BIOMECHANICS OF LOW BACK PAIN: A COMPUTATIONAL PERSPECTIVE

Babak Bazrgari, PhD
Associate Professor
F. Joseph Halcomb III, MD Department of Biomedical Engineering
Overview

• Low back pain (LBP)
• Research focus
• Computational approaches
 – Spinal loads
 – Cumulative effects of abnormal spinal loads
Low Back Pain (LBP)
LBP Significance

- **Prevalence**
 - ~ 20% of world population have LBP at any given time
 - Up to 80% of US population will experience LBP during their lifetime
 - Annual prevalence in old versus young individuals: 38% vs. 12%
 - Annual prevalence in person with and without lower limb amputation: 52-71% vs. 6-31%

- **Impact**
 - Chronic LBP is the leading cause of disability in the world
 - Chronic LBP force older workers to retire prematurely
 - Half of opioid users report LBP
 - Total cost associated with LBP has been reported to be >$100 billion per year
LBP Management

>90% LBP cases are categorized as non-specific LBP
Prevention: Risk Factor Management

Risk Factors

Non-occupational
- Age
- Gender
- Obesity
- Pregnancy
- Physical Fitness

Occupational
- Physical
 - Manual material handling
 - Motion and fatigue
 - Whole body vibration
 - Awkward posture
 - Static posture
- Psychosocial
 - Job satisfaction
 - Social support
 - Stress
 - Job clarity
Treatment: Trial and Error Efforts

Chou et al (2007): Diagnosis and Treatment of Low Back Pain: A Joint Clinical Practice Guideline from the American College of Physicians and the American Pain Society

Treatment Algorithm

1. **History and Physical Exam**
 - List of symptoms
 - Medical history
 - Past medical history
 - Family history

2. **Diagnostic Workup**
 - Imaging (X-ray, MRI, CT) based on clinical findings
 - Laboratory tests
 - Electromyography (EMG)
 - Nerve conduction studies (NCS)

3. **Treatment Plan**
 - Acute phase (≤ 4 weeks)
 - Chronic phase (> 4 weeks)
 - Adjunctive therapies
 - Surgery

Evidence-Based Medicine

- **Level of Evidence:** Evidence-based practice guidelines are referenced throughout.
- **Strength of Recommendation:** Ranges from weak (W) to strong (S) evidence.
- **Consensus:** Consensus statements are noted where evidence is lacking.

Key Points

- **Low Back Pain:** Acute (< 4 weeks), Chronic (> 4 weeks)
- **Acute Pain Management:** Consider pharmacological and non-pharmacological treatments (Recommendations 4, 7)
- **Chronic Pain Management:** Ongoing evaluation and reassessment (Recommendations 4, 10)
- **Adjunctive Therapies:** Physical therapy, cognitive-behavioral therapy, acupuncture, yoga, etc.

Key References

Research Focus
Research Need

Determine the root cause(s) of LBP for a given patient
Research Focus

• Mechanical loading can cause LBP

White and Panjabi 1990
Spinal Loads

- Loads experienced in the spinal tissues are determined by the state of spine equilibrium and stability.

- **Spine equilibrium**: A delicate balance between the physical demands of an activity and the active and passive responses of the spine tissues.

- **Spine stability**: The capacity to regulate and sustain spine equilibrium within an optimal range that provides the spine both its rigidity and flexibility under diverse conditions.
Research Design

- Task demand
- CNS
 - Active tissues responses
 - Work method (posture and motion)
 - Passive tissues responses
- Equilibrium and stability of spine
- Spinal loads
- Exposure to risk factor or receiving a treatment
- Stimulation threshold
- LBP

For example: Lifting
Evaluation of Spinal Loads
Spinal loads
Modeling Approaches

• **Modeling Approaches**
 – Rigid-body models
 – Rigid-body + muscle models (EMG-driven or Optimization-based)
 – Rigid-body + muscle + deformable-body models (finite element methods)
 – Equilibrium vs. stability-based models

• **Measures**
 – Mechanical demand of the task at lower back
 – Active and passive muscle forces
 – Passive mechanical response of ligamentous spine
 – Spinal loads (compression and shearing forces)
Finite Element (FE) Model

