated by adding backward and forward rotation angles together for each subject. Excellent inter-rater reliability of the measurements were established prior to starting data collection using the data of six participants for both forward (ICC = 0.99, 95%CI=0.93-1.00) and backward flexibility (ICC = 0.99, 95%CI=0.99-1.00).

TRUNK ROTATIONAL POWER
The field test of Cowley and Swensen22 for the power component of core stability was modified so that in addition to measuring the distance the medicine ball traveled, power was calculated by power (Watts) = (force x distance)/time.24 Players’ arm lengths were measured bilaterally from the tip of the acromion process to the radial styloid process.25 Each player was instructed to sit with both feet flat on the ground shoulder width apart. The elbows were extended and supinated, and the 5th digits from the left and the right hands were touching. A 2.72 kg medicine ball was placed in the participants’ hands. Each player was then instructed to maintain a flat back and to lower the torso to a 45° hip angle; this position was confirmed with a standard goniometer. Lastly, players were asked to rotate the trunk to approximately 90° so the serving arm moved backwards (Figure 3a), and to perform an explosive contraction of the core musculature using the arms as levers to project the medicine ball to the opposite side of rotation. The medicine ball was released from the hands when the player reached the opposite knee (Figure 3b). Participants were given up to five practice trials. A one to two minute rest period was given between practice and actual testing. The average of the three trials were used for data analysis.

Table 3. Intra-observer reliability performed by one experienced sports medicine professional evaluating the service videos of 13 professional players

<table>
<thead>
<tr>
<th>Node</th>
<th>Description</th>
<th>Kappa Coefficient</th>
<th>Level of Agreement (%)</th>
<th>95% Confidence Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td>Foot Position</td>
<td>1.0a</td>
<td>100</td>
<td>1.00, 1.00</td>
</tr>
<tr>
<td>Node 2</td>
<td>Knee Position</td>
<td>0.75b</td>
<td>92</td>
<td>0.29, 1.21</td>
</tr>
<tr>
<td>Node 3</td>
<td>Counterhip Rotation</td>
<td>0.63b</td>
<td>92</td>
<td>-0.07, 1.33</td>
</tr>
<tr>
<td>Node 4</td>
<td>Posterior Hip Tilt</td>
<td>0.75b</td>
<td>92</td>
<td>0.29, 1.21</td>
</tr>
<tr>
<td>Node 5</td>
<td>Hip Lean</td>
<td>0.83b</td>
<td>92</td>
<td>0.51, 1.15</td>
</tr>
<tr>
<td>Node 6</td>
<td>X-Angle</td>
<td>0.64b</td>
<td>85</td>
<td>0.20, 1.10</td>
</tr>
<tr>
<td>Node 7</td>
<td>Trunk Position</td>
<td>1.0b</td>
<td>100</td>
<td>1.00, 1.00</td>
</tr>
<tr>
<td>Node 8</td>
<td>Arm Position</td>
<td>0.75b</td>
<td>92</td>
<td>0.29, 1.21</td>
</tr>
<tr>
<td>Assessment</td>
<td>Composite Motion of Motion 9</td>
<td>0.58c</td>
<td>85</td>
<td>0.05, 1.11</td>
</tr>
</tbody>
</table>

aIndicates almost perfect level of agreement (\geq 0.81)

bIndicates substantial level of agreement (0.61 to 0.80)

cIndicates moderate level of agreement (0.41-0.60)
COUNTERMOVEMENT VERTICAL JUMP

Lower extremity power was assessed with double and single leg CMJ. All players were asked to maintain an upright position followed by a quick crouching action to propel the body into a maximal vertical jump. The participants were instructed to jump vertically as high as possible while keeping the legs straight in the air. The use of the arms to reach as high as possible was permitted as part of the movement. A familiarization period consisted of up to three practice jumps for both the double and single leg CMJ. A rest period of two minutes was given in between double and single legged jumps. The single leg jump was performed on the dominant leg (defined as the ipsilateral leg as serving arm).

A standard video camera was placed anteriorly to each player so the entire movement was filmed (medicine ball release to ground contact). All videos were uploaded and analyzed using video motion-analysis software (Dartfish 8 ProSuite; Dartfish, Fribourg, Switzerland) where distance in meters and time in seconds were calculated. The video camera was calibrated using a reference distance prior to the task. A meter stick was placed horizontally next to the player to calibrate the video recording of the ball toss. This step was essential in measuring distance within video motion-analysis as it provided a known distance in order to compute the distance each person threw. The start time of the movement was defined as the point in which the medicine ball crossed over the opposite leg just before release and ended at ball contact with the ground. The duration of the event was used to calculate power. A member of the research team used these same time points to measure the distance the medicine ball traveled in meters. The weight of the medicine ball was converted into 26.64 newtons, and represented force, the distance was represented in meters, and the time in seconds. Excellent inter-rater reliability of the measurements was established using the data of six participants for trunk rotational power (ICC = 0.98, 95%CI: 0.90-0.99).
In combination with the reliability statistics, several researchers have suggested the proportion of positive agreement be calculated to provide readers with a clearer understanding of reliability. Furthermore, this proportion should be considered when a kappa paradox is present, in which a low kappa statistic accompanies a high level of observed agreement between observers. When this paradox is present, interpretation of the kappa on its own may not be meaningful, and calculation of the proportion of positive agreement should be generated to interpret the results. The following equation was used to calculate the proportion of positive agreement using the same data within the 2 x 2 contingency tables exported from SPSS when generating Kappa statistics.

\[P_{pos} = \frac{2a}{(N + a - d)} \]

\(N \) = # of observations
\(a \) = true positive
\(d \) = true negative

Excellent inter-rater reliability of the measurements was established using the data of six participants for both double leg (ICC = 0.99, 95%CI= 0.98-1.00) and single leg (ICC = .97, 95%CI=0.80-0.99). The average of the three double leg and single leg CMJs were used for data analysis.

DYNAMIC BALANCE

Dynamic balance was measured using the anterior direction of the Star Excursion Balance Test. Each player was given standardized verbal instructions along with a visual demonstration, followed by four practice trials. While barefoot, the participants then performed three test trials in the anterior direction for each leg. A member of the research team measured leg length on each limb while the participants lay supine. The distance in centimeters (cm) was recorded from the Anterior Superior Iliac Spine to the center of the ipsilateral medial malleolus. Reach distance was normalized to each participant’s limb length by dividing by the players’ leg length (cm) and multiplying by 100. The average normalized percent leg length score among the trials for each stance leg was used for data analysis. Excellent inter-rater reliability of the anterior reach Star Excursion Balance Test has been previously established (ICC = 0.92).

Statistical Analysis

Percentage of observed agreement and kappa (K) coefficients were used to investigate inter-observer reliability for each of the nine components of the OTSA. K was interpreted using the following scale: ≤ 0 = poor agreement, .01-.20 = slight agreement, .21-.40 = fair agreement, .41-.60 = moderate agreement, .61-.80 = substantial agreement, and .81-1 = almost perfect agreement. A final composite score was calculated for each of the 28 players by summing together the individual scores of each of the nine components. To determine the inter-rater reliability of the total composite score, an Intraclass Correlation Coefficient (ICC) was utilized.

TIA (time in air) jump height = \(\frac{1}{2} g (t/2)^2 \)

t = time in air, determined by time difference from the video recording from takeoff to landing as determined by foot contact.

g = 9.8 m \cdot \text{sec}^{-2}

Excellent inter-rater reliability of the measurements was established using the data of six participants for both double leg (ICC =0.99, 95%CI= 0.98-1.00) and single leg (ICC = .97, 95%CI=0.80-0.99). The average of the three double leg and single leg CMJs were used for data analysis.
rotational power and distance comparisons. All data were analyzed using Statistical Program for the Social Sciences (SPSS) version 21.0 (IBM Corp. Armonk, NY, USA). A \(\alpha \) level of \(p \leq 0.05 \) was considered significant.

RESULTS

Reliability
The percentage of observed agreement between the two observers varied by node and is presented in Table 4. The kappa scores ranged from 0.36 to 1.0, and the level of agreement ranged from 78 to 100% agreement. Five out of the nine nodes scored K > 0.61. The average composite score for Rater 1 was 7 ± 2.1 and Rater 2 was 7 ± 2.2. There was excellent inter-observer reliability between the two raters using the composite score (ICC = 0.90, 95% CI: 0.847-0.985). The kappa paradox was present in the other four nodes (2, 5, 7, 8) with lower Kappa scores. The proportions of positive agreement for these four nodes range from 0.57 to 0.96 and are also presented in Table 4.

Validity
Trunk flexibility and power measures discriminated between the two groups (Table 5). Backward trunk flexibility and total arc of motion were significantly greater in those with good mechanics compared to those with poor mechanics when adjusting for age and sex. Similarly, trunk rotational power and distance were greater in those with good mechanics compared to poor mechanics when adjusting for age, sex, and arm length. Dominant single leg CMJ was also greater in those with good mechanics by 10cm. There were no significant differences between groups for forward trunk flexibility, double leg CMJ, or dynamic balance (Table 5).