Arm and hand masses

Distribution of trunk mass anterior to vertebral column

Nonlinear Compression only

Disc Damping Axial-Rotational

Beam Elements with nonlinear: Load-Displacement Moment-Curvature

T1

T12

L5

Sacrum
Passive Tissue Contribution

![Graph showing relationships between segmental rotation, flexion moment, axial compression, and strain.](image-url)
Active Tissue Contribution
Kinematics-Driven Method

- External loads
- Kinematics \((in\ vivo)\)
 - Nonlinear transient FE model
 - Temporal variation of joint loads
 - Calculation of muscle forces
 - Effects of muscle forces
 - Convergence?
 - NO
 - YES
 - Post processing

T12
S1
Squat vs. Stoop Lifting

- Moment arm of load
- Energy consumption
- Balance
Experiments
Trunk Kinematics
Net moment @ S1 = Passive moment + Muscle moment

Moment (N-m)

Stoop
Squat

Load

F

F_{\text{Trunk}}

F_{\text{Load}}

S1

Trunk

F

Net moment @ S1

Passive moment

Muscle moment

Moment (N-m)

Moment (N-m)

Moment (N-m)
Spinal Loads

L5-S1

Compression
Shear force

Compression Force (kN)

Shear Force (kN)

Stoop
Squat
Alteration in Passive Properties

![Graph showing the alteration in passive properties](image-url)

- T12-L1 Disc
- +20%
- Intact
- -20%
- -40%
Alteration in Passive Properties

- Compression Force (kN)
 - +20%
 - Intact
 - -20%
 - -40%

- Muscle Moment (Nm)
 - -20
 - 20
 - 60
 - 100
 - 140
 - 180
 - 220

- Shear Force (kN)
 - 0
 - 0.5
 - 1
 - 1.5
 - 2

- Ligamentous Spine Moment (Nm)
 - 0
 - 10
 - 20
 - 30
 - 40
 - 50
LBP and Lower Limb Amputation

Locomotion secondary to lower-extremity amputation

Increased and asymmetric trunk kinematics
Spinal Loads During Walking
Cumulative effects of abnormal spinal loads
Fatigue Failure of Spinal Tissues

Injury threshold of spine motion segment:
Compressive: 5-10 kN
Shear: 1-2 kN

Maximum spinal loads during walking:
Compressive: 1.2 vs 1.8 kN
Shear: 0.5 vs. 0.7 kN
Fatigue Model (Motiwale et al 2018)

\[\sigma_{VM} = \text{sign} \left(\frac{F_{com}}{A_{disc}} \right) \sqrt{\left(\frac{F_{com}}{A_{disc}} \right)^2 + 3 \left(\frac{F_{AP}}{A_{disc}} \right)^2 + \left(\frac{F_{ML}}{A_{disc}} \right)^2} \]

\[N_{fi} = \frac{1}{1 - \alpha_i} \left[\frac{\sigma_{range}}{M_0(1 - b \sigma_{mean})} \right]^{-\beta} \]
\[\alpha_i = 1 - \left(a \frac{\sigma_{range}}{\sigma_u - \sigma_{max}} \right) \]

\[D_{mi} = \left(\frac{n_i^{\text{eff}}}{N_{fi}} \right)^{\frac{1}{1-\alpha_i}} \quad n_i^{\text{eff}} = n_i + N_{fi}(D_{mi-1}^{r})^{(1-\alpha_i)} \]

\[D_{mi}^{r} = D_{mi-1}^{r} + (D_{mi} - D_{mi-1}^{r})(1 - r) \]
Results
Conclusions

• The inability to determine the cause of LBP for most cases poses a significant challenge for design of effective prevention and treatment interventions.

• Forces and deformations experienced in the lower back tissues can directly and indirectly stimulate pain sensitive nerve endings within the lower back.

• Significant advances related to the assessment of lower back mechanical environment have been made.

• An enhanced and more personalized evaluation of lower back mechanical environment can help design more effective preventive and/or rehabilitation strategies.
Questions