DISCUSSION
The OTSA was developed using kinematic findings from 3D motion analysis studies. The developers of this tool suggested the analysis might be practical for coaches and HCPs to evaluate serve mechanics in the absence of costly 3D biomechanical equipment. However, the practicality of such a tool cannot be suggested without basic psychometric properties. Therefore, the current study investigated the validity and inter-observer reliability between the two HCPs that helped to create the OTSA. It was hypothesized that players demonstrating good serve mechanics would perform better on a series of musculoskeletal field tests compared to those with poor serve mechanics. The hypothesis was partially supported as five measures were found to differentiate those with good and poor mechanics. Players with good mechanics demonstrated approximately 11° more backward trunk flexibility and 23° more total trunk rotational motion. Those with good serve mechanics generated 46 more watts of trunk rotational power,

| Table 4. Inter-observer reliability between two experienced sports medicine professionals evaluating 28 tennis serve videos |

<table>
<thead>
<tr>
<th>Node</th>
<th>Percentage of Observed Agreement (%)</th>
<th>Kappa Coefficient</th>
<th>95% Confidence Intervals</th>
<th>Proportion of Positive Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1: Foot Position</td>
<td>89</td>
<td>0.77<sup>a</sup></td>
<td>0.53, 1.01</td>
<td>0.85</td>
</tr>
<tr>
<td>Node 2: Knee Position</td>
<td>78</td>
<td>0.43<sup>c</sup></td>
<td>0.02, 0.84</td>
<td>0.57</td>
</tr>
<tr>
<td>Node 3: Counterhip Rotation</td>
<td>96</td>
<td>0.84<sup>a</sup></td>
<td>0.53, 1.15</td>
<td>0.97</td>
</tr>
<tr>
<td>Node 4: Posterior Hip Tilt</td>
<td>100</td>
<td>1.0<sup>a</sup></td>
<td>1.00, 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Node 5: Hip Lean</td>
<td>89</td>
<td>0.36<sup>d</sup></td>
<td>-0.54, 1.26</td>
<td>0.94</td>
</tr>
<tr>
<td>Node 6: X-angle</td>
<td>96</td>
<td>0.78<sup>b</sup></td>
<td>0.20, 1.36</td>
<td>0.98</td>
</tr>
<tr>
<td>Node 7: Trunk Position</td>
<td>92</td>
<td>0.47<sup>c</sup></td>
<td>-0.24, 1.18</td>
<td>0.96</td>
</tr>
<tr>
<td>Node 8: Arm Position</td>
<td>85</td>
<td>0.51<sup>c</sup></td>
<td>0.07, 0.95</td>
<td>0.91</td>
</tr>
<tr>
<td>Assessment of Motion 9: Composite Motion of Kinetic Chain</td>
<td>96</td>
<td>0.86<sup>a</sup></td>
<td>0.61, 1.11</td>
<td>0.97</td>
</tr>
</tbody>
</table>

^aIndicates almost perfect level of agreement (≥ 0.81)
^bIndicates substantial level of agreement (0.61 to 0.80)
^cIndicates moderate level of agreement (0.41-0.60)
^dIndicates fair level of agreement (0.21-0.40)
had a greater throwing distance on average of two meters (m) during the trunk rotational power test, and jumped an average 10cm higher on the dominant single leg CMJ compared to players with poor mechanics. Additionally, it was hypothesized that the inter-observer reliability would be greater than 0.41 for the majority of the nine nodes. This study supported that hypothesis as 89% of the nodes generated moderate to almost perfect agreement. However, caution must be taken when interpreting the kappa values of the nodes generating fair to moderate agreement, as the kappa paradox was present within these four nodes.

The kappa is “affected by the prevalence of the finding under consideration much like prediction values are affected by the prevalence of the disease under consideration.”30 p.362,32 For example, the low kappa value (0.36) associated with node five presents with a percentage of observed agreement of 89% (two observers in agreement 25 out of 28 observations). This occurred because 24 out of the 25 agreed responses were that players did exhibit forward hip lean, and only one time did the raters agree that the athlete did not exhibit forward hip lean during the serve. Therefore, there is much agreement among the observers, but there is an uneven distribution of observations within the contingency table. With the proportion of positive agreement value reaching near one, (0.94 in this case) it can be interpreted that the decline in kappa is a result of the high prevalence of “yes” responses (24 responses) compared to “no” responses (one response) between the observers.29 The kappa value representing nodes five, seven, and eight seems to be underestimating the true agreement between these two raters as the proportion of positive agreement is large providing an additional method to interpreting the data that may help to provide a clearer picture.29

Results of the present study suggest that trunk flexibility and power capacity of both the trunk and lower extremity are key contributions to good serve mechanics. Tennis researchers have investigated the relationship between rotational trunk kinematics during the serve and serve velocity. Elite players displaying trunk rotation about the anteroposterior and transverse axis early in the service motion had improved serve speeds compared to those demonstrating rotation later in the motion.1 Consistent with the findings of this study, lower handicapped golfers demonstrated 10° more torso flexibility than those with higher handicaps.34 Previous authors have indicated that poor torso flexibility may inhibit the mechanics of the golf swing, specifically the X factor (or x-angle), thus diminishing drive distance and decreasing velocity.35,36 The role of torso rotation has also been demon-

| Table 5. Means ± standard deviations for all dependent measures between groups |
|---------------------------------|-----------------|-----------------|--------|----------------|
| | Good Serve | Poor Serve | p-Value| Cohen D Effect Size |
| Trunk Flexibility Measures° | Mechanics | Mechanics | | |
| Backward Trunk Flexibility | 60.71 ± 10.82° | 49.39 ± 14.85° | 0.02 | 0.94 |
| Forward Trunk Flexibility | 57.97 ± 14.28° | 46.31 ± 18.25° | 0.09 | 0.71 |
| Total Arc of Motion | 118.68 ± 23.39°| 95.70 ± 28.36° | 0.02 | 0.88 |
| Power Measures | | | | |
| Trunk Rotational Power (Watts)a,b| 165.20 ± 30.90 | 118.76 ± 22.25 | 0.02 | 1.73 |
| Trunk Rotation for Distance (meters)a,b | 5.02 ± 1.35 | 2.68 ± 0.70 | 0.002 | 2.20 |
| Double Leg CMJ (meters)a | 0.41 ± 0.11 | 0.26 ± 0.08 | 0.33 | 1.57 |
| Single Leg CMJ (meters)a | 0.22 ± 0.05 | 0.12 ± 0.05 | 0.05 | 2.00 |
| Dynamic Balance° | | | | |
| Dominant Anterior Leg Reach | 66.17 ± 5.52° | 63.32 ± 7.09° | 0.30 | 0.45 |
| (reach distance in cm/leg length in cm*100) | | | | |
| Non-Dominant Anterior Leg Reach | 67.03 ± 5.02° | 63.53 ± 6.87° | 0.31 | 0.58 |
| (reach distance in cm/leg length in cm*100) | | | | |

°ANCOVA model corrected for age, and sex
bANCOVA model corrected for age, sex, and arm-length
In this study, single leg CMJ height on the dominant leg revealed a 10-centimeter difference between the two groups while the double leg CMJ showed no difference between the groups. While this study did not measure lower extremity forces, these findings may suggest that those with good mechanics are able to maximize back leg drive up and through the serve, as this is the basis for proper hip motion and subsequent acceleration. This is consistent with the work of Girard et al,44 who showed elite tennis players activate the dominant leg muscles earlier in the tennis motion than less skilled players, and of Whiteside et al11 who showed elite adult female tennis players to have greater dominant leg triple extension velocities and racquet velocities at impact compared to prepubescent elite players. The importance of this finding is that each leg should be independently evaluated when screening players for potential lower extremity power deficits.

There are several advantages to this type of observational analysis. First, it is portable to practice or tournament sites, and can be implemented by using a standard video camera. Second, it allows coaches and HCPs to easily identify mechanical flaws within the service motion to improve performance and diminish possible injury risk. Third, by specifically demonstrating failures to achieve specific nodes, it can highlight areas for more comprehensive musculoskeletal evaluation, treatment, and conditioning. In turn, coaches and HCPs may evaluate specific body regions that aid in the improvement of the serve technique. With the identification of node deficiencies it may be possible to develop programs to improve mechanics, performance, and ultimately reduce injury risk.

These investigations have limitations. First, serve mechanics and power were not assessed using 3D kinematic and kinetic analysis. However, the protocol used to measure kinematics and power reflects practical field tests. Second, the outcomes of the tennis serves were not recorded. The authors did not document if the three service trials were considered playable points. Future studies should document the outcome of each service trial to combat this limitation. Third, two experienced sports medicine professionals who were involved in the development of the method performed the analysis. Future research is underway to address this specific limitation by incor
porating more HCPs and tennis coaches that have not developed the OTSA tool into a larger reliability study. Lastly, future research should investigate if a standardized training intervention can improve the mechanics of the tennis serve. Based on the current results, an intervention should likely incorporate trunk flexibility and both trunk and lower extremity interventions as these components were able to differentiate those with good and poor serve mechanics.

CONCLUSION
The OTSA has a high agreement between two experienced observers, indicating good to excellent reliability. This system has the potential to help coaches, players, and HCPs better analyze the tennis serve motion. This study demonstrated that specific physical characteristics can differentiate players with good and poor serve mechanics as defined by the OTSA scores. Specifically, trunk rotation and power capacity of the trunk and lower extremity are key areas that may contribute to poor serve mechanics and may be reasonable starting points to address in interventions that may enhance serve mechanics and performance.

REFERENCES

